RELATIONSHIP BETWEEN THE MILNOR＇S μ－INVARIANT AND HOMFLYPT POLYNOMIAL

YUKA KOTORII

1．Introduction

For an ordered oriented link in the 3 －sphere，J．Milnor［15，16］defined a family of invariants，known as Milnor＇s $\bar{\mu}$－invariants．For an n－component link L ，Milnor invariant is determined by a sequence I of elements in $\{1,2, \ldots, n\}$ and denoted by $\bar{\mu}_{L}(I)$ ．It is known that Milnor invariants of length two are just linking numbers．In general，Milnor invariant $\bar{\mu}_{L}(I)$ is only well－defined modulo the greatest common divisor $\Delta_{L}(I)$ of all Milnor invariants $\bar{\mu}_{L}(J)$ such that J is a subsequence of I obtained by removing at least one index or its cyclic permutation．If the sequence is of distinct numbers，then this invariant is also a link－homotopy invariant and we call it Milnor＇s link－homotopy invariant． Here，the link－homotopy is an equivalence relation generated by ambient isotopy and self－ crossing changes．
In［3］，N．Habegger and X．S．Lin showed that Milnor invariants are also invariants for string links，and these invariants are called Milnor＇s μ－invariants．For any string link σ ， $\mu_{\sigma}(I)$ coincides with $\bar{\mu}_{\hat{\sigma}}(I)$ modulo $\Delta_{\hat{\sigma}}(I)$ ，where $\hat{\sigma}$ is a link obtained by the closure of σ ． Milnor＇s μ－invariants of length k are finite type invariants of degree $k-1$ for any natural integer k ，as shown by D．Bar－Natan［1］and X．S．Lin［11］．

In［17］，M．Polyak gave a formula expressing Milnor＇s $\bar{\mu}$－invariant of length 3 by the Conway polynomials of knots．His idea was derived from the following relation．Both Milnor＇s μ－invariant of length 3 for string link and the second coefficient of the Conway polynomial are finite type invariants of degree 2．He gave this relation by using Gauss diagram formulas．

Then，in［14］，J－B．Meilhan and A．Yasuhara generalized it by using the clasper theory introduced by K．Habiro［4］．They showed that general Milnor＇s $\bar{\mu}$－invariants can be represented by the HOMFLYPT polynomials of knots under some assumption．Moreover the author and A．Yasuhara improved it in［9］．

In［8］，we give a formula expressing Milnor＇s μ－invariant by the HOMFLYPT polyno－ mials of knots under some assumption（Theorem 3．1）by using the clasper theory in［4］． The course of proof is similar to that in［14］and［9］．Moreover，Milnor＇s μ－invariants of length 3 for any string link are given by the HOMFLYPT polynomial，which is a finite type invariant of degree 2 ，and the linking number．Because a finite type knot invariant of degree 2 is only the second coefficient of the Conway polynomial essentially，Milnor＇s μ－invariants of length 3 are given by the second coefficient of the Conway polynomial and the linking number（Theorem 3．3）．It is a string version of Polyak＇s result，and by taking modulo $\triangle(I)$ ，our result coincides with Polyak＇s result．

Received December 31， 2015.

2. Milnor's μ-invariant and HOMFLYPT polynomial

2.1. String link. Let n be a positive integer and $D^{2} \subset \mathbb{R}^{2}$ the unit disk equipped with n marked points $x_{1}, x_{2}, \ldots, x_{n}$ in its interior, lying in the diameter on the x-axis of \mathbb{R}^{2} as in Figure 1. Let $I=[0,1]$. An n-string link σ is the image of a proper embedding $\sqcup_{i=1}^{n} I_{i} \rightarrow D^{2} \times I$ of the disjoint union of n copies of I in $D^{2} \times I$, such that $\left.\sigma\right|_{I_{i}}(0)=\left(x_{i}, 0\right)$ and $\left.\sigma\right|_{I_{i}}(1)=\left(x_{i}, 1\right)$ for each i as in Figure 1. Each string of a string link inherits an orientation from the usual orientation of I. The n-string link $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \times I$ in $D^{2} \times I$ is called the trivial n-string link and denoted by $\mathbf{1}_{n}$ or $\mathbf{1}$ simply.

Figure 1. An n-string link
Given two n-string links σ and σ^{\prime}, we denote their product by $\sigma \cdot \sigma^{\prime}$, which is given by stacking σ^{\prime} on the top of σ and reparametrizing the ambient cylinder $D^{2} \times I$. By this product, the set of isotopy classes of n-string links has a monoid structure with unit given by the trivial string link $\mathbf{1}_{n}$. Moreover, the set of link-homotopy classes of n-string links is a group under this product.
2.2. Milnor's μ-invariant for string links. Let $\sigma=\cup_{i=1}^{n} \sigma_{i}$ in $D^{2} \times I$ be an n-string link. We consider the fundamental group $\pi_{1}\left(D^{2} \times I \backslash \sigma\right)$ of the complement of σ in $D^{2} \times I$, where we choose a point b as a base point and curves $\alpha_{1}, \cdots, \alpha_{n}$ as meridians in Figure 2.

Figure 2. Longitude of string link

By Stallings' theorem [18], for any positive integer q, the inclusion map

$$
\iota: D^{2} \times\{0\} \backslash\left\{x_{1}, \cdots, x_{n}\right\} \longrightarrow D^{2} \times I \backslash \sigma
$$

induce an isomorphism of the lower central series quotients of the fundamental groups

$$
\iota_{*}: \frac{\pi_{1}\left(D^{2} \times\{0\} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)}{\left(\pi_{1}\left(D^{2} \times\{0\} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)\right)_{q}} \longrightarrow \frac{\pi_{1}\left(D^{2} \times I \backslash \sigma\right)}{\pi_{1}\left(D^{2} \times I \backslash \sigma\right)_{q}},
$$

where given a group G, G_{q} means the q-th lower central subgroup of G. The fundamental group $\pi_{1}\left(D^{2} \times\{0\} \backslash\left\{x_{1}, \cdots, x_{n}\right\}\right)$ is a free group generated by $\alpha_{1}, \cdots, \alpha_{n}$. We then consider the j-th longitude l_{j} of σ in $D^{2} \times I$, where l_{j} is the closure of the preferred parallel curve of σ_{j}, whose endpoints lie on the x-axis in $D^{2} \times\{0,1\}$ as in Figure 2. We then consider the image of the longitude $\iota_{*}^{-1}\left(l_{j}\right)$ by the Magnus expansion and denote $\mu\left(i_{1}, \cdots, i_{k}, j\right)$ the coefficient of $X_{i_{1}} X_{i_{2}} \cdots X_{i_{k}}$ in the Magnus expansion.
Theorem 2.1 ([3]). For any positive integer q, if $k<q$, then $\mu\left(i_{1}, \cdots, i_{k}, j\right)$ is invariant under isotopy. Moreover, if the sequence i_{1}, \cdots, i_{k}, j is of distinct numbers, then $\mu\left(i_{1}, \cdots, i_{k}, j\right)$ is also link-homotopy invariant.

We call this invariant Milnor's μ-invariant.
2.3. HOMFLYPT polynomial. Recall the definition of the HOMFLYPT polynomial.

The HOMFLYPT polynomial $P(L ; t, z) \in \mathbb{Z}\left[t^{ \pm 1}, z^{ \pm 1}\right]$ of an oriented link L is defined by the following two formulas:
(1) $P(U ; t, z)=1$, and
(2) $t^{-1} P\left(L_{+} ; t, z\right)-t P\left(L_{-} ; t, z\right)=z P\left(L_{0} ; t, z\right)$,
where U denotes the trivial knot and L_{+}, L_{-}and L_{0} are link diagrams which are identical everywhere except near one crossing, where they look as follows:

$$
L_{+}=\nless \ll L_{-}=\ll L_{0}=><
$$

Recall that the HOMFLYPT polynomial of a knot K is of the form $P(K ; t, z)=$ $\sum_{k=0}^{N} P_{2 k}(K ; t) z^{2 k}$, where $P_{2 k}(K ; t) \in \mathbb{Z}\left[t^{ \pm 1}\right]$ is called the $2 k$-th coefficient polynomial of K.

3. MAIN THEOREM

Given a sequence I of elements of $\{1,2, \ldots, n\}, J<I$ will be used for any subsequence J of I, possibly I itself, and $|J|$ will denote the length of the sequence J.
Let σ be an n-string link. Given a sequence $I=i_{1} i_{2} \cdots i_{m}$ obtained from $12 \cdots n$ by deleting some elements, and a subsequence $J=j_{1} j_{2} \cdots j_{k}$ of I, we define a knot $\overline{\sigma_{I, J}}$ as the closure of the product $b_{I} \cdot \sigma_{J}$. Here σ_{J} is the m-string link obtained from σ by deleting the i-th string, for all $i \in\{1,2, \cdots, n\} \backslash\left\{i_{1}, i_{2}, \cdots, i_{m}\right\}$ and replacing the i-th string with a trivial string underpassing all other components, for all $i \in\left\{i_{1}, i_{2}, \cdots, i_{m}\right\} \backslash$ $\left\{j_{1}, j_{2}, \cdots, j_{k}\right\}$, and b_{I} is the m-braid associated with the permutation $b=\left(\begin{array}{ccccc}i_{1} & i_{2} & \ldots & i_{m-1} & i_{m} \\ i_{2} & i_{3} & \ldots & i_{m} & i_{1}\end{array}\right)$ and such that the arc with connecting $\left(b^{k}\left(i_{1}\right), 0\right)$ with $\left(b^{k+1}\left(i_{1}\right), 1\right)$ underpasses all arcs with connecting $\left(b^{k^{\prime}}\left(i_{1}\right), 0\right)$ with $\left(b^{k^{\prime}+1}\left(i_{1}\right), 1\right)$ in $[0,1] \times[0,1]$ of braid diagram for $k<k^{\prime}<n$. See Figure 3 for an example. We then have the following Theorem.

Theorem 3.1. Let σ be an n-string link ($n \geq 4$) with vanishing Milnor's link-homotopy invariants of length $\leq m-2$. Then for any sequence I obtained from $12 \cdots n$ by deleting $n-m$ elements, we have

$$
\mu_{\sigma}(I)=\frac{(-1)^{m-1}}{(m-1)!2^{m-1}} \sum_{J<I}(-1)^{|J|} P_{0}^{(m-1)}\left(\overline{\sigma_{I, J}} ; 1\right)
$$

where $P_{0}^{(m-1)}(\cdot ; 1)$ is the $(m-1)$-th derivative of the 0 -th coefficient $P_{0}(\cdot ; t)$ of the HOM$F L Y P T$ polynomial evaluated at $t=1$.

Note that the above vanishing assumption for string link is equivalent to that any ($m-2$)-substring link is link-homotopic to the trivial string link.
Remark 3.2. Theorem 1.1 remains valid if we use one of the following two alternative definitions of b_{I}. One is that we use "overpasses" instead of "underpasses". The other is that we use "any $i \in\left\{i_{1}, i_{2}, \cdots, i_{m}\right\}$ " instead of " i_{1} ".

We also give the case of μ-invariants of length 3 without the assumption.
Theorem 3.3. Let σ be an n-string link and $I=i_{1} i_{2} i_{3}$ be a length 3 sequence with distinct numbers in $\{1,2, \cdots, n\}$. We then have

$$
\mu_{\sigma}(I)=-\sum_{J<I}(-1)^{|J|} a_{2}\left(\overline{\sigma_{I, J}}\right)-l k_{\sigma}\left(i_{1} i_{2}\right) l k_{\sigma}\left(i_{2} i_{3}\right)+A_{I}
$$

where a_{2} is the second coefficient of the Conway polynomial, $l k_{\sigma}(i j)$ is the linking number of the i-th component and j-th component of σ, and

$$
A_{I}= \begin{cases}l k_{\sigma}\left(i_{1} i_{2}\right) & \left(i_{2}<i_{3}<i_{1}\right) \\ -l k_{\sigma}\left(i_{1} i_{2}\right) & \left(i_{1}<i_{3}<i_{2}\right) \\ 0 & (\text { otherwise })\end{cases}
$$

Remark 3.4. This operation from a string link to a knot corresponds to Y-graph sum of links defined by M. Polyak. By taking this formula modulo $\Delta_{\overline{\sigma_{T, J}}}(I)$, we get Polyak's relation between Milnor's $\bar{\mu}$-invariants and Conway polynomials [17].
Remark 3.5. In [19], K. Taniyama gave a formula expressing Milnor's $\bar{\mu}$-invariants of length 3 for links by the second coefficient of the Conway polynomial assuming that all linking numbers vanish.
Remark 3.6. In [12], J.B. Meilhan showed that all finite type invariants of degree 2 for string link was given a formula by some invariants (Theorem 2.8). So the formula in Theorem 3.3 could also be derived from [12].

4. Examples

Example 4.1. Let σ be a 3 -string link showed by Figure 3. Then $\mu_{123}(\sigma)=-1, \mu_{132}(\sigma)=$ $\mu_{213}(\sigma)=1$ and $\mu_{231}(\sigma)=\mu_{312}(\sigma)=\mu_{321}(\sigma)=0$. And $l k_{\sigma}(12)=l k_{\sigma}(23)=1$ and $l k_{\sigma}(13)=0$.

On the other hand, $\overline{\sigma_{123,123}}$ and $\overline{\sigma_{123,23}}$ are the figure-eight knot, and $\overline{\sigma_{123, J}}(J \neq 123,23)$ is the trivial knot. Therefore we obtain

$$
-\sum_{J<123}(-1)^{|J|} a_{2}\left(\overline{\sigma_{123, J}}\right)-l k_{\sigma}(12) l k_{\sigma}(23)=a_{2}\left(4_{1}\right)-a_{2}\left(4_{1}\right)-1 \cdot 1=-1
$$

Similarly, we have

$$
\begin{aligned}
& -\sum_{J<231}(-1)^{|J|} a_{2}\left(\overline{\sigma_{231, J}}\right)-l k_{\sigma}(23) l k_{\sigma}(31)=a_{2}\left(3_{1} \sharp 4_{1}\right)-a_{2}\left(3_{1}\right)-a_{2}\left(4_{1}\right)-1 \cdot 0=0, \\
& -\sum_{J<312}(-1)^{|J|} a_{2}\left(\overline{\sigma_{312, J}}\right)-l k_{\sigma}(31) l k_{\sigma}(12)+l k_{\sigma}(13)=a_{2}\left(3_{1}\right)-a_{2}\left(3_{1}\right)-0 \cdot 1+0=0 .
\end{aligned}
$$

Moreover, $\overline{\sigma_{132,32}}$ is the figure-eight knot and $\overline{\sigma_{132, J}}(J \neq 32)$ is the trivial knot. Therefore we obtain

$$
-\sum_{J<132}(-1)^{|J|} a_{2}\left(\overline{\sigma_{132, J}}\right)-l k_{\sigma}(13) l k_{\sigma}(32)-l k_{\sigma}(13)=-a_{2}\left(4_{1}\right)-0 \cdot 1-0=1
$$

Similarly, we have

$$
\begin{aligned}
& -\sum_{J<213}(-1)^{|J|} a_{2}\left(\overline{\sigma_{213, J}}\right)-l k_{\sigma}(21) l k_{\sigma}(13)=a_{2}\left(7_{6}\right)-a_{2}\left(3_{1}\right)-a_{2}\left(4_{1}\right)-1 \cdot 0=1, \\
& -\sum_{J<321}(-1)^{|J|} a_{2}\left(\overline{\sigma_{321, J}}\right)-l k_{\sigma}(32) l k_{\sigma}(21)=a_{2}\left(5_{2}\right)-a_{2}\left(3_{1}\right)-1 \cdot 1=0 .
\end{aligned}
$$

Figure 3

References

[1] D. Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ram. 4, no. 1 (1995), 13-32.
[2] T. Fleming, A. Yasuhara, Milnor's invariants and self C_{k}-equivalence, Proc. Amer. Math. Soc. 137 (2009), no. 2, 761-770.
[3] N. Habegger and X.S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3 (1990), 389-419.
[4] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83.
[5] K. Habiro, J.B. Meilhan, Finite type invariants and Milnor invariants for Brunnian links, Int. J. Math. 19, no. 6 (2008), 747-766.
[6] T. Kanenobu, C_{n}-moves and the HOMFLY polynomials of links, Bol. Soc. Mat. Mexicana (3) 10 (2004), 263-277.
[7] T. Kanenobu, Y. Miyazawa, HOMFLY polynomials as Vassiliev link invariants, in Knot theory, Banach Center Publ. 42, Polish Acad. Sci., Warsaw (1998), 165-185.
[8] Y. Kotorii, A relation between Minor's μ-invariants and HOMFLYPT polynomials, arXiv:math/1503.08026.
[9] Y. Kotorii, A. Yasuhara, Milnor invariants of length $2 k+2$ for links with vanishing Milnor invariants of length $\leq k$, Topology and its Applications, Vol 184, 87-100 (2015).
[10] W. B. R. Lickorish, K. C.Millett, A polynomial invariant of oriented links, Topology 26 (1987), 107-141.
[11] X.S. Lin, Power series expansions and invariants of links, in "Geometric topology", AMS/IP Stud. Adv. Math. 2.1, Amer. Math. Soc. Providence, RI (1997) 184-202.
[12] J.B. Meilhan, On Vassiliev invariants of order two for string links, J. Knot Theory Ram. 14 (2005), No. 5, 665-687.
[13] J.B. Meilhan, A. Yasuhara, On Cn-moves for links, Pacific J. Math. 238 (2008), 119-143.
[14] J.B. Meilhan, A. Yasuhara, Milnor invariants and the HOMFLYPT polynomial, Geom. Topol. 16 (2012), 889-917.
[15] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177-195.
[16] J. Milnor, Isotopy of links, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, pp. 280-306, Princeton University Press, Princeton, N. J., 1957.
[17] M. Polyak, On Milnor's triple linking number, C. R. Acad. Sci. Paris Sé. I Math. 325 (1997), no. 1, 77-82.
[18] J. Stallings, Homology and central series og groups, J. Algebra,2 (1965), 170-181.
[19] K. Taniyama, Link homotopy invariants of graphs in \mathbf{R}^{3}, Rev. Mat. Univ. Complut. Madrid 7 (1994), no. 1, 129-144.
[20] A. Yasuhara, Self Delta-equivalence for Links Whose Milnor's Isotopy Invariants Vanish, Trans. Amer. Math. Soc. 361 (2009), 4721-4749.

Graduate School of Mathematical Science, The University of Tokyo
E-mail address: kotorii@ms.u-tokyo.ac.jp

