# CURVE COMPLEXES AND THE DM－COMPACTIFICATION OF MODULI SPACES OF RIEMANN SURFACES 

YUKIO MATSUMOTO

## 1．Introduction

Let $M_{g, n}$ be the moduli space of Riemann surfaces of genus $g$ with $n$ punctures．In this report，we study the DM（＝Deligne－Mumford）compactification $\overline{M_{g, n}}$ of $M_{g, n}$ ．Our purpose is three－fold：（1）to construct a＂natural＂atlas of orbifold－charts on $\overline{M_{g, n}}$ ，making use of N．V．Ivanov＇s＂scissored Teichmüller space＂$P_{g, n}^{\epsilon}[9]$ ，（2）to clarify the role of W．J． Harvey＇s curve complex $\mathcal{C}_{g, n}$［7］in the compactification process，and finally（3）to point out a natural connection between Teichmüller spaces and crystallographic groups．

## 2．Basic definitions

We consider a pair（ $S, w$ ）of a Riemann surface $S$ and an orientation preserving home－ omorphism $w: \Sigma_{g, n} \rightarrow S$ ，where $\Sigma_{g, n}$ is an oriented surface of type（ $g, n$ ）．Two such pairs （ $S, w$ ）and $\left(S^{\prime}, w^{\prime}\right)$ are equivalent $(S, w) \sim\left(S^{\prime}, w^{\prime}\right)$ if and only if there exists a biholomor－ phic map $t: S \rightarrow S^{\prime}$ such that the following diagram homotopically commutes：


The Teichmüller space $T_{g, n}$ is defined by

$$
T_{g, n}=\{(S, w)\} / \sim .
$$

We denote the mapping class group of $\Sigma_{g, n}$ by $\Gamma_{g, n}$ ，and define its action on $T_{g, n}$ by

$$
[f]_{*}[S, w]=\left[S, w \circ f^{-1}\right],
$$

where $[f] \in \Gamma_{g, n}$ and $[S, w] \in T_{g, n}$ ．
$T_{g, n}$ is a complex analytic space（［22］，［3］），and is a bounded domain［4］of $\operatorname{dim}_{\mathbb{C}} T_{g, n}=$ $3 g-3+n$ ．

We define the length function $L: T_{g, n} \rightarrow \mathbb{R}$ as follows：Let $C$ be an essential simple closed curve on $\Sigma_{g, n}$ ．For any point $p=[S, w] \in T_{g, n}$ ，let $l_{p}(C)$ be the length of the simple closed geodesic $\hat{C}$ on $S$ homotopic to $w(C)$ ．Define $L: T_{g, n} \rightarrow \mathbb{R}$ by

$$
L(p) \stackrel{\text { def. }}{=} \min _{C \subset \Sigma_{g, n}} l_{p}(C) .
$$

The length function $L$ is a piecewise real analytic function on $T_{g, n}$（Fenchel－Nielsen，Abikoff ［2］）．

[^0]
## 3. Ivanov's scissored Teichmüller space $P_{g, n}^{\epsilon}$

Let $\varepsilon>0$ be a sufficiently small number. In his cohomological study on the mapping class groups, N. V. Ivanov [9] introduced the following space, which we would like to call Ivanov's scissored Teichmüller space and to denote by $P_{g, n}^{\epsilon}$ :

$$
P_{g, n}^{\varepsilon} \stackrel{\text { def. }}{=}\left\{p \in T_{g, n} \mid L(p) \geqq \varepsilon\right\}
$$

$P_{g, n}^{\varepsilon}$ is a real analytic manifold with corners. (The author was pointed out by Hiroshige Shiga that $P_{g, n}^{\epsilon}$ is usually known as a thick part of $T_{g, n}$.)

To what extent should $\varepsilon$ be small? To answer this question, let us recall the following
Theorem 3.1. (Keen [12], Abikoff [2]) There is an universal constant $M$ such that two distinct simple closed geodesics on $S$ are disjoint, if their lengths are smaller than $M$.

The number $\varepsilon$ should be taken as $\varepsilon<M$.
3.1. Facets of $P_{g, n}^{\varepsilon}$. Suppose a point $p_{0}=\left[S_{0}, w_{0}\right]$ is on the boundary $\partial P_{g, n}^{\varepsilon}$ of $P_{g, n}^{\varepsilon}$, then we have

$$
L\left(p_{0}\right)=\varepsilon
$$

There exist a finite number of simple closed curves

$$
C_{1}, \cdots, C_{k}
$$

on $\Sigma_{g, n}$ such that $l_{p_{0}}\left(C_{i}\right)=\varepsilon, i=1, \cdots, k$. (Recall this means that the geodesics $\hat{C}_{i}$ have hyperbolic length $\varepsilon$ on $S_{0}$, where $\hat{C}_{i}$ is the simple closed geodesic homotopic to $w_{0}\left(C_{i}\right), i=1, \cdots, k$.) The geodesics $\hat{C}_{1}, \cdots, \hat{C}_{k}$ are disjoint, because $\varepsilon<M$, and we may assume that $C_{1}, \cdots, C_{k}$ are disjoint on $\Sigma_{g, n}$. We have

$$
k \leqq 3 g-3+n
$$

because $3 g-3+n$ is the maximum number of the simple closed curves on $\Sigma_{g, n}$ which are essential, disjoint, and mutually non-isotopic.

Let $\sigma$ be the set of these simple closed curves on $\Sigma_{g, n}$ :

$$
\sigma=\left\{C_{1}, \cdots, C_{k}\right\}
$$

Define the facet $F^{\varepsilon}(\sigma)$ corresponding to $\sigma$ by

$$
F^{\varepsilon}(\sigma)=\left\{p \in P_{g, n}^{\varepsilon} \mid l_{p}\left(C_{i}\right)=\varepsilon, i=1, \cdots, k\right\}
$$

For all points $p=[S, w]$ on $F^{\varepsilon}(\sigma)$, we assume that other simple cosed geodesics on $S$ have length greater than $\varepsilon$. (The point $p_{0}$ is on this facet.)

In general, for any set $\sigma$ of essential, disjoint, and mutually non-isotopic simple closed curves on $\Sigma_{g, n}$, the corresponding facet $F^{\varepsilon}(\sigma)$ is a real analytic manifold homeomorphic to

$$
\mathbb{R}^{2(3 g-3+n)-k}
$$

where $k=\# \sigma$. Facets are analogous to open faces of a finite polyhedron.
Here is an incidence relation: If $\sigma \subset \sigma^{\prime}$, then we have

$$
\overline{F^{\varepsilon}(\sigma)} \supset F^{\varepsilon}\left(\sigma^{\prime}\right)
$$

If $\# \sigma<3 g-3+n$, the facet $F^{\varepsilon}(\sigma)$ is surrounded by an infinite number of facets. Thus in this case, a facet is itself an infinite polyhedron.
3.2. Abelian subgroups $\Gamma(\sigma)$. Let $\sigma$ denote $\left\{C_{1}, \cdots, C_{k}\right\}$ as before. Let $\tau\left(C_{i}\right)$ be the right handed (i.e. negative) Dehn twist about $C_{i}$, and define $\Gamma(\sigma)$ to be the subgroup of $\Gamma_{g, n}$ generated by

$$
\tau\left(C_{i}\right), \quad i=1, \cdots, k
$$

The group $\Gamma(\sigma)$ is a free abelian group of rank $k$. Since the action of $\Gamma_{g, n}$ on $T_{g, n}$ preserves the Poincaré metric on Riemann surfaces (hence preserves the length function $L$ ), and

$$
\tau\left(C_{i}\right)\left(C_{j}\right)=C_{j}, \quad i, j=1, \cdots, k
$$

the twists $\tau\left(C_{i}\right)$ preserve $F^{\varepsilon}(\sigma)$. This action of $\Gamma(\sigma)$ on $F^{\varepsilon}(\sigma)$ is real analytic and properly discontinuous.

## 4. Complex of curves and $P_{g, n}^{\epsilon}$

W. J. Harvey (1977) [7] introduced an abstract simplicial complex called the complex of curves $\mathcal{C}_{g, n}=\mathcal{C}\left(\Sigma_{g, n}\right)$ :
Definition 4.1. A vertex of $\mathcal{C}_{g, n}$ is an isotopy class of an essential simple closed curve on $\Sigma_{g, n}$, and a simplex $\sigma$ of $\mathcal{C}_{g, n}$ is a set of vertices represented by a disjoint union of essential simple closed curves which are mutually non-isotopic.

Facets $F^{\varepsilon}(\sigma)$ are in one-to-one correspondence with the simplices $\sigma$ of $\mathcal{C}_{g, n}$.
Proposition 4.2. The totality of the facets $\left\{F^{\varepsilon}(\sigma)\right\}_{\sigma \in \mathcal{C}_{g, n}}$ makes a complex (facet complex) analogous to a simplicial complex. The flag complex associated with the facet complex is isomorphic to the barycentric subdivision of the complex of curves $\mathcal{C}_{g, n}$.

Proof. A flag in the facet complex $\overline{F^{\varepsilon}(\sigma)} \supset \overline{F^{\varepsilon}\left(\sigma^{\prime}\right)} \supset F^{\varepsilon}\left(\sigma^{\prime \prime}\right)$ corresponds to a flag in the complex of curves $\mathcal{C}_{g, n}, \sigma \subset \sigma^{\prime} \subset \sigma^{\prime \prime}$. The latter corresponds to a simplex of the barycentric subdivision of $\mathcal{C}_{g, n}$.
4.1. Automorphisms of $\mathcal{C}_{g, n}$. We need the following theorem:

Theorem 4.3. (Ivanov [10], Korkmaz [13], Luo [15]) Except for a few sporadic cases (spheres with $\leqq 4$ punctures, tori with $\leqq 2$ punctures and a closed surface of genus 2 ), the following holds:

$$
\operatorname{Aut}\left(\mathcal{C}_{g, n}\right)=\Gamma_{g, n}^{*},
$$

where $\Gamma_{g, n}^{*}$ stands for the extended mapping class group (containing orientation reversing homeomorphisms).

The scissored Teichmüller space $P_{g, n}^{\varepsilon}$ together with the Teichmüller metric becomes a metric (infinite) polyhedron. The following proposition is a corollary to the above theorem:

Proposition 4.4. With the same exceptions as above, we have

$$
\operatorname{Isom}_{+}\left(P_{g, n}^{\varepsilon}\right)=\Gamma_{g, n} .
$$

Proof. An isomorphism of $P_{g, n}^{\varepsilon}$ induces on $\partial P_{g, n}^{\varepsilon}$ an automorphism of the facet complex, thus that of the barycentric subdivision of $\mathcal{C}_{g, n}$, and finally an automorphism of $\mathcal{C}_{g, n}$. The automorhism of $\mathcal{C}_{g, n}$ in turn corresponds (by Ivanov-Korkmaz-Luo's theorem) to an action of the mapping class group $\Gamma_{g, n}$, hence an (orientation preserving) isometry of $T_{g, n}$.

Essentially the same arguments have been done in Papadopoulos [21] and Ohshika [20].

Proposition 4.5. The subgroup of $\Gamma_{g, n}$ which preserves a facet $F_{g, n}^{\varepsilon}$ is precisely $N \Gamma(\sigma)$, the normalizer of $\Gamma(\sigma)$ in $\Gamma_{g, n}$.
Proof. If a mapping class $[f] \in \Gamma_{g, n}$ peserves $F_{g, n}^{\varepsilon}$, then $[f]$ induces on $\Sigma_{g, n}$ a permutation of $\sigma=\left\{C_{1}, \cdots, C_{k}\right\}$, and vice versa. Such mapping classes form the normalizer $N \Gamma(\sigma)$ of $\Gamma(\sigma)$.
4.2. "Fringe" $F R^{\varepsilon}(\sigma)$ bounded by $F^{\varepsilon}(\sigma)$. The fringe $F R^{\varepsilon}(\sigma)$ is defined by

$$
F R^{\varepsilon}(\sigma)=\bigcup_{0<\delta<\varepsilon} F^{\delta}(\sigma)
$$

Then we have
Corollary 4.6. The subgroup of $\Gamma_{g, n}$ which preserves the fringe $F R^{\varepsilon}(\sigma)$ is the normalizer $N \Gamma(\sigma)$. The action of $N \Gamma(\sigma)$ on $F R^{\varepsilon}(\sigma)$ is properly discontinuous.
Proof. $F R^{\varepsilon}(\sigma)$ is foliated by the facets $F^{\delta}(\sigma)$, and the corollary holds for each leaf $F^{\delta}(\sigma)$.
Define the augmented fringe as follows:

$$
\overline{F R^{\varepsilon}(\sigma)}=\bigcup_{0 \leqq \delta<\varepsilon} F^{\delta}(\sigma)\left(=F R^{\varepsilon}(\sigma) \sqcup F^{0}(\sigma)\right) .
$$

$N \Gamma(\sigma)$ acts on $\overline{F R^{\varepsilon}(\sigma)}$ continuouly, but not properly discontinuously, because the infinite subgroup $\Gamma(\sigma)(\subset N \Gamma(\sigma))$ fixes the points of the added ideal boundary $F^{0}(\sigma)$. Abikoff $[1]$ attached to $T_{g, n}$ all ideal boundaries, and considered the augmented Teichmüller space

$$
\bar{T}_{g, n}=T_{g, n} \sqcup \bigcup_{\sigma \in \mathcal{C}_{g, n}} F^{0}(\sigma) .
$$

Yamada [24] identified $\bar{T}_{g, n}$ with the Weil-Petersson completion of $T_{g, n}$, and proved the geodesic convexity of the ideal boundaries $F^{0}(\sigma)$. It is well-known that the quotient space of $\bar{T}_{g, n}$ under the action of $\Gamma_{g, n}$ is the compactified moduli space $\overline{M_{g, n}}$. Note that the union of the augmented fringes $\bigcup_{\sigma \in \mathcal{C}_{g, n}} \overline{F R^{\varepsilon}(\sigma)}$ gives an open neighborhood of the singular divisors when divided out by the action of $\Gamma_{g, n}$.

## 5. Controlled deformation spaces

To analyse the orbifold structure of $\overline{M_{g, n}}$, the fringes $\overline{F R^{\varepsilon}(\sigma)}$ are not necessarily adequate, because they are pairwise disjoint:

$$
\overline{F R^{\varepsilon}(\sigma)} \cap \overline{F R^{\varepsilon}\left(\sigma^{\prime}\right)}=\emptyset, \quad \text { if } \quad \sigma \neq \sigma^{\prime}
$$

(Recall that the facets are like open faces of a polyhedron.) Namely the fringes do not make an open covering of the singular divisors $\bigcup_{\sigma \in \mathcal{C}} F^{0}(\sigma)$.
To remedy the deficiency, we introduce controlled deformation spaces. But before going to them, let us recall Bers' deformation spaces.
Let $\sigma \in \mathcal{C}_{g, n}$ be any simplex $\sigma=\left\{C_{1}, \cdots, C_{k}\right\} \in \mathcal{C}_{g, n}$. Let $\Sigma_{g, n}(\sigma)$ denote the surface with nodes obtained by pinching each $C_{i}(\in \sigma)$ in $\Sigma_{g, n}$ to a point. Bers [5] introduced the deformation space $D(\sigma)$ associated with $\Sigma_{g, n}(\sigma)$. The following fact is known:
Proposition 5.1. (See Kra [14] §9, Matsumoto [18] §6.) $D(\sigma)$ is homeomorphic to $\left(T_{g, n} / \Gamma(\sigma)\right) \cup \bigcup_{i=1}^{k} \Pi_{i}$, where $\Pi_{i}=\mathbb{C}^{i-1} \times\{0\} \times \mathbb{C}^{3 g-3+n-i}$, and $\bigcap_{i=1}^{k} \Pi_{i}$ corresponds to $F^{0}$.
( $\Pi_{i}$ is mentioned as a "distinguished subset" in Bers [5].) Bers announced in 1970's that $D(\sigma)$ is a bounded domain (see [5]), but without proof. Recently, Hubbard and Koch [8] gave a proof.

Theorem 5.2. The deformation space $D(\sigma)$ is a complex manifold of $\operatorname{dim}_{\mathbb{C}}=3 g-3+n$.
Their arguments are a little bit complicated, but the geometry is conceptually clear. The space $F^{0}(\sigma)$ is the Teichmüller space of the nodal surface $\Sigma_{g, n}(\sigma)$ and serves as the "core" of $D(\sigma)$ (Masur [17]). It is thickened in the transverse direction by the "plumbing coordinates" (Marden [16], Earle and Marden [6]).

### 5.1. The groups $W(\sigma)$. Define

$$
W(\sigma)=N \Gamma(\sigma) / \Gamma(\sigma) .
$$

The groups $W(\sigma)$ are not finite groups in general.
Proposition 5.3. (i) $W(\sigma)$ is the mapping class group of the nodal surface $\Sigma_{g, n}(\sigma)$.
(ii) $W(\sigma)$ acts on $D(\sigma)$ holomorphically and properly discontinuously.
5.2. Controlled deformation spaces. Let $M$ be a constant of Keen and Abikoff. We take an $\varepsilon$ satisfying $0<\varepsilon<M$. We insert $6 g-6+2 n$ numbers between $\varepsilon$ and $M$ :

$$
\varepsilon<\varepsilon_{1}<\eta_{1}<\cdots<\varepsilon_{3 g-3+n}<\eta_{3 g-3+n}<M .
$$

Let $\hat{\varepsilon}$ denote this sequence. We define the controlled deformation space $D_{\hat{\varepsilon}}(\sigma)$ as follows ( $\sigma$ being $\left\{C_{1}, \cdots, C_{k}\right\}$ ):

$$
\begin{aligned}
& D_{\hat{\varepsilon}}(\sigma)=\left\{p=[S, w] \in D(\sigma) \mid l_{p}\left(C_{i}\right)<\varepsilon_{k}, \quad i=1, \ldots, k,\right. \\
& \left.\quad \text { and other simple closed geodesics on } S \text { are longer than } \eta_{k}\right\}
\end{aligned}
$$

Why do we need the controlled deformation spaces $D_{\hat{\varepsilon}}(\sigma)$ ? Because Bers' deformation spaces $D(\sigma)$ do not naturally descend to $\overline{M_{g, n}}$, but $D_{\hat{\varepsilon}}(\sigma)$ do. For a proof of this fact, see [18], §7

Proposition 5.4. (i) $D_{\hat{\varepsilon}}(\sigma)$ is a bounded domain of $\mathbb{C}^{3 g-3+n}$.
(ii) The group $W(\sigma)$ acts on $D_{\hat{\varepsilon}}(\sigma)$ holomorphically and properly discontinuously.
(iii) $D_{\hat{\varepsilon}}(\sigma) / W(\sigma)$ is an open subset of $\overline{M_{g, n}}$.
(iv) $D_{\hat{\varepsilon}}(\sigma) / W(\sigma)$ contains the "main part" of the quotient of the augmented fringe $\overline{F R^{\bar{\varepsilon}}}(\sigma) / W(\sigma)$.
(v) The family $\left\{D_{\hat{\varepsilon}}(\sigma) / W(\sigma)\right\}_{\sigma \in \mathcal{C}_{g, n}}$ is an open covering of the "boundary"singular divisors $\bigcup_{\sigma \in \mathcal{C}_{l, 1}} F^{0}(\sigma) / \Gamma_{g, n}$.

Summarizing the above, we have our main theorem:
Theorem 5.5. (Matsumoto [18]) The family $\left\{\left(D_{\hat{\varepsilon}}(\sigma), W(\sigma)\right)\right\}_{\sigma \in \mathcal{C}_{g, n}}$ gives orbifold-charts containing the boundary singular divisors in $\overline{M_{g, n}}$.

Remark 5.6. If $\sigma^{\prime}=f(\sigma)$ by a mapping class $[f] \in \Gamma_{g, n}$, we consider that $\left(D_{\hat{\varepsilon}}(\sigma), W(\sigma)\right)$ and $\left(D_{\hat{\varepsilon}}\left(\sigma^{\prime}\right), W\left(\sigma^{\prime}\right)\right)$ are the identical charts. Thus the index set of the family of charts is actually $\mathcal{C}_{g, n} / \Gamma_{g, n}$.

## 6. CRystallographic groups

Definition 6.1. A crystallographic group in Euclidean $m$-space $\mathbb{E}^{m}$ is a group $G$ of isometries of $\mathbb{E}^{m}$ whose translation vectors form a lattice $L \subset \mathbb{E}^{m}$.

The image of $G$ under linearization $\operatorname{Isom}\left(\mathbb{E}^{m}\right) \rightarrow O\left(\mathbb{E}^{m}\right)$ is called the point group of $G$ and denoted by $\vec{G}$. This is a finite group. There is a canonical exact sequence

$$
1 \rightarrow T \rightarrow G \rightarrow \vec{G} \rightarrow 1
$$

where $T$ is the translation subgroup of $G$. See [11].
6.1. Crystallographic groups in Teichmüller theory. For simplicity, we consider a closed surface $\Sigma_{g}($ i.e. $n=0$ ), and in what follows, we assume that $\sigma$ is a maximal simplex of $\mathcal{C}_{g}$, i.e., $\sigma=\left\{C_{i}\right\}_{i=1, \ldots, 3 g-3}$. Then the group $W(\sigma)$ is finite. In this case, the facet $F^{\varepsilon}(\sigma)$ is defined by

$$
l_{i}=\varepsilon, \quad i=1, \ldots, 3 g-3
$$

by the Fenchel-Nielsen coordinates associated with $\sigma$,

$$
\left(l_{i}, \tau_{i}\right), \quad i=1, \ldots, 3 g-3 .
$$

By Wolpert's formula, the Weil-Petersson symplectic form is written as follows:

$$
\omega_{W P}=\frac{1}{2} \sum_{i} d l_{i} \wedge d \tau_{i} .
$$

We see $\omega_{W P} \mid F^{\varepsilon}(\sigma)=0$, thus $F^{\varepsilon}(\sigma)$ is a Lagrangian submanifold of $\operatorname{dim}_{\mathbb{R}}=3 g-3$.
$F^{\varepsilon}(\sigma)$ is homeomorphic to $\mathbb{R}^{3 g-3}$ on which $\Gamma(\sigma)$ acts as translations. The action of $N \Gamma(\sigma)$ on $F^{\varepsilon}(\sigma)$ preserves the Weil-Petersson metric $\langle\cdot, \cdot\rangle$. From Wolpert's lecture note [23], we have

$$
\left\langle\lambda_{i}, \lambda_{j}\right\rangle=\frac{1}{2 \pi} \delta_{i j}+O\left(l_{i}^{3 / 2} l_{j}^{3 / 2}\right), \quad \text { for } \quad \lambda_{i}=\operatorname{grad} \sqrt{l_{i}} .
$$

On $F^{\varepsilon}(\sigma)$, we have

$$
\left\langle\lambda_{i}, \lambda_{j}\right\rangle=\frac{1}{2 \pi} \delta_{i j}+O\left(\varepsilon^{3}\right),
$$

because $l_{i}=l_{j}=\varepsilon$ on $F^{\varepsilon}(\sigma) . F^{\varepsilon}(\sigma)$ has twist coordinates $\tau_{1}, \ldots, \tau_{3 g-3}$. Wolpert's twistlength duality [23] asserts that

$$
2 t_{i}=J \operatorname{grad} l_{i},
$$

where $2 t_{i}$ is the Hamiltonian vector field (along $\tau_{i}$ ) corresponding to $d l_{i}$.
Thus

$$
t_{i}=\frac{1}{2} J \operatorname{grad} l_{i}=\sqrt{\varepsilon} J \operatorname{grad} \sqrt{l_{i}}=\sqrt{\varepsilon} J \lambda_{i},
$$

and

$$
\left\langle\frac{t_{i}}{\sqrt{\varepsilon}}, \frac{t_{j}}{\sqrt{\varepsilon}}\right\rangle=\left\langle J \lambda_{i} J \lambda_{j}\right\rangle=\frac{1}{2 \pi} \delta_{i j}+O\left(\varepsilon^{3}\right) .
$$

Therefore, the facet $F^{\varepsilon}(\sigma)$ together with the (normalized) Weil-Petersson metric

$$
\frac{2 \pi}{\varepsilon}\left\langle t_{i}, t_{j}\right\rangle=\delta_{i j}+O\left(\varepsilon^{3}\right)
$$

converges to Euclidean space $\mathbb{E}^{3 g-3}$ as $\varepsilon \rightarrow 0$, on which $N \Gamma(\sigma)$ acts as a crystallographic group.

In our case where $\sigma$ is maximal, $W(\sigma)$ is a finite group. This group is nothing but the automorphism group of a finite trivalent graph (the pants graph, i.e., the dual graph of
the pants decomposition associated with $\sigma$ ). Conversely, given any finite trivalent graph, a crystallographic group appears exactly in the same manner as above.
The group $W(\sigma)$ is somewhat similar to the "Weyl group", and a pants graph has an atomosphere of a "root system". Details of this report will appear in [19].

Here are the trivalent graphs for $g=3$ (with 4 vertices and 6 edges) and the corresponding point groups $\overrightarrow{N \Gamma(\sigma)}$ (n.b. not their groups $W(\sigma)$ ):


Acknowledgement: The author is grateful to Sumio Yamada for discussions and useful comments on the Weil-Petersson metric. Thanks are also due to Lizhen Ji who kindly informed the author of Ivanov's work.

## References

[1] W. Abikoff, Degenerating families of Riemann surfaces, Ann. of Math., 105 (1977), 29-44.
[2] W. Abikoff, The Real Analytic Theory of Teichmüller Spaces, L.N.M. 820, Springer-Verlag, (1980).
[3] L. V. Ahlfors, The complex analytic structure of the space of closed Riemann surfaces in Analytic Functions, Princeton Conference, (R. Nevanlinna et al. eds) Princeton U. P. Princeton, New Jersey (1966), 45-66.
[4] L. Bers, Correction to "Spaces of Riemann surfaces as bounded domains", Bull. Amer. Math. Soc., 67 (1961), 465-466.
[5] L. Bers, On spaces of Riemann surfaces with nodes, Bull. Amer. Math. Soc., 80 (1974), 1219-1222.
[6] C. J. Earle and A. Marden, Holomorphic plumbing coordinates, Contemporary Math., 575 (2012), 41-52.
[7] W. J. Harvey, Geometric structure of surface mapping class groups, in Homological Group Theory, Proc. of a symposium held at Durham in Sept. 1977, (ed. by C. T. C. Wall), London Math. Soc. Lecture Note Series, 36 (1977), 255-269,
[8] J. H. Hubbard and S. Koch, An analytic construction of the Deligne-Mumford compactification of the moduli space of curves, J. Diff. Geom., 98 (2014), 261-313.
[9] N. V. Ivanov, Complexes of curves and the Teichmüller modular groups, Russian Math. Surveys 42:3 (1987), 55-107.
[10] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, Int. Math. Research Notices, 14 (1997), 651-666.
[11] B. Iversen, Lectures on crystallographic groups, Lecture Notes Series 1990/91 No. 60, Matematisk Institut, Aarhus Universitet.
[12] L. Keen, Collars on Riemann surfaces, in Discontinuous Gropus and Riemann Surfaces, Proc. of the 1973 Conf. at Univ. of Maryland (ed. by L. Greenberg), Ann. Math. Studies 79 (1974), 263-268.
[13] M. Korkmaz, Automorphisms of complexes of curves on punctured spheres and on punctured tori, Topology and Its Applications, 95 (1999), 85-111.
[14] I. Kra, Horocyclic coordinates for Riemann surfaces and moduli spaces. I: Teichmüller and Riemann spaces of Kleinian groups, J. Amer. Math. Soc., 3 (1990), 499-578.
[15] F. Luo, Automorphisms of the complex of curves, Topology, 39 (2000), 283-298.
[16] A. Marden Geometric Complex Coordinates for Teichmüller Space, in Mathematical Aspects of String Theory (ed.by S. T. Yau), World Scientific, (1987), 341-357.
[17] H. Masur, The extension of the Weil-Petersson metric to the boundary of Teichmüller space, Duke Math. Jour., 43 (1976), 623-635.
[18] Y. Matsumoto, On the universal degenerating family of Riemann surfaces, IRMA Lectures in Math. and Theoretical Physics, 20 (2012), 71-102.
[19] Y. Matsumoto, Compactification of moduli spaces and crystallographic groups, in preparation.
[20] K. Ohshika, Reduced Bers boundaries of Teichmüller spaces, Ann. de L'Institut Fourier, 64 (2014), 145-176.
[21] A. Papadopoulos, A regidity theorem for the mapping class group action on the space of unmeasured foliations on a surface, Proc. Amer. Math. Soc., 136 (2008), 4453-4460.
[22] A. Weil, Modules des surfaces de Riemann, Séminaire Bourbaki, $10^{e}$ année, Textes des Conférences, (1958), Exp. No. 168, reprint Séminaire Bourbaki 4 (1995), Exp. 168, 413-419.
[23] S. Wolpert, Families of Riemann Surfaces and Weil-Petersson Geometry, Regional Conference Series in Mathematics, No.113, Amer. Math. Soc. (2010).
[24] S. Yamada, On the geometry of Weil-Petersson Completion of Teichmüller spaces, Math. Research Letters, 11 (2004), 327-344.

Department of Mathematics, Gakushuin University
E-mail address: yukiomat@math.gakushuin.ac.jp


[^0]:    Received December 31， 2015.

