SYMMETRIC GROUPS，DIHEDRAL GROUPS，AND KNOT GROUPS

MASAAKI SUZUKI

Abstract

The number of group homomorphisms of a knot group is a knot invariant． In this paper，we determine the numbers of group homomorphisms of knot groups to symmetric groups and dihedral groups in low degree．

1．Introduction

Let K be a knot and $G(K)$ the knot group，namely，the fundamental group of the exterior of the knot K in S^{3} ．It is a useful method to investigate a given group that we construct a group homomorphism of the group to another well known group．For example， $S L(2 ; \mathbb{Z} / p \mathbb{Z})$－representations of knot groups are studied in［5］．In this paper，we consider group homomorphisms of knot groups to symmetric groups，and dihedral groups．To be precise，we calculate all the group homomorphisms of knot groups with up to 8 crossings to symmetric groups S_{n} of degree up to 6 ，and to dihedral groups $D_{2 n}$ of degree up to 18 ． Furthermore，they are classified by the order of the images．Throughout this paper，the numbers of homomorphisms are considered up to conjugation．

2．Symmetric Group

First，we consider homomorphisms of knot groups to symmetric groups S_{n} ：

$$
\left.S_{n}=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right| \sigma_{i}^{2}=1, \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} \text { if } j \neq i \pm 1,\left(\sigma_{i} \sigma_{i+1}\right)^{3}=1\right\rangle
$$

A representation onto symmetric group S_{n} corresponds to an n－fold covering of $S^{3}-K$ ， see［2］for example．It is known that there exist subgroups of symmetric group S_{3} and S_{4} whose orders are divisors of 3 ！and 4 ！respectively．However，there does not exist a subgroup of S_{5} whose order is $15,30,40$ ，though they are divisors of 5 ！．Similarly，there does not always exist a subgroup of symmetric subgroup S_{n} whose order is a divisor of $n!$ ．See［3］，［4］in detail，for example．

Theorem 2．1．All the prime knots with up to 8 crossings，except for two pairs $\left(7_{1}, 8_{12}\right)$ and $\left(7_{3}, 8_{13}\right)$ ，can be distinguished by the orders of the images of group homomorphisms to S_{n} up to 6 ．

Theorem 2.1 is shown by Table 1 and Table 2．For example，Table 1 says that there exists a surjective homomorphism of $G\left(3_{1}\right)$ onto S_{3} ．On the other hand，there does not exist a surjective homomorphism of $G\left(4_{1}\right)$ onto S_{3} ．Then we conclude that these knots 3_{1} and 4_{1} are not equivalent．Moreover，though the numbers of group homomorphisms of $G\left(5_{2}\right)$ and $G\left(8_{7}\right)$ to S_{n} are same up to degree 6，there exists a homomorphism of $G\left(5_{2}\right)$ to S_{6} such that the order of the image is 36 and there does not exist such a homomorphism of $G\left(8_{7}\right)$ ．Therefore we obtain that 5_{2} and 8_{7} are not equivalent．

Received February 28， 2016.

Remark 2.2. We can distinguish the pairs $\left(7_{1}, 8_{12}\right)$ and $\left(7_{3}, 8_{13}\right)$ by using homomorphisms to S_{7}.

We determine the numbers of homomorphisms to S_{n} in several cases as follows.
Proposition 2.3. For any knot K,

(1-a) $\left\|\left\{f: G(K) \rightarrow S_{3}\| \| \lim f \mid=2\right\}\right\|=1$,	$(1-\mathrm{b})\left\|\left\{f: G(K) \rightarrow S_{3}\| \| \operatorname{im} f \mid=3\right\}\right\|=1$,
(2-a) $\left\|\left\{f: G(K) \rightarrow S_{4}\| \| \lim f \mid=2\right\}\right\|=2$,	(2-b) $\left\|\left\{f: G(K) \rightarrow S_{4}\| \| \lim f \mid=3\right\}\right\|=1$,
(2-c) $\left\|\left\{f: G(K) \rightarrow S_{4}\| \| \lim f \mid=4\right\}\right\|=1$,	(2-d) $\left\|\left\{f: G(K) \rightarrow S_{4}\| \| \lim f \mid=8\right\}\right\|=0$
(3-a) $\left\|\left\{f: G(K) \rightarrow S_{5}\| \| \lim f \mid=2\right\}\right\|=2$,	(3-b) $\left\|\left\{f: G(K) \rightarrow S_{5}\| \| \lim f \mid=3\right\}\right\|=1$,
(3-c) $\left\|\left\{f: G(K) \rightarrow S_{5}\| \| \operatorname{im} f \mid=4\right\}\right\|=1$,	(3-d) $\left\|\left\{f: G(K) \rightarrow S_{5}\| \| \operatorname{im} f \mid=5\right\}\right\|=1$,
(3-e) $\left\|\left\{f: G(K) \rightarrow S_{5}\| \| \operatorname{im} f \mid=8\right\}\right\|=0$.	

Proof. There exists only one subgroup of S_{3} of order 2 (up to conjugation), which is generated by one element and a cyclic group. A non-trivial homomorphism of $G(K)$ to this group maps all elements to its generator. Then the number of such homomorphisms is 1 and we get (1-a). By similar arguments, we obtain (1-b), (2-a), (2-b), (3-a), (3-b), and (3-d). Note that there are two subgroups of S_{4} and S_{5} of order 2 respectively.

There are three conjugacy classes of subgroups of S_{4} (and S_{5}) of order 4. One of them is a cyclic group $\mathbb{Z} / 4 \mathbb{Z}$ and $G(K)$ admits one surjective homomorphism onto this subgroup. It is easy to see that $G(K)$ does not admit a surjective homomorphism onto the other subgroups. Then the number of homomorphisms to subgroups of S_{4} (and S_{5}) of order 4 is one.

The subgroup of S_{4} (and S_{5}) of order 8, which is the 2-Sylow subgroup, is the dihedral group D_{8}. As we see later in Theorem 3.1, there does not exist a surjective homomorphism of $G(K)$ onto D_{8}. Therefore the order of the image of homomorphism to S_{4} (and S_{5}) is not 8 .

This completes the proof.

3. Dihedral group

Next, we will see homomorphisms of knot groups to dihedral groups $D_{2 n}$:

$$
D_{2 n}=\left\langle r, s \mid r^{n}=1, s^{2}=1, s r s=r^{-1}\right\rangle
$$

It is well known that D_{6} is isomorphic to S_{3}. In general, $D_{2 n}$ can be regarded as a subgroup of S_{n}. The subgroups of $D_{2 n}$ are determined in [1], namely, they are generated by $\left\{r^{d}\right\}$ or $\left\{r^{d}, r^{k} s\right\}$, where d is a divisor of n and $0 \leq k<d$.
Theorem 3.1. Let K be a knot and $f: G(K) \rightarrow D_{8}$ a group homomorphism. Then the image of f is a cyclic group $\mathbb{Z} / 2 \mathbb{Z}$ or $\mathbb{Z} / 4 \mathbb{Z}$. In particular, f is not surjective. Moreover, $\left|\left\{f: G(K) \rightarrow D_{8} \mid \operatorname{im} f=\mathbb{Z} / 2 \mathbb{Z}\right\}\right|=3$ and $\left|\left\{f: G(K) \rightarrow D_{8} \mid \operatorname{im} f=\mathbb{Z} / 4 \mathbb{Z}\right\}\right|=1$.
Proof. It it known that the conjugacy decomposition of D_{8} is the following:

$$
D_{8}=\{e\} \cup\left\{r, r^{3}\right\} \cup\left\{r^{2}\right\} \cup\left\{s, r^{2} s\right\} \cup\left\{r s, r^{3} s\right\} .
$$

Note that $s \cdot r \cdot s^{-1}=r^{-1}=r^{3}, r \cdot s \cdot r^{-1}=r^{2} s$, and $r \cdot r s \cdot r^{-1}=r^{3} s$. We fix the Wirtinger presentation of knot group:

$$
G(K)=\left\langle x_{1}, x_{2}, \ldots, x_{k} \mid x_{i_{1}} x_{1} x_{i_{1}}^{-1} x_{2}^{-1}=1, x_{i_{2}} x_{2} x_{i_{2}}^{-1} x_{3}^{-1}=1, \ldots, x_{i_{k}} x_{k} x_{i_{k}}^{-1} x_{1}^{-1}=1\right\rangle .
$$

Remark that $x_{1}, x_{2}, \ldots, x_{k}$ are conjugate to one another. Then all the $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{k}\right)$ are also conjugate. If $f\left(x_{i}\right)$ is r, then the image of f is a cyclic group $\mathbb{Z} / 4 \mathbb{Z}$. Similarly, if $f\left(x_{i}\right)$ is r^{2}, then the image of f is $\mathbb{Z} / 2 \mathbb{Z}$.

Next, we assume $f\left(x_{i}\right)=s$. Since $f\left(x_{1}\right)$ and $f\left(x_{i_{1}}\right)$ are contained in the same conjugacy class, $f\left(x_{i_{1}}\right)$ is s or $r^{2} s$. We see that

$$
f\left(x_{i_{1}} x_{1} x_{i_{1}}^{-1}\right)=\left\{\begin{array}{l}
s \cdot s \cdot s^{-1}=s \\
r^{2} s \cdot s \cdot\left(r^{2} s\right)^{-1}=r^{2} s r^{-2}=r^{4} s=s
\end{array}\right.
$$

In either case, $f\left(x_{2}\right)=s$, by $f\left(x_{i_{1}} x_{1} x_{i_{1}}^{-1} x_{2}^{-1}\right)=1$. Inductively, all the x_{i} are sent to s. Therefore the image of f is a cyclic group $\mathbb{Z} / 2 \mathbb{Z}$.

Finally, we assume $f\left(x_{1}\right)=r s$. In this case, all the x_{i} are sent to $r s$ by similar argument. Since $(r s)^{2}=1$, the image of f is also a cyclic group $\mathbb{Z} / 2 \mathbb{Z}$.

The above shows us the numbers of homomorphisms to D_{8} too.

4. Tables

The following are tables of the numbers of homomorphisms to S_{n} and $D_{2 n}$. The first columns of these tables line up prime knots with up to 8 crossings. The numbers of knots follow the Rolfsen's book [6]. The other columns give us the numbers of homomorphisms (up to conjugation) to S_{n} and $D_{2 n}$ such that the order of the image is k. For example, the second column of Table 1 shows the numbers of homomorphisms to subgroups of S_{3} of order 2 . We omit the columns for the number of trivial homomorphisms, since the number is always 1 .

Table 1: S_{3}, S_{4}, and S_{5}

K	S_{3}			S_{4}							S_{5}											
	2	3	6	2	3	4	6	8	12	24	2	3	4	5	6	8	10	12	20	24	60	120
3_{1}	1	1	1	2	1	1	1	0	1	1	2	1	1	1	3	0	0	1	0	1	1	0
4_{1}	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	1	1	0	1	1	2
$5{ }^{1}$	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	1	0	0	0	2	2
5_{2}	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	1	1
6_{1}	1	1	1	2	1	1	1	0	0	1	2	1	1	1	3	0	0	0	2	1	0	0
6_{2}	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	1
6_{3}	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	1	0
7_{1}	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	0
72	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	0	1	2	0	0	0
73	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	0	1	0	0	0	1
$7{ }^{7}$	1	1	1	2	1	1	1	0	0	1	2	1	1	1	3	0	1	0	0	1	1	0
75	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	0
76	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	2	0	0	1
77	1	1	1	2	1	1	1	0	0	1	2	1	1	1	3	0	0	0	0	1	0	2
8_{1}	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	0	1	0	0	1	0
82	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	1
83	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	2	0
84	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	0	1	0	0	1	1
8_{5}	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	0	1	0	3	2	1
8_{6}	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	2	1
87	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	1	1
88	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	1	0	2	0	1	1

K	S_{3}			S_{4}							S_{5}											
	2	3	6	2	3	4	6	8	12	24	2	3	4	5	6	8	10	12	20	24	60	120
89	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	1	0	0	0	0	0
810	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	0	1	0	3	2	1
811	1	1	1	2	1	1	1	0	1	1	2	1	1	1	3	0	0	1	2	1	1	1
$8{ }_{12}$	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	0
$8{ }_{13}$	1	1	0	2	1	1	0	0	1	0	2	1	1	1	1	0	0	1	0	0	0	1
814	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	0	0
$8{ }_{15}$	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	0	1	2	3	2	1
$8{ }_{16}$	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	1	0	0	0	1	1
817	1	1	0	2	1	1	0	0	0	0	2	1	1	1	1	0	0	0	0	0	1	2
818	1	1	4	2	1	1	4	0	5	4	2	1	1	1	9	0	1	5	0	4	4	4
$8{ }_{19}$	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	0	1	0	3	1	3
820	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	0	1	0	3	2	0
821	1	1	1	2	1	1	1	0	1	3	2	1	1	1	3	0	1	1	0	3	3	3

Table 2: S_{6}

K	S_{6}																			
	2	3	4	5	6	8	9	10	12	16	18	20	24	36	48	60	72	120	360	720
3_{1}	3	2	2	1	6	0	0	0	2	0	2	0	6	0	0	2	0	0	0	0
4_{1}	3	2	2	1	2	0	0	1	2	0	0	0	2	2	0	0	0	4	4	0
5_{1}	3	2	2	1	2	0	0	1	0	0	0	0	0	0	0	4	0	4	4	2
5_{2}	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	2	0	2	2	0
6_{1}	3	2	2	1	6	0	0	0	0	0	2	2	4	0	0	0	0	0	2	0
6_{2}	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
6_{3}	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	2	0	0	2	0
7_{1}	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$7{ }_{7}$	3	2	2	1	2	0	0	0	2	0	0	2	2	0	0	0	0	0	4	0
$7{ }_{7}$	3	2	2	1	2	0	0	0	2	0	0	0	2	0	0	0	0	2	2	0
74	3	2	2	1	6	0	0	1	0	0	2	0	4	0	0	2	0	0	4	4
$7{ }^{7}$	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	4	0
7_{6}	3	2	2	1	2	0	0	0	0	0	0	2	0	0	0	0	0	2	0	0
7_{7}	3	2	2	1	6	0	0	0	0	0	2	0	4	0	0	0	0	4	6	0
8_{1}	3	2	2	1	2	0	0	0	2	0	0	0	2	0	0	2	0	0	2	0
$8{ }^{8}$	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	0	0	2	4	0
83	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	4	0	0	4	4
84	3	2	2	1	2	0	0	0	2	0	0	0	2	0	0	2	0	2	0	2
85	3	2	2	1	6	0	0	0	2	0	2	0	14	0	0	4	0	2	10	0
8_{6}	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	4	0	2	4	0
87	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	2	0	2	4	0
88	3	2	2	1	2	0	0	1	0	0	0	2	0	0	0	2	0	2	2	0
89	3	2	2	1	2	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
810	3	2	2	1	6	0	0	0	2	0	2	0	14	0	0	4	0	2	6	2
811	3	2	2	1	6	0	0	0	2	0	2	2	6	0	0	2	0	2	0	0

K	S_{6}																			
	2	3	4	5	6	8	9	10	12	16	18	20	24	36	48	60	72	120	360	720
812	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
813	3	2	2	1	2	0	0	0	2	0	0	0	2	0	0	0	0	2	2	0
$8{ }_{14}$	3	2	2	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4
815	3	2	2	1	6	0	0	0	2	0	2	2	14	0	0	4	0	2	2	6
$8{ }_{16}$	3	2	2	1	2	0	0	1	0	0	0	0	0	0	0	2	0	2	16	4
817	3	2	2	1	2	0	0	0	0	0	0	0	0	2	0	2	0	4	4	0
818	3	2	2	1	18	0	0	1	10	0	14	0	26	2	0	8	0	8	10	8
819	3	2	2	1	6	0	0	0	2	0	2	0	14	2	0	2	0	6	6	2
820	3	2	2	1	6	0	0	0	2	0	2	0	14	0	0	4	0	0	4	0
821	3	2	2	1	6	0	0	1	2	0	2	0	14	2	0	6	0	6	6	2

Table 3: $D_{8}, D_{10}, D_{12}, D_{14}, D_{16}$, and D_{18}

K	D_{8}			D_{10}			D_{12}					D_{14}			D_{16}				D_{18}				
	2	4		2	5	10			4		12	2	7	14	2	4	8	16	2	3	6		18
3_{1}	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	0
4_{1}	3	1	0	1	2	2	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
5_{1}	3	1	0	1	2	2	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
5_{2}	3	1	0	1	2	0	3	1	0	1	0	1	3	3	3	1	2	0	1	1	0	3	0
61	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	3
6_{2}	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
6_{3}	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$7{ }^{7}$	3	1	0	1	2	0	3	1	0	1	0	1	3	3	3	1	2	0	1	1	0	3	0
$7{ }^{7}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$7{ }^{7}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$7{ }_{4}$	3	1	0	1	2	2	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	0
75	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$7{ }^{7}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
77	3	1	0	1	2	0	3	1	0	3	0	1	3	3	3	1	2	0	1	1	1	3	0
81	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$8^{8} 8$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
$8{ }^{8}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
84	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	
8_{5}	3	1	0	1	2	0	3	1	0	3	0	1	3	3	3	1	2	0	1	1	1	3	0
8_{6}	3	1	0	1	2	0	3	1	0	1	0	1		0	3	1	2	0	1	1	0	3	0
$8_{7}{ }^{8}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
88	3	1	0	1	2	2	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
89	3	1	0	1	${ }^{2}$	2	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
810	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	3
811	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	3
$8{ }_{12}$	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
813	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
814		1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0

K	D_{8}			D_{10}			D_{12}					D_{14}			D_{16}				D_{18}				
	2	4	8	2	5	10	2	3	4	6	12	2	7	14	2	4	8	16	2	3	6	9	18
815	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	0
8_{16}	3	1	0	1	2	2	3	1	0	1	0	1	3	3	3	1	2	0	1	1	0	3	0
817	3	1	0	1	2	0	3	1	0	1	0	1	3	0	3	1	2	0	1	1	0	3	0
8_{18}	3	1	0	1	2	2	3	1	0	9	0	1	3	0	3	1	2	0	1	1	4	3	0
819	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	0
8_{20}	3	1	0	1	2	0	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	3
821	3	1	0	1	2	2	3	1	0	3	0	1	3	0	3	1	2	0	1	1	1	3	0

References

[1] S. Cavior, The subgroups of the dihedral group, Math. Mag., 48 (1975), 107.
[2] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
[3] D. Holt, Enumerating subgroups of the symmetric group, Computational group theory and the theory of groups, II, Contemp. Math., 511 (2010), 33-37,
[4] G. Pfeiffer, available at http://schmidt.nuigalway.ie/subgroups/.
[5] T. Kitano and M. Suzuki, On the number of $S L(2 ; \mathbb{Z} / p \mathbb{Z})$-representations of knot groups, J. Knot Theory Ramifications, 21 (2012), 18 pages.
[6] D. Rolfsen, Knots and Links, AMS Chelsea Publishing, 1976.
Department of Frontier Media Science, Meiji University
E-mail address: macky@fms.meiji.ac.jp

