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1. $INTRODUC’$rION

This paper $is$ mainly a summary of [$M$ , AM], where we discuss prepro-
jective algebl $\mathfrak{W}$ of Dynkin type. Preprojective algebras first appeared in
the work of Gelfand-Ponomarev [GP]. Since then, they have been one of
the important objects in the representation theory of algebras and they also
appear in many branches of mathematics such as quantum groups.

Recently, the notion of support $\tau$-tilting modules was introduced in [AIR],
as a generalization of tilting modules. Support $\tau$-tilting modules have several
nice properties. For example, it is shown that there are deep connections
between $\tau$-tiltihg theory, torsion theory, silting theory and cluster tilting
theory. Moreover, support $\tau$-tilting modules over selfinjective algebras are
useful to provide tilting complexes. It is therefore fruitful to investigate
these remarkable modules for preprQjective algebras. To explain our results,
we give the following set-up.

Let $\Delta$ be a finite connected graph (without loop) with the set $\Delta_{0}=$

$\{1, \cdots, n\}$ of vertices, A the preprojective algebra of $\Delta$ . and $I_{i}$ the $tworightarrow$sided
ideal of A generated by $1-e_{i}$ , where $e_{i}$ is an idempotent of A corresponding
to $i\in\Delta_{0}$ . We denote by $\langle I_{1}$ , . .. , $I_{n}\rangle$ the set of ideals of $\Lambda$ of the form
$I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}}$ for some $k\geq 0$ and $i_{1}$ , . .. , $i_{k}\in\Delta_{0}.$

These ideals are quite useful to study structure of categories [IR, BIRS,
AIRT, ORT]. They also play important roles in $Geiss-Leclerc-Schr\ddot{\circ}er$ ’s con-
struction of cluster monomials of certain types of cluster algebras [GLSI,
GLS2] and Baummn-Kamnitzer-Tingley’s works ofMV polytopes [BK, BKT].

One of the results in this paper is to show that elements of $\langle I_{1}$ , . . . , $I_{n}\rangle$

are support $\tau$-tilting modules over preprojective algebras of Dynkin type,
and they are bijective to the elements of the Coxeter group.

Another aim is to study tilting complexes. It is known that derived equiv-
alences are controlled by tilting complexes [Ric] and therefore these objects
have been extensively studied. By applying the above result, we give a
classification of tilting complexes.

Notation. Let $K$ be an algebraically closed field and $D$ $:=Hom_{K}$ $K\rangle.$

All modules are right modules. For a finite dimensional algebra $\Lambda$ , we denote
by mod A the category of finitely generated $\Lambda$-modules.
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2. PRELIMINARIES

2.1. Support $\tau$-tilting modules. We recall the definition of support $\tau-$

tilting modules. We refer to [AIR] for the details about support $\tau$-tilting
modules. Let $\Lambda$ be a finite dimensional algebra and $\tau$ denote the AR trans-
lation [ARS].

Definition 2.1. (a) We call $X$ in $mod \Lambda\tau$-rigid if $Hom_{\Lambda}(X, \tau X)=0.$

(b) We call $X$ in $mod \Lambda\tau$-tilting $($respectively, almost complete $\tau-$ tilting)
if $X$ is $\tau$-rigid and $|X|=|\Lambda|$ $($respectively, $|X|=|\Lambda|-1)$ , where
$|X|$ denotes the number of non.isomorphic indecomposable direct
summands of $X.$

(c) We call $X$ in $mod \Lambda$ support $\tau$ -tilting if there exists an idempotent $e$

of A such that $X$ is a $\tau$-tilting $(\Lambda/\langle e\rangle)$-module.
(d) We call a pair $(X, P)$ of $X\in mod$ A and $P\in$ proj $\Lambda\tau$-rigid if $X$ is

$\tau$-rigid and $Hom_{\Lambda}(P, X)=0.$

(e) We call a $\tau$-rigid pair $(X, P)$ a support $\tau$ -tilting (respectively, almost
complete support $\tau$ -t\’ilting) pair if $|X|+|P|=|\Lambda|$ (respectively, $|X|+$

$|P|=|\Lambda|-1)$ .

We call $(X, P)$ basic if $X$ and $P$ are basic, and we say that $(X, P)$ is
a direct summand of $(X\prime, P’)$ if $X$ is a direct summand of $X’$ and $P$ is a
direct summand of $P’$ . Note that $(X, P)$ is a $\tau$-rigid (respectively, support
$\tau$-tilting) pair for $\Lambda$ if and only if $X$ is a $\tau$-r\’igid $($respectively, $\tau-$tilting)
$(\Lambda/\langle e\rangle)$-module, where $e$ is an idempotent of A such that add $P=$ add $e\Lambda$

[AIR, Proposition 2.3]. Moreover, if $(X, P)$ and (X, $P’\rangle$ are support $\tau$-tilting
pairs for $\Lambda$ , then we get add $P=add$ $P’$ , Thus, a basic support $\tau$-tilting
module $X$ determines a basic support $\tau$-tilting pair $(X, P)$ uniquely and
we can identify basic support $\tau$-tilting modules with basic support $\tau$-tilting
pairs.

We denote by $s\tau$-tiltA the set of isomorphism classes of basic support
$\tau$-tilting $\Lambda$-modules.

Next we recall some properties of support $\tau$-tilting modules. The set of
support $\tau$-tilting modules has a natural partial order as follows.

Definition 2.2. [AIR, Theorem 2.18] Let $\Lambda$ be a finite dimensional algebra.
For $T,$ $T’\in s\tau$-tilt $\Lambda$ , we write

$T’\geq T$

if Fac$T’\supset$ FacT. Then $\geq$ gives a partial order on $s\tau$-tilt $\Lambda.$

Then we give the following results, which play important roles in this
paper.

Definition-Theorem 2.3. [AIR, Theorem 2.28] Let $\Lambda$ be a finite dimen-
sional algebra. Then

(i) any basic almost support $\tau$-tilting pair $(U, Q)$ is a direct summand of
exactly two basic support $\tau$-tilting pairs $(T, P)$ and $(T’,$ $P$ More-
over, we have $T>T’$ or $T<T’.$
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Under the above setting, let $X$ be an indecomposable $\Lambda$-module satisfying
either $T=U\oplus X$ er $P=Q\oplus X$ . We write $(T’, P’)=\mu$ く$x,0$) $(T, P)$ if $X$ is a
direct summand of $T$ and $(T^{I}, P^{1})=\mu_{(0,X)}(T, P)$ if $X$ is a direct summand
of $P$, and we say that $(T’,P’)$ is a mutation of $(T, P)$ . In particular, we
say that $(T’, P’\rangle is a left$ mutat\’ion $($respectively, $right$ mutation) of $(T, P)$ if
$T>T’$ $($respectively, $if T<T’)$ and write $\mu^{\ovalbox{\tt\small REJECT}}(T, P)=(T’, P^{J})$ (respectively,
$\mu^{+}(T, P\rangle=(T’, P By \langle i)$ , exactly one of the left mutation or right

. mutation occurs.
Now, assume that $X$ is a direct summand of $T$ and $T=U\oplus X$ . In

this case, for simplicity, we write a left mutation $T’=\mu_{\tilde{X}}(T)$ and a right

mutation $T’=\mu_{X}^{+}(T)$ .

Finally, we define the support $\lrcorner r$ -tilting quiver $\mathcal{H}(s\tau-$-tilt $\Lambda)$ as follows.
$\bullet$ The set of vertices is $s\tau$-tiltA.
$\bullet$ Draw an arrow from $T$ to $T’$ if $T’$ is a left mutation of $T$ (i.e. $T’=$

$\mu_{\tilde{X}}(T\rangle)$ .
The following theorem relates }$t$ ( $s\tau$-tiltA) with partially orders of sr-tilt $\Lambda.$

Theorem 2,4. [AIR, Corollary 2.34] The support $\tau$ -tilting $quiver\mathcal{H}$ ($s\tau$-tilt $\Lambda$)
is the Hasse quiver of the partially $0/dered$ set $s\tau$-tiltA.

2.2. Preprojective algebras. In this subsection, we recall definitions and
some properties of preprojective algebras. We refer to [BBK, BGL, Ri] for
basic properties and background information.

Definition 2.5. Let $Q$ be a finite connected acyclic quiver with vertices
$Q_{0}=\{1, \cdots , n\}$ . The preprojective algebra associated to $Q$ is the algebra

$\Lambda=K\overline{Q}/\langle\sum_{a\epsilon Q_{1}}(aa^{*}-a^{*}a)\rangle$

where $\overline{Q}$ is the double quiver of $Q$ , which is obtained from $Q$ by adding for
each arrow $a:iarrow j$ in $Q_{1}$ an arrow $a^{*}:iarrow j$ pointing in the opposite
direction.

We remark that $\Lambda$ does not depend on the orientation of $Q$ . Hence, for
a graph $\Delta$ , we define the preprojective algebra by $\Lambda_{\Delta}=\Lambda_{Q}$ , where $Q$ is a
quiver whose undrlying graph is $\Delta$ . We denote by $\Delta_{0}$ vertices of $\Delta.$

Let $\Delta$ be a Dynkin (ADE) graph. The preprojective algebra of $\Delta$ is finite
dimensional and selfinjective. We denote the Nakayama permutation of $\Lambda$

by $\iota:\Delta_{0}arrow\Delta_{0}$ $(i.e. D(\Lambda e_{\iota(i\rangle})\cong e_{i}\Lambda)$ .

2.3. Coxeter group. Let $\Delta$ be a Dynkin graph of type $A$ to $F$ . The
Coxeter group $W_{\Delta}$ associated to $\Delta$ is defined by the generators $s_{i}(i\in\Delta_{0})$

and relations $(s_{i}s_{j})^{m(i,j)}=1$ , where
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1 if $i=j$ ;

$m(i,j):=$ $\{\begin{array}{ll}2 if no edge between i and j;3 if there is an edge i-j,4 if there is an edge ij\underline{4}.\end{array}$

Each element $w\in W_{\Delta}$ can be written in the form $w=s_{i_{1}}\cdots s_{i_{k}}$ . If $k$

is minimal among all such expressions for $w$ , then $k$ is called the length of
$w$ and we denote by $l(w)=k$ . In this case, we call $s_{i_{1}}\cdots s_{i_{k}}$ a reduced
expression of $w.$

Let $\iota$ be a permutation of $\Delta_{0}$ . Then $\iota$ acts on an element of the Coxeter
group $W_{\Delta}$ by $\iota(w):=s_{\iota(i_{1})}s_{\iota(i_{2})}\cdots s_{\iota(i_{\ell})}$ for $w=\mathcal{S}_{i_{1}}S_{i_{2}}\cdots \mathcal{S}_{i\ell}\in W_{Q}$ . We
define the subgroup $W_{\Delta}^{\iota}$ of $W_{\Delta}$ by

$W_{\Delta}^{\iota}:=\{w\in W|\iota(w)=w\}.$

Then the following result is well-known.

Theorem 2.6. Let $\Delta$ be a Dynkin $(A,D,E)$ quiver and $W_{\Delta}$ the Coxeter
group of A. Let $\Delta’=\Delta$ if $\Delta$ is type $D_{2n},$ $E_{7}$ and $E_{8}.$ $Otherwise_{f}$ let $\Delta’$ be
a quiver, respectively, given by the following type.

Then, for the Nakayama permutation $\iota$ of the preprojective algebra of $\Delta,$

$W_{\Delta}^{\iota}$ is isomorphic to $W_{\Delta’}.$

3. PREPROJECTIVE ALGEBRAS AND THE COXETER GROUPS

Let A be a Dynkin graph with $\Delta_{0}=\{1, . . . , n\}$ and $\Lambda$ the preprojective
algebra of $\Delta$ . We denote by $I_{i}$ $:=\Lambda(1-e_{i}\rangle\Lambda$ for $i\in\Delta_{0}$ . We denote by
$\langle I_{1}$ , . .. , $I_{n}\rangle$ the set of ideals of A which can be written as

$I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}}$

for some $k\geq 0$ and $i_{1}$ , .. . , $i_{k}\in\Delta_{0}.$

The following lemma plays a key role.

Lemma 3.1. Let $T\in\langle I_{1}$ , . . . , $I_{n}\rangle$ . If $I_{i}T\neq T$ , then there is a left mutation

of $T$ :
$\mu_{e_{i}T}^{-}(T)\cong I_{i}T.$

Moreover we recall the following important result.

Theorem 3.2. [IR, BIRS] There exists a bijection $W_{\Delta}arrow\langle I_{1}$ , .. . , $I_{n}\rangle$ . It is
given by $w\mapsto I_{w}=I_{i_{1}}I_{i_{2}}\cdots I_{i_{k}}$ for any reduced expression $w=s_{i_{1}}\cdots s_{l_{k}’}.$

Then using Lemma 3,1 and Theorem 3.2, we obtain the following result.

Theorem 3.3. The map in Theorem 3.2 gives a bijection between the ele-
ments of the Coxeter group $W_{\Delta}$ and $s\tau$-tiltA.
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We remark that the above ideals $I_{w}$ are tilting modules in the case of
non-Dynkin type [IR, BIRS].

Example 3.4. (a) Let $\Lambda$ be the preprojective algebra of type $A_{2}$ . In this
case, $H$ ($ST$-tilt $\Lambda$) is given as follows.

Here we represent modules by their radical filtrations and we write a
direct sum $X\oplus Y$ by $XY$ . For example,

$2^{}$

1 denotes the support $\tau*$tilting
module $e_{1}\Lambda\oplus S_{1}$ , where $S_{1}$ is the simple module associated with the vertex
1.

(b) Let $\Lambda$ be the preprojective algebra of type $A_{3}$ . In this case, $\mathcal{H}$ ( $s\tau$-tilt $\Lambda$)
is given as follows.
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Morever we study a close relationship between partial orders of $W_{\Delta}$ and
$s\tau$-tiItA. This lemma is crucial.

Lemma 3.5. Let $w\in W_{\Delta}$ and $i\in\Delta_{0}.$

(i) If $l(w)<l(s_{i}w)$ , then $I_{i}I_{w}=I_{sw}:\subsetneq I_{w}$ and we have a left mutation
$\mu_{i}^{-}(I_{w}, P_{w})$ ,

(ii) If $l(w)>l(s_{i}w\rangle$ , then $I_{i}I_{w}=I_{w}\subsetneq I_{\epsilon_{i}w}$ and we have a right mutation
$\mu_{i}^{+}(I_{w}, P_{w})$ .

We denote by $\leq the$ (left) weak order of $W_{\Delta}$ and by $\mathcal{H}(W_{\Delta},\underline{<})$ the Hasse
quiver induced by weak order on $W_{\Delta}.$

Then, by Lemma 3.5, we have the following result $|M$].

Theorem 3.6. The bijection $W_{\Delta}arrow s\tau$-tiltA in Theorem 3.2 gives an iso-
morphism of partially $0/dered$ sets $(W_{\Delta}, \leq)$ and $(s\tau- tilt\Lambda, \leq)^{op}.$
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4. $SILTING-msCRE’$rENESS

In this section, we discuss some properties of silting complexes. First we
recall the notion of silting complexes.

4.1. Silting complexes. Silting complexes are a generalization of tilting
complexes, which were introduced by Keller-Vossieck [KV]. They were orig-
inally invented as a tool for studying tilting complexes. Nonetheless, silting
complexes have turned out to have deep connections with several important
complexes such as $t$-structures [KY, BY].

We recall the definition of silting complexes as follows.

Definition 4.1. Let $A$ be a finite dimensional algebra and $K^{b}($projA) the
bounded homotopy category of the finitely generated projective $A$-modules.
Let $T:=K^{b}(projA\rangle$ for simplicity.

(a) We call a complex $P$ in $\mathcal{T}$ (or in the derived category of $mod A$) is
presigting (respectively, pretilting) if it satisfies $Hom\mathcal{T}(P_{\}} P[\’{i}])$ $=0$

for any $i>0$ $($respectively, $i\neq 0)$ .
(b) We call a complex $P$ in $\mathcal{T}$ silting (respectively, tilting)) if it is pre-

siiting (respectively, pretilting) and the smallest thick subcategory
containing $P$ is $\mathcal{T}.$

We denote by silt $A$ (respectively, tilt $A\rangle$ the set of non-isomorphic basic
silting (respectively, tilting) complexes in $\mathcal{T}.$

For complexes $P$ and $U$ of $\mathcal{T}$ , we write $P\geq U$ if $Hom_{\mathcal{T}}(P, tJ[i])=0$ for
any $i>0$ . Then the relation $\geq$ gives a partial order on silt $A$ [AI, Theorem
2.11].

Moreover, a complex $P\in \mathcal{T}$ is called 2-term provided it $is$ concerned in
the degree $O$ and-l. We denote by 2-silt $A$ $($respectively, $2-$tilt $A)$ the subset
of silt $A$ $($respectively, tilt $A)$ consisting of 2-term complexes. Note that a
complex $P$ is 2-term if and only if $A\geq T\geq A[1].$

Then we give the definition of silting-discrete triangulated categories as
follows.

Definition 4.2. (a) We call $\mathcal{T}$ silting-discrete if the set $\{T\in$ silt $\mathcal{T}|A\geq$

$T\geq A[P]\}$ is finite for any $P>0$ . Similarly, we call $\mathcal{T}$ tilting-discrete
if the set { $T\in$ tiltT} $A\geq T\geq A[\ell]$ } is finite for any $l>0.$

(b) For a silting complex $P$ of $\mathcal{T}$ , we denote by 2 siltp $\mathcal{T}$ the subset of
$si1\{T$ such that $U$ with $P\geq U\geq P[1]$ . We call $\mathcal{T}$ $2$-silting-finite if
2 si $\prime t_{P}\mathcal{T}$ is a finite set for any silting complex $P$ of $\mathcal{T}$ . Similarly, we
denote by 2-ti $1t_{P}\mathcal{T}$ the subset of tilt $\mathcal{T}$ such that $U$ with $P\geq U\geq$

$P[1].$

Moreover we recall mutation for silting complexes [AI, Theorem 2.31].

Definition 4.3. Let $P$ be a basic silting complex of $\mathcal{T}$ and decompose it as
$P=X\oplus M$ . We take a triangle

$Xarrow^{f}M^{1}arrow Y\sim X[1]$
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with a minimal left (add $M$)-approximation $f$ of $X$ . Then $\mu_{X}^{-}(P):=Y\oplus M$

is again a silting complex, and we call it the left mutation of $P$ with respect
to $X$ . Dually, we define the right mutation $\mu_{X}^{+}(P)$ . Mutation will mean
either left or right mutation. If $X$ is indecomposable, then we say that
mutation is irreducible. In this case, we have $P>\mu_{\overline{X}}(P)$ and there is no
silting complex $Q$ satisfying $P>Q>\mu_{\overline{X}}(P)$ [AI, Theorem 2.35].

Moreover, if $P$ and $\mu_{X}^{-}(P)$ are tilting complexes, then we call it the (left)
tilting mutation. In this case, if there exists no non-trivial direct summand
$X’$ of $X$ such that $\mu_{X}^{-},(T)$ is tilting, then we say that tilting mutation is
irreducible.

The following theorem play a key role.

Theorem 4.4. [AM] Let $A$ be a finite dimensional algebra and $\mathcal{T}:=K^{b}($projA) .
The following are equivalent.

(a) $\mathcal{T}$ is sitting-discrete.
(b) $\mathcal{T}$ is 2-silting-finite.
(c) $2-si\ovalbox{\tt\small REJECT} t_{P}\mathcal{T}$ is a finite set for any silting complex $P$ which is given by

iterated irreducible left mutation from $A.$

Moreover if $A$ is selfinjective, we have the following result.

Corollary 4.5. Assume that $A$ is selfinjective and let $\mathcal{T}:=K^{b}($projA) . The
following are equivalent.

(a) $\mathcal{T}$ is tilting-discrete.
(b) $\mathcal{T}$ is 2-tilting-finite.
(c) 2-siltp $\mathcal{T}$ is a finite set for any tilting complex $P$ which is given by

iterated irreducible tilting left mutation from $A.$

5. PREPROJECTIVE ALGEBRAS AND THE BRAID GROUPS

Using the previous results, we study tilting complexes over the preprojec-
tive algebra of Dynkin type.

First we recall the following nice correspondence,

Theorem 5.1. [AIR, Theorem 3.2] Let $A$ be a finite dimensional algebra.
There exists a bijection

$s\tau-$tiltA $rightarrow 2$-silt A.

By the above correspondence, we can give a description of 2-term silting
complexes by calculating support $\tau$-tilting modules, which is much simpler
than calculations of silting complexes.

Rom now on, let $\Delta$ be a Dynkin graph and A the preprojective algebra
of $\Delta$ . Then, as a consequence of Theorem 3.3 and 5.1, we have the following
corollary.

Corollary 5.2. We have a bijection

$W_{\Delta}rightarrow 2$-silt $\Lambda.$
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Thus we can parameterize 2-term silting complexes by the Coxeter group.
Moreover, we can describe 2-term tilting complexes in terms of the Coxeter
group as follows,

Proposition 5.3. Let $v:=DHom_{\Lambda}$ $\Lambda$) the Nakayama functor of $\Lambda$ and
$\iota$ : $\Delta_{0}arrow\Delta_{0}$ the Nakayama permutation of A. Then $\nu(I_{w})\cong I_{w}$ if and only

if $\iota(w)=w$ . In particular, We have a bijection

$W_{\Delta}^{\iota}rightarrow 2$-tilt A.

Then, by Theorem 2,6, we can understand $W_{\Delta}^{\iota}$ as another type of the
Coxeter group.

Example 5.4. Let $\Delta$ be a Dynkin graph of type $A_{3}$ and A the preprojective
algebra of $\Delta$ . Then the support $\tau$-tilting quiver of $\Lambda$ is given as follows.

The framed modules indicate $v$ -stable modules $(i.e. I_{w}\cong\nu(I_{w}))$ , which
is equivalent to say that $\iota(w)=w.$

Let $\Lambda=X\oplus Y$ . We denote by $\mu_{X}^{-}(A)$ the irreducible tilting left mutation
of A with respect to $X.$

Proposition 5.5. $\mathcal{A}ssume$ that $\mu_{\vec{X}}(\Lambda)$ is an irreducible tilting left mutation
of A. Then we have an isomorphism

$End_{K^{b}(proj\Lambda\rangle}(\mu_{X}^{-}(\Lambda))\cong A.$
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In particular, by Corollary 4.5, $\Lambda$ is tilting-discrete.

Consequently, we extend Proposition 5.3 and obtain the following result.

Theorem 5.6. We denote the braid group by $B_{\Delta’}$ . Then we have a bijection

$B_{\Delta’}rightarrow$ tilt A.
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