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1. INTRODUCTION

This paper is based on the author’s talk at the Numazu workshop which in turn was
based on ajoint work with Takuya Sakasai and Masaaki Suzuki. It reproduces the actual
talk rather closely. The contents are roughly as follows. In \S 2, we briefly recall known re-
sults about the tautological algebras of various moduli spaces. In particular, an important
conjecture, called the Faber conjecture, concerning the tautological algebra of the moduli
space of curves is mentioned. In \S 3, we summarize our former topological approach to the
tautological algebra. In \S 4, a complete description is given how the space of symplectic
invariant tensors degenerates with respect to the genus. Then in \S 5, we sketch our new
results which are obtained by combining a theorem of Manivel on a plethysm of certain
GL-representations and the result mentioned in \S 4. Finally in \S 6, we present several open
problems.

2. TAUTOLOGICAL ALGEBRAS OF MODULI SPACES $G_{k}(\mathbb{C}^{n})$ , $A_{g},$ $M_{g}$

In this section, we recall known results about the tautological algebras of various moduli
spaces. First we consider the elementary case of the Grassmann manifold

$G_{k}(\mathbb{C}^{n})=$ { $V\subset \mathbb{C}^{n}$ ; $k$-dimensional linear subspace}.

Let $\xiarrow G_{k}(\mathbb{C}^{n})$ denote the tautological bundle over $G_{k}(\mathbb{C}^{n})$ which is a $k$-dimensional
vector bundle and we have the following exact sequence

$0arrow\xiarrow G_{k}(\mathbb{C}^{n})\cross \mathbb{C}^{n}arrow Qarrow 0$

where $Q$ denotes the quotient bundle. We denote by $c_{1}(\xi)$ , . . . , $c_{k}(\xi)\in H^{*}(G_{k}(\mathbb{C}^{n});\mathbb{Z}\rangle$

the Chern classes of $\xi.$

Theorem 2.1 (well-known). We have the following presentation

$H^{*}(G_{k}(\mathbb{C}^{n});\mathbb{Q})\cong \mathbb{Q}[c_{1}(\xi), \cdots, c_{k}(\xi)]$/relations

relations: $c_{i}(Q)=[ \frac{1}{1+c_{1}(\xi)+\cdots+c_{k}(\xi)}]_{2i}=0$ for all $i>n-k$

and it satisfies Poincare duality of $\dim=2k(n-k)$ .

Next, let $\mathfrak{h}_{g}$ denote the Siegel upper half space on which the Siegel modular group
$Sp(2g,$ $\mathbb{Z}\rangle$ acts properly discontinuously. The quotient space

$A_{9}=\mathfrak{h}_{g}/Sp(2g, \mathbb{Z})$

The author was partially supported by KAKENHI $(No.15H03618)$ , iapan Society for the Promotion
of Science, Japan, Received December 31, 2015.

数理解析研究所講究録

第 1991巻 2016年 130-139 130



is the moduli space of principally polarized abelian varieties. The Siegel modular group
plays the role of the orbifold fundamental group of th\’is moduli space, thus

$Sp(2g, \mathbb{Z})\cong\pi_{1}^{orb}A_{g}.$

On the other hand, $Sp(2g, \mathbb{Z})$ is contained in $Sp(2g, \mathbb{R})$ as a discrete subgroup and the
maximal compact subgroup of the latter group is the unitary group $U(g)$ . Hence we have
the Chern classes

$c_{\tau}\epsilon H^{*}(A_{g};\mathbb{Q})\cong H^{*}(Sp(2g, \mathbb{Z});\mathbb{Q})$ .

Then the tautological algebra in cohomology of $A_{g}$ is defined as

$\mathcal{R}^{*}(A_{g})=$ subalgebra of $H^{*}(A_{g};\mathbb{Q})$ generated by $c_{i}’ s.$

Theorem 2.2 (van der Geer [5], true at the Chow algebra level). The following presen-
tation holds

$\mathcal{R}^{*}(A_{g}\rangle\cong \mathbb{Q}[c_{1}, \ldots,c_{g}]/$relations

where the relations are described as: (i) $p_{i}=0$ (Pontnjagin classes) (ii) $c_{g}=0$ . Also it

satasfies Poincar\’e duatity of $\dim=g(g-1)$ .

It is also known that, additively $\mathcal{R}^{*}(A_{g})\cong H^{*}(S^{2}\cross S^{4}\cross\cdots\cross S^{2g-2};\mathbb{Q})$ .
Finally we consider the moduli space of curves. Let $e_{i}\in H^{2i}(\mathcal{M}_{g};\mathbb{Q})$ denote the MMM

tautological class ([27][20][19]) where $\mathcal{M}_{g}$ denotes the mapping class group of a closed
oriented surface of genus $g$ . Then the tautological algebra of $\mathcal{M}_{g}$ is defined as

$\mathcal{R}^{*}(\mathcal{M}_{g})=$ subalgebra of $H^{*}(\mathcal{M}_{g};\mathbb{Q})$ generated by $e_{t}’ s.$

Let $A^{i}(M_{9})$ be the Chow algebra of the moduli space of curves of genus 9 defined by

Mumford [27] and let
$\kappa_{i}\in A’(M_{g})$

be the Mumford kappa class. Then the tautological algebra of $M_{g}$ is defined as

$\mathcal{R}^{*}(M_{g})=$ subalgebra of $\mathcal{A}^{*}(M_{g})$ generated by $\kappa_{i}s$

) .

There exists a canonical surjection $\mathcal{R}^{*}(M_{g})arrow \mathcal{R}^{*}(\mathcal{M}_{g})(\kappa_{i}\mapsto(-1)^{i+1}e_{i})$ and the latter
group is also called the tautological algebra in cohomology of $M_{g}.$

Conjecture 2.3 (Faber [3]). (1) Gorenstein conjecture, including Poincare duality

$\mathcal{R}^{*}(M_{g})\cong H^{*}$ ( tsmooth projective variety” of $\dim=g-2;\mathbb{Q}$)?

$\langle$2) $\mathcal{R}^{*}(M_{g})$ is generated by the first $[g/3]MMM$-classes with no relations in degrees
$\leq[g/3].$

(3) Explicit formula for the intersection numbers, namely proportionality in degree
$g-2:\mathcal{R}^{g-2}(M_{9})\cong \mathbb{Q}$ (proved by Looijenga [15] and Faber [3]).

There are generalizations of this conjecture to the cases of $\overline{M}_{g,n\rangle}M_{g,n}^{ct},$ $M_{g,n}^{rt}$ etc. and
many results due to many people, including Looijenga, Faber, Zagier, Getzler, Pandhari-
pande, Vakil, Graber, Lee, Randal-Williams, Pixton, Liu, Xu, Yin, have been obtained
(we refer to Faber’s survey paper [4] for details as well as references). Returning to the
above original conjecture, we have the following.
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(1) is still open, Faber (and Faber and Pandharipande) verified the claim for $g\leq 23$

using the Faber-Zagier relations. On the other hand, Pandharipande and Pixton [28]
showed that the Faber-Zagier relations are actual ones.

(2) was proved by M. [23] at the cohomological level, and later by Ionel [10] at the
Chow algebra level. No relation part is due to Harer [9] (and improvements by Ivanov
and Boldsen).

(3) There are three proofs, first by Givental [6], and the others by Liu-Xu [14] and
Buryak-Shadrin [2].

More recently, Faber and Pandharipande found that some new situation happens for
$g\geq 24$ (again see [4] for details).

3. TOPOLOGICAL STUDY OF THE TAUTOLOGICAL ALGEBRA OF $M_{g}$

In this section, we recall a topological approach of investigating the structure of the
tautological algebra. Let $\Sigma_{g}$ be a closed oriented surface of genus $g(\geq 1)$ as before.
We denote $H_{1}(\Sigma_{g};\mathbb{Q})$ simply by $H_{\mathbb{Q}}$ which is the fundamental representation of Sp $=$

$Sp(2g, \mathbb{Q})$ . Let
$\mu:H_{\mathbb{Q}}\otimes H_{\mathbb{Q}}arrow \mathbb{Q}$

be the intersection pairing. If we fix a symplectic basis of $H_{\mathbb{Q}}$ , then as is well known there
exists an isomorphism

Aut $(H_{\mathbb{Q}}, \mu)\cong Sp(2g, \mathbb{Q})$ .

The Torelli group is the subgroup of $\mathcal{M}_{g}$ defined by

$\mathcal{I}_{g}=Ker(\mathcal{M}_{g}4 Aut (H_{\mathbb{Q}}, \mu)\cong Sp(2g,\mathbb{Q})\rangle$

where $\rho_{0}$ denotes the natural homomorphism induced by the action of $\mathcal{M}_{g}$ on $H_{\mathbb{Q}}.$

Theorem 3.1 (Johnson [11]).

$H_{1}(\mathcal{I}_{g\rangle}\cdot \mathbb{Q})\cong\wedge^{3}H_{\mathbb{Q}}/H_{\mathbb{Q}} (g\geq 3)$ .

Let us use the following notation:

$U_{\mathbb{Q}}$ $:=\wedge^{3}H_{\mathbb{Q}}/H_{\mathbb{Q}}=$ irrep. $[1^{3}]_{Sp}.$

In [21], a linear representation

$\rho_{1}:\mathcal{M}_{g}arrow H_{1}(\mathcal{I}_{g};\mathbb{Q})xSp(2g, \mathbb{Q})$

of $\mathcal{M}_{g}$ was constructed and it induces the following homomorphism

$\Phi:H^{*}(U_{\mathbb{Q}}=\wedge^{3}H_{\mathbb{Q}}/H_{\mathbb{Q}})^{Sp}arrow H^{*}(\mathcal{M}_{g};\mathbb{Q})$ .

Theorem 3.2 (Kawazumi-M. [12]).

${\rm Im}\Phi=\mathcal{R}^{*}(\mathcal{M}_{g})=\mathbb{Q}[MMM$ classesJ/relations.

Here recall that Madsen and Weiss [17] determined Harer’s stable cohomology group
([9]) of the mapping class group to be

$H^{*}(\mathcal{M}_{\infty};\mathbb{Q})=\mathbb{Q}$ [$MMM$-classes].
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Then by analyzing the natural action of $\mathcal{M}_{g}$ on the third nilpotent quotient of $7r_{1}\Sigma_{g},$

the author constructed in [22] the following commutative diagram

$7r_{x^{\Sigma_{g}}}arrow [1^{2}]_{Sp\cross}^{\sim}H_{\mathbb{Q}}$

$\downarrow$ $\downarrow$

$\mathcal{M}_{g,*}\frac{\tilde{\rho}_{2}}{\prime}(([1^{2}]\mathscr{X}\oplus[2^{2}]_{Sp})\sim\cross\Lambda^{3}H_{\mathbb{Q}})xSp(2g,\mathbb{Q})$

$\downarrow p \downarrow$

$\mathcal{M}_{g}arrow^{\rho_{2}} ([2^{2}]_{S_{I)}}\tilde{\cross}U_{\mathbb{Q}})xSp(2g, \mathbb{Q})$ .

Here $\mathcal{M}_{g,*}=\pi_{0}Diif_{+}(\Sigma_{9}, *)$ denotes the mapping class group of $\Sigma_{g}$ relative to the base
point $*\in\Sigma_{g}$ and $[2^{2}]_{S_{I}},$ $cH^{2}(U_{\mathbb{Q}})$ is the summand identified by Hain [7].

Theorem 3.3 (Kawazumi-M. [13]). In a certain stable range, the $h_{omomo7}phism\rho_{2}^{*}$ on
cohomology induces an isomorphism

$(H^{*}(U_{\mathbb{Q}})/([2^{2}]_{Sp}))^{s_{1)}}\cong \mathbb{Q}[MMM$-ciassesJ.
Similarly, in a certain stable range, $\tilde{p}_{2}^{*}$ induces an isomorphism

$(H^{*}(\wedge^{3}H_{Q})/([1^{2}]_{Sp}^{torelli}\oplus[2^{2}]_{Sp}))^{Sp}\cong \mathbb{Q}$ [$e,$ $MMM$-classes].

4. DEGENERATION OF SYMPLECTIC INVARIANT TENSORS

Let us consider the Sp-invariant subspace

$(H_{Q}^{\otimes 2k})^{Sp}$

of the tensor product $H_{\mathbb{Q}}^{\otimes 2k}$ . We analyze the structure of this space completely. Consider

the following mapping
$\mu^{\otimes 2k}:H_{\mathbb{Q}}^{\otimes 2k}\otimes H_{\mathbb{Q}}^{\otimes 2k}arrow \mathbb{Q}$

defined by
$(u_{1}\otimes\cdots\otimes u_{2k})\otimes(v_{1}\otimes\cdots\otimes v_{2k})\mapsto II_{i=1}^{2k}\mu(u_{i}, v_{i}) (u_{l}\prime, v_{i}\epsilon H_{\mathbb{Q}})$ .

Clearly $\mu^{\otimes 2k}$ is a symmetric bilinear form.

Theorem4.1 (M. [25]). The symmetric $pair’ing\mu^{\otimes 2k}$ on $(H_{\mathbb{Q}}^{\otimes 2k})^{S_{i)}}$ is positive definite for any $g$

so that it defines a metric on $th?\dot{s}$ space. Furthermore, there exists an orthogonal direct

sum decomposition

$(H_{\mathbb{Q}}^{\otimes 2k})^{Sp} \cong\bigoplus_{|\lambda|=k,h(\lambda)\leq g}U_{\lambda}$

$\uparrow/4here$ for a Young diagram $\lambda,$ $|\lambda|$ denotes the number of boxes and $h(\lambda)$ denotes the
number of rows. Also

$U_{\lambda}\cong(\lambda^{\delta})_{6_{2k}}$ as an $\mathfrak{S}_{2k}$ -module

and there exists a bijective correspondence

$\{\lambda;|\lambda|=k\}$

bijective
$\{\mu_{\lambda};|\lambda|=k\}$ eigenvalues.
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Table 1 below indicates how the space $(H_{\mathbb{Q}}^{\otimes 2k})^{Sp}$ degenerates according to the genus $g$

changes from the stable range $g\geq 3k$ to $g=3k-1,$ $3k-2$ , .. . , 1.

TABLE 1. 0rthogonal decomposition of $(H_{Q}^{\otimes 6k})^{Sp}$

Remark 4.2. Related eigenvalues already appeared in Hanlon-Wales [8] in the context
of Brauer’s centralizer algebras.

Now we consider the following mappings

$(H_{\mathbb{Q}}^{\otimes 6k})^{Sp}arrow(\wedge^{2k}U_{\mathbb{Q}})^{Sp}\epsilonurj.arrow \mathcal{R}^{2k}(\mathcal{M}_{g})$

surj.

together with the following degenerations of symplec invariant tensors

$[3k]’\mapsto 0$ $(g\leq 3k-1)$ (enough to prove Faber conjecture (2))

$[3k-1, 1]’\mapsto 0 (g\leq 3k-2)$

$[3k-2, 2]’[3k-2, 1^{2}]’\mapsto 0 (g\leq 3k-3)$

$[3k-3,3]’[3k-3, 21]’[3k-3, 1^{3}]’\mapsto 0 (g\leq 3k-4)$

$[6k-8, 8]’[6k-8,62]’\cdots[6k-8, 2^{4}]’\mapsto 0 (g\leq 3k-5)$ .

In this way, we obtain many (hopefully all? the) relations and we proposed the following.

Conjecture 4.3 (M. [24]).

$\mathcal{R}^{*}(\mathcal{M}_{g})\cong(\wedge^{*}U_{\mathbb{Q}}/([2^{2}]_{Sp}))^{Sp},$

$\mathcal{R}^{*}(\mathcal{M}_{g,*})\underline{\simeq}(\wedge^{*}(\wedge^{3}H_{\mathbb{Q}})/([1^{2}]_{Sp}^{t\circ oelti}\oplus[2^{2}]_{Sp}))^{Sp}$

5. PLETHYSM OF GL REPRESENTATIONS AND TAUTOLOGICAL ALGEBRA

In this section, we consider certain plethysm of GL-representations. Recall that plethysm
is a composition of two Schur functors. Determination of a given plethysm is a very im-
portant but extremely difficult problem and a complete answer is known for only the
following four cases.

Theorem 5.1 (Formula of Littlewood). There exists a complete description of the fol-
lowing plethysms

$S^{*}(S^{2}H_{\mathbb{Q}}) , \wedge^{*}(S^{2}H_{Q})$ ,

$S^{*}(\wedge^{2}H_{Q}) , \wedge^{*}(\wedge^{2}H_{Q})$ .
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The following result of Manivel plays a key role in our work. Here we describe his result
in a simplified form and we refer to his original paper for details.

Theorem 5.2 (Manivel [18]). The plethysm $S^{k}(S^{l}H_{\mathbb{Q}})t$ uper stabilizes” as $karrow\infty.$

Furthermore the super stable decomposition of $S^{\infty}(S^{3}H_{\mathbb{Q}})i\mathcal{S}$ given by

$S^{*}(S^{2}H_{\mathbb{Q}}\oplus S^{3}H_{\mathbb{Q}})$ .

We apply the well-known involution on the space of symmetric polynomials (see [16])

to the following particular case
$H_{k}H_{3}dua\Leftrightarrow^{)}\mathcal{B}_{k}E_{3}$

where $E_{k}$ denotes the k-th elementary symmetric polynomial and $H_{k}$ denotes the k-th

complete symmetric polynomial. We obtain the following result.

Theorem 5.3 (Sakasai Suzuki-M. [26]). $Let\wedge^{k}(A^{3}H_{\mathbb{Q}})$ be the k-th exterior power of the
third exterior power of $H_{Q}$ and let

$\wedge^{k}(\wedge^{3}H_{\mathbb{Q}})=\bigoplus_{\lambda,|\lambda|=3k}m_{\lambda}\lambda_{GL}$

be the stable irreducible decomposition as a $GL$ -module. Then, for any $k$ , the mapping

$A^{k}(\wedge^{3}H_{\mathbb{Q}})arrow\wedge^{k+1}(\wedge^{3}H_{\mathbb{Q}})$

induced by the operation $\lambda\mapsto\lambda^{+}=[\lambda 1^{3}]$ is injective and bijective for the part $\lambda_{GL}^{+}$ with
$2k\leq h(\lambda)\leq 3k$ . In other words, we have the inequality

$m_{\lambda}\{\begin{array}{l}\leq m_{\lambda+}=m_{\lambda+} (2k\leq h(\lambda\rangle\leq 3k) .\end{array}$

Theorem 5.4 (Sakasai Suzuki-M. [26]). We have $deter\gamma nined$ the super stable irreducible
decomposition $of\wedge^{\infty}[1^{3}]_{GL}$ up to codimension 30.

Table 2 below indicates the super stable irreducible decomposition of $\Lambda^{\infty}[1^{3}]_{GL}$ up to

codimension 10.

Corollary 5.5 (Sakasai-Suzuki-M. [26]). We have determined the super stable $Sp$ -invariant

part $\langle\wedge^{\infty}[1^{3}]_{GL}\rangle^{Sp}$ up to codimension 30.

Table 3 below indicates the super stable Sp-inval.iant part $(\Lambda^{\infty}[1^{3}]_{GL})^{Sp}$ up to codimen-

sion 10.
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TABLE 2. Super stable irreducible decomposition $of\wedge^{\infty}[1^{3}]_{GL}$

TABLE 3. Super stable irred. summands $of\wedge^{\infty}[1^{3}]_{GL}$ with double floors

Let us consider the following series of mappings (see [4] for the definition of the Goren-
stein quotients).

$\mathcal{R}^{*}(M_{9})arrow \mathcal{R}^{*}(\mathcal{M}_{g})arrow G^{*}(M_{g})$ (Gorenstein quotient),

$\mathcal{R}^{*}(M_{g}^{1})arrow \mathcal{R}^{*}(\mathcal{M}_{g_{)}*})arrow G^{*}(M_{g}^{1})$ (Gorenstein quotient).

Here $M_{g}^{1}$ denotes the moduli space of curves of genus $g$ with one marked point.

Expectation 5.6 (Faber-Zagier [3][4]; Faber Bergvall [1], Y\’in [29]). The number

$p(k)-\dim G^{2k}(M_{g})=$ number of relations of codimension $k$

depends only on $P=3k-1-g$ in the range $2k\leq g-2$ $(i.e. k\geq\ell+3)$ . Similarly the
number

$1+p(1)+\cdots+p(k)-\dim G^{2k}(M_{g}^{1})$

depends only on $\ell=3k-1-g$ in the range $2k\leq g-2$ $(i.e. k\geq\ell+3)$ ,
in case $2k=g-1$ , something happens
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Expectation 5.7 (continued, Faber-Zagier [3][4]; Faber-Bergvall [1], Yin [29]). If the
$f_{07}mer$ part of the previous Expectation holds, then the above number can be described as

$a(\ell)=$
?
number of partitions of $\ell$ with parts:

1, 2, 3, 4, 6, 7, $g$ , 10, 12, 13, $15,\backslash 16$ , . ..
$n\neq 2$ is excluded if $n\equiv 2$ mod3.

Similarly, if the latter part of the previous Expectation holds, then the above number can
be described as

$b(P)?= \sum_{i=0,i\neq 3m+2}^{\ell}a(P-i)=a(P)+a(P-1)+a(P-3)+(t(l-4)+\cdot \cdot\cdot$

We have the following theorems which may serve as a supporting evidences for the

above expectations.

Theorem 5.8 (Sakasai-Suzuki-M. $[26]\rangle$ . (1) The number

$\tilde{a}(l) :=p(k)-\dim(\wedge^{2k}U_{\mathbb{Q}}/([2^{2}]_{Sp}))^{s_{I)}}$

depends only on $\ell=3k-1-g$ in the range $2k\leq g-2$ $(i.e. k\geq\ell+3)$ .

(2) The number

$\tilde{b}(\ell):=1+p(1)+\cdots+p(k)-\dim(\wedge^{2k}(\wedge^{3}H_{Q})/([1^{2}]_{Sp}^{torelh}\oplus[2^{2}]_{S_{I)}}))^{Sp}$

depends only on $\ell=3k-1-g$ in the same range.

Furthermore, we have the following more precise result.

orthogonal complement of $(\Lambda^{2k}(A^{3}H_{\mathbb{Q}}))^{s_{I)}}$ in $(\Lambda^{2k}(\wedge^{3}H_{\mathbb{Q}}^{\infty}))^{Sp}mod ([1^{2}]_{Sp}^{tore11i}\oplus[2^{2}]_{Sp})^{Sp}$

$\Rightarrow$ tautological relations in $\mathcal{R}^{2k}(\mathcal{M}_{g,*})$

orthogonal complement of $(\wedge^{2k}U_{\mathbb{Q}})^{Sp}$ in $(\wedge^{2k}U_{\mathbb{Q}}^{\infty})^{Sp}mod ([2^{2}]_{Sp})^{Sp}$

$\Rightarrow$ tautological relations in $\mathcal{R}^{2k}(\mathcal{M}_{g})$ .

Theorem 5.9 $(Saffisai-S\mathfrak{u}zuki-M.)$ . If we fix $P=3k-1-g$, then all the above or-
thogonal complements are canonically isomorphic to each other in the range $2k\leq g-$

$2$ $(i.e. k\geq P+3)$ .

6. PROBLEMS

Problem 6.1. Construct the “fundamental cycles”

$\mu_{g,*}\in(\Lambda^{2g-2}(\wedge^{3}H_{\mathbb{Q}}^{\langle g\rangle}))^{Sp}$

$\mu_{g}\in(\wedge^{2g-4}U_{\mathbb{Q}}^{\langle g\rangle})^{Sp}$

and give a topological proof of the intersection number formula.
Problem 6.2. Give a topological proof of the Faber-Zagier relations.

Problem 6.3. Study the relation between our tautological relations with those of Faber-
Zagier as well as those of $Yin.$
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Problem 6.4 (suggested by Faber [4]). Which part (and/or in which degrees) of the
following $homomo\gamma$phisms is isomorphic or non-isomorphi$c^{}$ :

$\mathcal{R}^{*}(M_{g})arrow \mathcal{R}^{*}(\mathcal{M}_{g})arrow G^{*}(M_{g})$ (Gorenstein quotient),

$\mathcal{R}^{*}(M_{g}^{1})arrow \mathcal{R}^{*}(\mathcal{M}_{g,*})arrow G^{*}(M_{g}^{1})$ (Gorenstein quotient).

Problem 6.5 (suggested by Faber [4]). (1) Are Faber-Zagier relations linearly inde-
pendent2

(2) Are Faber-Zagier relations complete up to the half $dimension^{9}$

(3) Are there more relations $($above the half dimension$)^{g}$
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