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1. HIGHER DIMENSIONAL THOMPSON GROUPS $nV$

The Thompson group $V$ is a subgroup of the homeomorphism group of the Cantor set
$C$ . Brin [3] defined higher dimensional Thompson groups $nV$ as generalizations of $V$ . For
each $n,$ $nV$ is a subgroup of the homeomorphism group of $C^{n}.$

According to Brin’s paper [3], we give the definition of higher dimensional Thompson
groups. Hereafter, the symbol $I$ denotes [$0$ , 1). Symbols $I_{l}$ and $I_{r}$ denote $[0, 1/2$) $\cross I^{n-1}$

and [1/2, $1)\cross I^{n-1}$ , respectively.
An $n$ -dimensional rectangle is a subset of $I^{n}$ , defined inductively as follows. The first

rectangle is $I^{n}$ itself. If $R=[a_{1}, b_{1}$ ) $\cross\cdots\cross[a_{i}, b_{i}$ ) $\cross\cdots\cross[a_{n}, b_{n}$ ) is a rectangle, then for
all $i\in\{1, . . . , n\}$ , the “i-th left half”’ and the i-th right half”’ defined by

(1) $R_{l,i}=[a_{1}, b_{1})\cross\cdots\cross[a_{i}, (a_{i}+b_{i})/2)\cross\cdots\cross[a_{n}, b_{n})$

(2) $R_{\eta i}=[a_{1}, b_{1})\cross\cdots\cross[(a_{\dot{2}}+b_{i})/2, b_{i})\cross\cdots\cross[a_{n}, b_{n})$

are again rectangles.
An $n$ -dimensional pattern is a finite set of $n$-dimensional rectangles, with pairwise

disjoint, non-empty interiors and whose union is $I^{n}.$ A numbered pattern is a pattern with
a $one\cdot to$-one correspondence to $\{0, 1, . . ., r-1\}$ where $r$ is the number of rectangles in
the pattern. The following figure gives an example of a pair of 2-dimensional numbered
patterns, which are different as numbered patterns although they are the same as patterns.

From now on, we will identify an $n$-dimensional rectangle with a subset of $C^{n}$ and use
the common symbol. We start with identifying $I^{n}$ with $C^{n}$ . Let $R$ be a rectangle which
is identified with a subset of $C^{n}$ :

(3) $R’=C^{n}\cap[a_{1}’, b_{1}’]\cross\cdots\cross[a_{i}’, b_{i}’]\cross\cdots\cross[a_{n}’, b_{n}’].$

Define rectangles $R_{l,i}$ and $R_{r,i}$ in the same way as we obtained (1) and (2). These rectangles
are identified respectively with the “i-th left third”’ and the “i-th right third” of $R’$ :

(4) $C^{n}\cap[a_{1}’, b_{1}’]\cross\cdots\cross[a_{i}’, (2a’+b_{i}’)/3]\cross\cdots\cross[a_{n}’, b_{n}’],$

(5) $C^{n}\cap[a_{1}’, b_{1}’]\cross\cdots\cross[a_{i}’, (a’+2b_{i}’)/3]\cross\cdotsx[a_{n}’, b_{n}’].$

We proceed by induction. In the same manner, every pattern describes a division of $C^{n}.$

The following figure shows this correspondence, in the case of $n=2.$
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We will construct a self-homeomorphism of C’ from a pair of numbered patterns with
the same number of rectangles. Let $P=\{P_{i}\}_{0\leq i\leq r-1}$ and $Q=\{Q_{i}\}_{0\leq i\leq r-1}$ be numbered
patterns. We define $g(P, Q)$ : $I^{n}arrow I^{n}$ which takes each $P_{i}$ onto $Q_{i}$ affinely so as to
preserve the orientatiorl, as drawn in the following figure. Namely, the restriction of
$g(P, Q)$ to each $P_{i}$ has the form $(x_{1}, \ldots, x_{n})\mapsto(a_{1}+2^{j_{1}}x_{1)}\ldots, a_{n}+2^{j_{n}}x_{n})$ for some
integers $j_{1}$ , . $i_{n}.$

With the former identification of rectangles with subsets of $C^{n}$ , the above construction
defines a self-homeomorphism of $C^{n}$ . We again write $g(P, Q)$ for this homeomorphism.

When $n=2$ , we illustrate $g(P, Q)$ as a triplet of $P,$ $Q$ and an arrow which indicates
the domain and the range. Below we show an example.

The $n$ -dimensional Thompson group $nV$ is a subgroup of self-homeomorphisms of $C^{n}$

which consists of the maps with the form $g(P, Q)$ . Every element of $nV$ is identified with
a partially affine, partially orientation preserving bijection from $I^{n}$ to itself.

Theorem 1.1 (Bleak and Lanoue [2]). $n_{1}V$ and $n_{2}V$ are isomorphic if and only if $n_{1}=$

$n_{2}.$

Higher dimensional Thompson groups have some important properties in common with
Thompson groups.

Theorem 1.2 (Brin [4]). For all $n\in \mathbb{N},$ $nV$ is simple.

2. THE NUMBER OF ENDS AND ACTIONS ON TREES

Let $\Gamma$ be a connected locally finite graph. We equip $\Gamma$ with graph metric. For a finite
subtree $K,$ $\Vert\Gamma-K\Vert$ denotes the number of unbounded connected components of $\Gamma-K.$

The number of ends of $\Gamma,$ $e(\Gamma)$ , is defined to be the supremum of $\Vert\Gamma-K\Vert$ taken over all
the finite subtrees.

Throughout this section, $G$ denotes a finitely generated group and $S$ denotes a finite
generating set of $G$ . The Cayley graph $\Gamma_{G,\mathcal{S}}$ is a graph whose vertex set is $G$ , and there is
an oriented edge from $g\in G$ to $h\in G$ if some $s\in S$ satisfies $g\cdot s=h,$ $G$ acts freely on
$\Gamma_{G,S}$ from the left.

The number of ends of $G,$ $e(G)$ , is the number of ends of $\Gamma_{G,S}.$
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Proposition 2.1. $e(G)$ satisfies the following.

(i) $e(G)$ does not depend on the choice of $S.$

(ii) (The Freudenthal-Hopf Theorem) $e(G)$ is $0$ , 1, 2 or $\infty.$

(iii) $e(G)=0$ if and only if $G$ is finite.
(iv) $e(G)=2$ if and only if $G$ has an infinite cyclic subgroup of finite index.

The following result, Stallings’ theorem, provides a group-theoretical characterization
of the case where $e(G)\geq 2.$

Theorem 2.2 (Stallings [9], Bergman [1]). $e(G)\geq 2$ if and only if $G$ has a structure of
an amalgamated product or an $HNN$-extension on some finite subgroup.

In the light of this theorem, we can characterize the case of $e(G)=1$ in terms of group
actions on trees. From now on, we consider only simplicial trees and simplicial actions
without edge-inversions. We say that $G$ has property $FA$ if every action of $G$ on a tree $T$

has a fixed point. Here, a fixed point means $x\in T$ such that $g(x)=x$ for every $g\in G.$

Theorem 2.3 (Serre [8]). If an infinite group $G$ has propery $FA$ , then $e(G)=1.$

The following proposition is a basic fact about group actions on trees. Let $G$ be a group
acting on a tree. Let $g\in G$ . If some $x\in T$ satisfies $g(x)=x$ , then $g$ is said to be elliptic.
Otherwise, we say $g$ is hyperbolic.

Proposition 2.4 (Serre [8]). Let $G$ be a group acting on a tree T. Let $g\in G.$

(i) Fix$(g)=\{x\in T|g(x)=x\}$ is either empty or a subtree of $T.$

(ii) If $g$ is hyperbolic, $g$ acts on a unique simplicial line in $T$ by translation. This line
is called the axis of $g.$

(iii) (Seroe’s lemma) Assume that $G$ is generated by a finite set of elements $\{s_{j}\}_{1\leq i\leq m}$

such that every element is elliptic, and the products of every two elements are
elliptic, equivalently, every two elements have a common fixed point. Then there
is $x\in T$ which is fixed by every element of $G.$

3. $nV$ HAS PROPERTY FA

We would like to explain the idea to show that each $nV$ has property FA. First, we
take a finite generating set of $nV$ . Next, we modify the generating set as to satisfy the
requirements of Serre’s lemma.

For every $n,$ $nV$ is known to have a useful presentation, described in the following. We
define $X_{1,0},$ $X_{d’,0},$ $C_{d’,0},$ $\pi_{0},$ $\overline{\pi}_{0}\in nV(2\leq d’\leq n)$ as shown in the following figure. For
$i\geq 1,$ $X_{d,i}(1\leq d\leq n)$ is defined inductively. On $I_{r},$ $X_{d,\iota’}$ restricts to the identity. For
$x\in I_{l}$ , we write $x=(x_{1}, x_{2})$ where $x_{1}\in[0$ , 1/2) and $x_{2}\in I^{n-1}$ . We define $\phi$ : $I_{l}arrow I^{n}$

by $\phi(x_{1}, x_{2})=(2x_{1}, x_{2})$ . On $I_{l},$ $X_{d,i}=X_{d,i-1}\phi$ . Similarly, $C_{d’,i},$ $\pi_{i}$ and $\overline{\pi}_{i}$ restrict to the
identity on $I_{r}$ and $C_{d’,i-1}\phi,$ $\pi_{i-1}\phi$ and $\overline{\pi}_{i-I}\phi$ on $I_{l}$ , respectively.
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Theorem 3.1 (Hennig and Matucci [7, Theorem 23 Let

(6) $\Sigma=\{X_{d,\nu}, C_{d’,i}, 7r_{i},\overline{\pi}_{i}\}_{1\leq d\leq n}, 2\leq d’\leq n_{\rangle}i\geq 0.$

(i) X \’is a generating set of $nV.$

(ii) The elements of $\Sigma$ satisfy the following relations:

(7) $X_{d",j}X_{d,i}=XX,$ ’ $(i<j, 1\leq d, d^{\prime J}\leq n)$ ,

(8) $C_{d’,j}X_{d_{l}’},=X_{d},{}_{i}C_{d’,j+1} (i<j_{)}1\leq d\leq n, 2\leq d’\leq n)$ ,

(9) $Y_{j}X_{d,i}=X_{d,i}Y_{j+1} (i<j, Y\in\{\pi,\overline{\pi}\}, 1\leq d\leq n)$ ,

(10) $\pi_{j}X_{d,i}=X_{d,i}\pi_{j} (i>j+1,1\leq d\leq n)$ ,

(11) $\pi_{j}C_{d’,i}=C_{d’,i}\pi_{j} (i>j+1,2\leq d’\leq n)$ ,

(12) $\pi_{j}7r_{\iota’}=7r_{i}\pi_{j} (|i-j|>2)$ ,

(13) $\overline{7r}_{j}7\Gamma_{i}=7r_{x’}\overline{7r}_{j} (j>i+1)$ ,

(24) $\overline{7r}_{i}X_{1,i}=\pi_{i}\overline{\pi}_{i+1} (i\geq 0)$ ,

(15) $C_{d’,i}X_{1,i}=X_{d’},{}_{i}C_{d’,i+2}\pi_{i+1} (i\geq 0,2\leq d’\leq n)$ ,

(16) $\pi_{i}X_{d,i}=X_{d,i+1}\pi_{i}\pi_{i+1} (i\geq 0,1\leq d\leq n)$ .

Relations (7), (8) and (9) are similar to the (almost commutative” relation of Thomp-
son’s group $F$ . According to those relations, we can see that $\{X_{d,i}, C_{d’,i_{\rangle}^{7}}r_{i},\overline{\pi}_{i}\}_{i\leq 7n}$ gener-
ates $nV$ for every $m\geq 1.$

We would like to modify $\Sigma$ to consist of elliptic elements. For this purpose, we use the
following characterization for $an$ element of $nV$ to be elliptic.

Lemma 3.2. Let $g\in nV$ act identically on some rectangle. If $nV$ acts on a tree, 9 is
elliptic.

The above lemma was shown in [6] in the case of $n=1$ . For each rectangle $R\subset\vee I^{n}$ , we
consider a subgroup which consists of elements whose supports are included in $R$ . We may

observe that such subgroups are conjugate to each other, and that they are isomorphic to
$V$ , which is simple. The proof depends on these facts, which are also true in the case of
$nV$ for general $n.$
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Lemma 3.3. The set

(17) $S=\{X_{d,1}, X_{d,1}(X_{d,0})^{-1}, C_{d’,2}, \pi_{0}, \pi_{3},\overline{\pi}_{3}\}_{1\leq d\leq n,2\leq d’\leq n}$

generates $nV.$

We show the newly appeared elements $X_{d,1}(X_{d,0})^{-1}$ in the figure below.

$X_{1,1}(X_{1,0})^{-1}=$

Each element of $S$ restricts to the identity on some rectangle. If two elements restrict
to the identity on a rectangle, then their product again restricts to the identity on the
rectangle and is elliptic. If two elliptic elements commute, then they have a common fixed
point.

The following figure shows that almost all the pairs of elements of $S$ satisfy one of those
two conditions. Solid segments represent the commutativity and dotted ones indicate that
two endpoints restrict to the identity on the same rectangle.

$\pi_{0}$

$\pi_{3}$

According to the relations in Theorem 3.1, we may confirm that the exceptional pairs
also have common fixed points.

Theorem 3.4. $nV$ has property $FA$ . Especially, $e(nV)=1.$
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