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1 Introduction

In a seminal series of papers published during the $1930s$ , Kermack and McK-
endrick proposed an infection-age structured endemic model that takes into
account the demography of the host population, the waning immunity (valia.ble

susceptibility) and reinfection of recovered individuals ([13], [14]). Their model

has less attention than the $\backslash vell$-known outbreak model proposed in 1927 ([12]).
In their model, the total population is decomposed into three compartments,

the never infected (full susceptible), infectious and recovered populations. The
host population is structured by a duration variable for each status, while the

chronological age is neglected. The susceptibility of recovered individuals de-

pends on the time that has passed since the last $1^{\backslash }$ecovery,$\cdot a\iota\cdot$} $d$ the model thus
has much flexibility to capture many facets of reinfecLion phenomena.

The concept of reinfection is becoming increasingIv important in understand-
inlg einerging and $1^{\cdot}$eemerging infectious diseases, since it makes $tl$ ) $e$ control of
infectious diseases difficult, and a waning immunity is widely observed if there
is no (natural or artificial) boosting. In fact, the recovered individuals or vacci-

nated individuals could be reinfected as time passes owing to the natural deca.$y$
of host inununity, or a genetic change in the virus. Reinfection often leads to
non-clinical infection. It is thus likely that its occurrence is overlooked. and

that we will fail in calculating the basic reproduction number and the critical
coverage of immunization by neglecting the effect of reinfection.

As $W\mathfrak{X}$ pointed out by Gomes, et al. ([7]), we can introduce the reinfection
threshold of $R_{0}$ at which a qualitative change in the epidemiological implication
occurs for the prevalence and controllability in the reinfection model. Moreovel
owing to enhancement of susceptibilitv or in fectivity by reinfection, we expect

that there is a backward bifurcation of endemic steady states. In such a case,

we have bistable endemic steady states, and attaining a subcritical level of $R_{0}$

is not a complete policy for disease prevention.
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In this short article, we introduce the Kermack-McKendrick reinfection
model as an $ag\fbox{Error::0x0000}$ population nodel $aa\backslash d$ sketch its basic endemic
threshold phenomena. For more details, extensions and proofs, readers may
refer to [11].

2 Kermack-McKendrick reinfection model

We first formulate the Kermack-McKendrick reinfection model as an age-structured
population model. Let $s(t, \tau)$ be the density of the susceptible population who
have never been infected (virgin population in the $termino1_{0_{o}^{\theta}}y$ of Kermack and
McKendrick) at time $l$ and duration $\tau$ (the time elapsed since $e\backslash t1^{\backslash }\backslash ^{r}$

, into the
$s$-state), which can be interpreted as the chronological age when a person $enrightarrow$

ters the $s$-state at birth. Let $i(t, 7)$ be the density of the infected and infectious
population at time $t$ and infection-age (the time elapsed since infection) $\tau$ and
let $r(t,\prime;\cdot)$ be the density of the recovered population at time $t$ and duration $\tau$

(the time elapsed since the last recovery). Let $m$ and $\mu$ respectively denote the
birth (or immigration) rate and the death rate, and $\gamma(\tau)$ denotes the recovery
rate at infection-age $\tau.$

We assul.ne that the force of $i_{1)}f\dot{e}$ction applied to the fully susceptible popu-
$latiol2$ (virgin population) is. given by

$\lambda(t.)=\int_{0}^{\infty}\beta(\sigma)i(t, \sigma)d\sigma_{\grave{ノ}}$ (1)

where $\beta(\tau\rangle$ denotes the $i_{l1}$fectivity for the virgin population at infectio -age $\tau.$

The $fo1^{\sim}ce$ of’ (re)infection appiied to the recovered populatioll at duration $\tau$ is
assumed to be given by $\theta(\tau)\lambda(t)$ , where $\theta(\tau)$ is the relative susceptibility schedule
of recovered individuals at time since recovery $\tau$ . The relative susceptibility
would be inversely correlated with the wanning of immunity.

Assumption 2.1 It is assumed that $\beta,\gamma,$ $\theta\in L_{+}^{\infty}(\mathbb{R}_{+})$ , and that the state space

of the age distribution functions $s,$ $i$ and $r$ is $L_{+}^{J}(\mathbb{R}_{\dashv-})$ .

The $Keru^{r}\iota ack-McKend_{1}\cdot ick$ reinfection $n\cdot\downarrow$odel is then fonnulated as

$\frac{\partial s(t_{{}_{)}T})}{\partial t}+\frac{\partial s\cdot(t_{:}\tau)}{\partial\tau}=-\mu s(t, \tau)-\lambda(t)s(t, \tau)$ ,

$\frac{\partial i(t,\tau)}{\partial t}+\frac{\partial i(t,\tau)}{\partial\tau}=-(\mu+\gamma(\tau))?(t, \tau)$ ,

$\frac{\partial r(t,\tau)}{\partial t}+\frac{\partial r(t,\tau)}{\partial\tau}=-\mu r(t_{\grave{J}}\tau)-\theta(\tau)\lambda(t)r(t, \tau)$ ,

$6 (t,0)=m \int_{0}^{\infty}(s(t, \tau)+i(t, \tau)+\prime r(t, \tau))d\tau,$

(2)

$i( t, 0)=\lambda(t\rangle\int_{0}^{\infty}\prime,$

$r(t, 0)= \int_{0}^{\infty}\gamma(\tau)i(t, \tau)d\tau,$
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with initial data

$s(O, \tau)=\mathcal{S}_{0}(T) , i(O, \tau)=i_{0}(\tau),\cdot r(O, \tau)=r_{0}(\tau)$ . (3)

Let $N(t)$ be the total size of the host population given by

$N(t);= \int_{0}^{oc}(s(t_{:}\tau)+i(t, \tau)+\prime r\cdot(t, \tau))d\tau$ . (4)

It is then easily seen that the total size of the host population is constant if

$m=\mu$ . In the followinlg we consider the case of a constant total population
size, denoted by $N$ , and the boundary condition of $s(t, a)$ is thus replaced by
$s(t_{\dot{i}}0)=\mu N.$

The basic system (2) has a trivial, disease free (completely susceptible)
steady state $(s^{*}, i^{*}, r^{*})=(\mu Ne^{-\mu\tau}, 0,0)$ . The linearized equation for the in-
{ected population in the disease-free steady sta,te is then given by

$\frac{\partial\zeta(t,\tau)}{\partial t}+\frac{\partial\zeta(t_{\backslash }\tau)}{\partial\tau}=-(\mu+\gamma(\tau))\zeta(t, \tau)$ ,
(5)

$\zeta(t, 0)=N\int_{0}^{\infty}\beta(\tau)\zeta(t, \tau)d\tau,$

and it is easily seen that the basic reproduction number for the basic model (2)
is $gi\iota^{\nu}en$ by

$R_{0}=N \int_{0}^{\infty}e^{-\mu\tau}\beta(\tau)r(\tau)d\tau$ , (6)

where $\Gamma(\tau)$ $:= \exp(-\int_{0}^{\tau}\gamma(x)(fx)$ is the survival probability. By the principle
of $lineari\prime Aed$ stability, the stability of zero solution of (5) determines the local
stabilitv of the $disease-\{r_{ee}$ steady state of system (2), and the disease free steady
state is thus local} asymptotically stable if $R_{0}<1$ , while it is unstable if $\sqrt{}0>1.$

Readers may refer to [5], [6] $an\tau d[10]$ for the role of the basic reproduction
$1^{\cdot}\}$umber in population) dynamics.

Model (2) can be rewl’itten as the $Gurti_{1}\vdash$MacCamy model $iOr$ an age-
dependent population. Its $1’nathenatics1$ well-posedness has been established
([9]).

For $si_{1}nplicity_{\backslash }$
, instead of considering the initial value problem, we assume

that the epidemic starts at $t=-\infty$ . Integrating the partial differential equations
in (2) along the characteristic line, we have a set of equations:

$s(t, \tau)=\mu Ne^{-\mu\tau-\int_{0}^{\tau}\lambda(t-\tau+\sigma)d\sigma_{\dot{1}}}$

$i(t, \tau)=b_{1}(t-\tau)e^{-\mu\tau}\Gamma(\tau\rangle,$ (7)

$r(t_{i}\tau)=b_{2}(t-\tau)e^{-\mu\tau-\int_{0}^{\tilde{\fbox{Error::0x0000}}} \lambda(t- \tau+ \sigma) \theta( \sigma)d \sigma},$

where $b_{1}(t)$ $:=i(t, 0)$ and $b_{2}(t)$ $:=r(t, 0)$ . Inserting equations (7) into the
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boundary conditions of (2), we obtain a set of integral equations:

$b_{1}(i)=\lambda(t)[/0^{\infty}$ $\mu$Ne$-l^{z\tau-I_{od\tau}^{\tau_{\lambda(t-\tau+\sigma)d\sigma}}}$

$+ \int_{0}^{oc}\theta(\tau)b_{2}(t-\tau)e^{-\mu\tau-\int_{0^{\tau}}\lambda(t-\tau+\sigma\rangle\theta(\sigma)d\sigma}d\tau]\backslash$ (8)

$b_{2}(t)= \int_{0}^{\infty}b_{1}(t-\tau)e^{-\mu\tau}\gamma(\tau)\Gamma(\tau)d_{T_{\}}}$

where

$\lambda\langle t)=\prime_{0}^{\infty}e^{-\mu\tau}\beta(\tau)\Gamma(\tau)b_{3}(t.-\tau)d\tau$ . (9)

Inserting the $exl$ ression for $b_{2}$ into the equation for $b_{t}$ in (8) $a_{1}1yd$ changing
the order of integrals, we obtain

$b_{1}(t)= \lambda(t\rangle\int_{0}^{\infty}S(t, \tau)d\tau_{\dot{\fbox{Error::0x0000}}}$ (10)

$S(t, \tau):=s(t, \tau)+\theta(\tau)r(t, \tau)$

$=\mu Ne^{-\mu\prime r-f_{0}^{\prime r}\lambda(t-r+\sigma)d\sigma}$

$+b_{1}(t-\tau)e^{-\mu\tau}f_{0}^{\tau}\theta(\sigma)c^{-\int_{0}^{\sigma}\theta\langle\zeta)\lambda(t-\sigma+\zeta)d\zeta}\gamma(\tau-\sigma)r(\tau-\sigma)d\sigma_{\urcorner}$

$(11\rangle$

where $\int_{0}^{\infty}S(t_{{\}}\tau)d\tau$ is the effective size of susceptibles. The expression (10)
implies a simple fact that the new incidence at time $t$ is given by the force of
infection times the size of effective susceptibles ([2]).

$F1\backslash on)(10)$ and (11), $\backslash \backslash ^{r}$ obtain a linear renewal equation $f_{01^{\sim}}b_{1}$ if $\backslash r_{\backslash }\dot{\prime}e$ see the
force of infection $\lambda$ as a given function, $al$ } $d$ thus, by $solvi_{1’}\iota g$ the linear renewal
equation $for_{-}n’\iota$ally, we have an expression of $b_{1}$ with txnknow.!) $\lambda$ . Inserting
this solutiol} into (9), we arrive at a nonlinear $\prime\prime s(^{\backslash }.\cdot a\}_{c\grave{\backslash }r’}\cdot$

, renewal equation $\{\dot{o}r\lambda.$

Alternatively, eliminating $\lambda$ from (9), (10) $a$}) $d(11)_{\dot{\oint}}$ we again obtain a nonlineal$\cdot$

scalar integral equation for $b_{1}.$ $\backslash 1^{v}/e$ can then establish the $\backslash vel1-posed_{lJ}ess$ of the
Kermack McKendrick rein fect. $io1^{r}1$ model (2) based on the $\iota\nwarrow^{\gamma}el1-1\backslash \prime$nown method
of the nonlineal integral equation.

If $\theta\equiv 0_{\backslash }(2)$ becomes the suceptible $infected-reco\backslash ^{r}ere$ (SIR) model $wit_{\}}h$

permanent immunity, and it has a unique endemic steady state if and only if
$R_{0}>1$ and it is globally stable ([16]). If $\theta\equiv 1$ , the recovered $p$opulatiol] can be
identified with the virgin population, and (2) is thus reduced to the infection-
age dependellt SIS epidemic model, and it is formulated by a nonlinear renewal
equation, its endemic steady state is unique but can lose stability and Hopf
bil’urcations can occur when $R_{0}>1$ ([3], [4], [17]). Under the assumption that
$\theta$ is monotone increasing and less than unity, it is concluded that if $R_{0}>1_{:}$

there exists a unique endemic steady state that is locally asymptotically stable
as long as $|R_{0}-1|$ is small enough ([9] $\rangle.$
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If $\sup\theta>1$ , we conjecture that the subcritical condition $\sqrt{}0<1$ does not
necessarily guarantee the eradication of diseases. In fact, from (10), we formally

define a time-dependent (period) reproduction number as

$\mathcal{R}(t):=\tilde{S}(t)\int_{0}^{\infty}\beta(\tau)\Gamma(\tau)e^{-\mu\tau}d\tau$, (12)

where $S(t)$ $:= \int_{0}^{\infty}S(t, \tau)d\tau$ is the effective size of susceptibility. Since $\tilde{S}(t)$ can
be larger than the total population size $N_{\backslash },$ $\mathcal{R}(t)$ can be larger than $R_{4}$ , anld
$R_{0}<1$ would thus not be a sufficient condition for eradication of the disease.

Let $\alpha$ $:= \max\{1_{\dot{ノ}}\sup_{\tau\geq 0}\theta(\tau)\}$ . Then $\tilde{S}\leq\alpha N$ snd it follows from (10) that

$b_{1}(t) \leq\alpha N\int_{0}^{\infty}\beta(\tau)\Gamma(\tau)e^{-\mu\tau}b_{1}(t-\tau)d\tau$ . (13)

Using the comparison argument, we know that $\lim_{tarrow\infty}b_{1}(t)=0$ if $\alpha R_{0}<1.$

We then have a simple criterion for the global stability of the disease-free steady
state.

Proposition 2.2 If $R_{0}<1/\alpha$ , the disease-free steady state of (2) is globally
asymptotically stable.

2.1 Bifurcation of endemic steady states
$1\backslash :’e$ now check the bifurcation of endemic steady states. Let $s^{*}(\backslash \tau)_{:}i^{*}(\tau)$ and
$r^{*}(\tau)$ be the steady state solution. It then holds that

$s^{*}(\tau)=\mu Ne^{-(\mu+\lambda^{*})\tau},$

$i^{*}(\tau)=?^{*}(0)e^{-\mu\tau}\Gamma(\tau)$ , (14)

$|^{*}(\tau)=r^{*}(0)e^{-\mu\tau-\lambda\int_{0}^{r}\theta(\sigma)d\sigma},$

where
$i^{*}(0)= \lambda^{*}\int_{()}^{x}(8^{\dot{*}}(\tau)+\theta(\tau)r^{*}(\tau))d\tau,$

$(15\rangle$

$\prime r^{*}(0)=\int_{0}^{\infty}\gamma(\tau)i^{*}(\tau)d\tau.$

and $\lambda^{*}$ is the force of infection in the steady state given by

$\lambda^{*}=\int_{0}^{\infty}\beta(\mathcal{T})i^{*}(\tau)d\tau=b^{*}\langle\beta, \Gamma\rangle$ . (16)

In expression (16), $b^{*}$ $:=i^{*}(O)$ is the density of the newly infecteds in the steady

state and lve have used the notation as

$\langle\beta, \Gamma\rangle:=\int_{0}^{\infty}\beta(\tau)\Gamma(\tau)e^{-\mu\tau}d\tau$ . (17)
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Inserting $(16\rangle$ into the first equation of (15), we obtain

$b^{*}=b^{*}\langle\beta,$ $\Gamma\rangle\prime_{0^{x}}(\mu Ne^{-(\mu+\lambda^{*})\tau}+r^{*}(0)\theta(\tau)e^{-\mu\tau-\lambda^{*}\int_{0^{r}}\theta(\sigma)d\sigma})d\tau$ , (18)

which shows a renewal relation in $a$, steady state with the force of infection $\lambda^{*}$

Since $\langle\beta,$ $\Gamma\rangle=R_{0}/N$ and $r^{*}(O)=b^{*}\langle\gamma,$ $\Gamma$
$\backslash \iota^{\gamma}es.1^{u}$riye at an equation $fox^{\sim}$ unknown

$\lambda^{*}$ :

$R( \lambda^{*}):=\frac{\mu R_{0}}{\mu+\lambda^{*}}+\langle\gamma,$ $\Gamma\rangle\lambda^{*}\int_{(\}}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda^{*}j_{0}^{\tau}\theta(\sigma)d\sigma}d\tau$

(19)
$= \frac{\mu R_{0}}{\mu+\lambda^{\star}}+\langle\gamma, r\rangle(1-\prime_{0}^{\infty}\mu e^{-\mu\tau-\lambda^{*}\int_{0^{\tau}}\theta(\sigma)d\sigma}d\tau)=1,$

$\backslash \nwarrow^{y}$here we used the notation as

$\langle\gamma, \Gamma\rangle:=\prime_{0}^{\infty}\gamma(\tau)\Gamma(\tau)e^{-\mu\tau}d\tau$ . (20)

Equation (19) implies that the effective reproduction number, given by $R(\lambda^{*})$ .
must be unity in a steady state.

It follows from (19) that there exists at least one endemic steady state if
$R_{0}>1$ , because $R(O)=R_{0}>1$ and $1i_{1}\cdot n_{\lambdaarrow\infty}R(\lambda\rangle=\langle\gamma,$ $\Gamma\rangle<1$ . Given that
$R(\lambda^{*})$ is $1^{\cdot}1ot$ monotone decreasing, there is a possibility that multiple endemic
steady states exist.

Proposition 2.3 If the inequality

$\langle\gamma)r\rangle\theta^{*}>1$ . (21)

holds. aherc

$\theta^{*}:=\int_{(\rangle}^{\infty^{\wedge}}\theta(\tau)\mu e^{-\mu\tau}d\tau$ , (22)

then endcrnic steady states $backu\rangle ardty$ bifurcate from the d\’isease-fre steady
euhen. $P_{1(j}$ crosses unity. $i.e.$ . rnultiple en.demic steady states exist if $R_{0}<1$

$a\gamma\iota d|R_{0}-1|$ is small enough.

proof: Define a function $f\cdot(\lambda_{:}R_{\{)})$ $:=R(\lambda)-1$ , wherp $R_{(\rangle}$ is seen as a bifurcation
parameter $and./(O, 1)=0$ . Observe that

$\frac{\partial f}{\partial\lambda}|_{(\lambda,R_{0})=(0_{:}1)}=\frac{1}{\mu}(\theta^{*}\langle\gamma, \Gamma\rangle-1)_{:} \frac{\partial f}{\partial R_{0}}|_{\langle\lambda,R_{0})=(0_{:}1)}=1.$

Therefore if condition $\langle$21) holds, then $f=0$ is solvecl as $\lambda=\lambda(R_{0})\backslash \iota ith$

$\lambda(1)=0$ at the $neig$}$\iota borl\backslash ood$ of $(\lambda, R_{0})=(0,1)$ . Since $d\lambda(1)/dR_{(\}}<0_{ノ}$. we $ha\iota^{r}e$

$\lambda(R_{0})>0$ for $R_{0}\in(1-\eta_{:}\lambda)$ for $sufficient1\rangle^{\gamma}$ small $\eta>0$ . For each $R_{0}\in(1-\eta,$ $1$

we haye $f\cdot(O, R_{0})<1_{\grave{e}}f\cdot(\lambda(R_{0}), R_{0})=0$ and $\lim_{\lambdaarrow\infty}f(\lambda, R_{0})=/\backslash \gamma,$ $r\rangle-1<0,$

and there are then at least two endemic steady states. $\square$

Condition (21) was first given in [18] by using the ordinary differential equa-
tion version of (2). It is easily seen that condition (21) does not hold if there is
no enhaascement of susceptibility, }, $e.$ , if $\theta(\tau)\leq 1$ for all $\tau\geq 0,$
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3Vaccination model and reinfection threshold

3.1 Reinfection threshold

We now introduce a mass vaccination (host immunization) in the basic model
(2). In fact, it is intuitively clear that reinfection phenomena would make disease
control more difficult and complex, and we thus need an index to capture the
difficulty. An important effect of vaccination policy is the reduction of the
effective size of the susceptible population. In the reinfection model, there is a
possibility that a disease can invade a fully vaccinated population, anld we are
naturally led to the idea of the reinfection threshold.

Suppose that newborns or immigrants in the virgin population are mass vac-
$cin$

,
ated with coverage $\epsilon\in[0$ , 1 $]$ and, for simplicity, the immunological status of

newly vaccinated individuals is identical to that of the newly recovered individ-
uals. This assumption will be relaxed in section 5. The boundary condition in
the basic system (2) is then replaced:

$s(t, 0)=(1-\epsilon)\mu N,$

$i(t_{1}.0)= \lambda(t)\int_{0}^{\infty}(s(t, \tau)+\theta(\tau)r(t, \tau))d\tau$ ,
(23)

$r(t.0)= \epsilon\mu N+\int_{0}^{\infty}\gamma(\tau)i(t, \tau)d\tau.$

The disease-free steady state is then $gi\backslash \gamma en$ by

$(s^{*}, ?^{*}\backslash \prime r^{*})=((1-\epsilon)\mu Ne^{-\mu\tau}, 0, \epsilon\mu Ne^{-\mu\tau}).,$

and the linearized renewal equation in the initial invasion phase is thus given

by

$\xi(t)=((1-\epsilon)N+\epsilon N\theta^{*})\int_{0}^{\infty}e^{-\mu\tau}\beta(\tau)\Gamma(\tau)\xi(t-\tau)d\tau$ , (24)

where $\xi(t)$ $:=\zeta(t, O)$ denotes a small perturbatioll in the infected population
density.

Therefore, the effective reproduction number, denoted by $\mathcal{R}(\epsilon)$ , in the par-
$1ial1_{\backslash l}v$ innnun ized disease-free steady state is $gi\backslash \dot{\prime}en$ by

$\mathcal{R}(\epsilon)=(1-\epsilon)R_{0}+\epsilon R_{1}=(1-\epsilon(1-\theta^{*}))R_{0}$ , (25)

where $R_{1}$ $:=\theta^{*}R_{0}$ . Then if $\mathcal{R}(\epsilon)<1$ , the disease-free steady state is locally
asymptotically stable, while it is unstable if $\mathcal{R}(\epsilon)>1$ . However, it is unclear
whether the disease free steady state becomes globally asvmptotically stable
when $\mathcal{R}(\epsilon)<1.$

Here we note that $R_{1}$ is the effective reproduction number for the fully

vaccinated system. In fact, if $\epsilon=1$ , the virgin population is eradicated, and we
obtain the limiting recovered-infected-recovered system as
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$\frac{\partial i(t_{\dot{ノ}}\prime r)}{\partial t}+\frac{\partial i(t,\tau)}{\partial\tau}=-(\mu+\gamma(\tau))i(t, \tau)$ ,

$\frac{\partial r(t,\tau)}{\partial t}+\frac{\partial r(t,\tau)}{\partial\tau}=-\mu r\langle t, \tau)-\theta(\tau\rangle\lambda(t)r(t, \tau)$
,

(26)
$\dot{\uparrow}(t., 0)=\lambda(t)\prime_{0}^{\infty}\theta(\tau)r(t, \tau)d\tau,$

$r(t, 0)=\mu N+\prime_{0}^{\infty}\gamma(\tau)i(t, \tau)d\tau.$

This $new^{\gamma}$ system (26) can be seen as a dulation-dependent SIS model with
vaccination if we view the recovered dass as a new susceptible class. Then (26)
has a disease-free steady state $(i^{*}, r^{*})=(0,$ $\mu Ne^{-}$ and the linearized system
in the disease free steady state is given as

$\frac{\partial\zeta(t,\tau)}{\partial t}+\frac{\partial\zeta(t,\cdot\tau)}{\partial\tau}=-(\mu+\gamma(\tau))\zeta(t, \tau)$ ,

(27)
$\zeta(t_{\dot{J}}0)=\theta^{*}N\int_{0}^{\infty}\beta(\tau)\zeta(t, \tau)d\tau.$

Therefore the effective reproduction number for the linliting system (26) is given
$b_{\backslash }yR_{1}=\theta^{*}R_{0}.$

Suppose tha.$tR_{0}>1$ . From (25): the critical coverage of innnunization $\epsilon^{*}$

such that $\mathcal{R}(\epsilon^{*})=1$ is given by

$\epsilon^{*}=(1-\frac{1}{R_{0}})\frac{1}{1-\theta^{*}}/$ (28)

but it is meaningful only when $\theta^{*}<1$ . The disease is $\iota lncontrolla$})$le$ by the
vaccination if $\theta^{*}\geq 1$ . Moreover, if $R_{1}=\theta^{*}R_{0}>1$ , we have $\mathcal{R}(\epsilon)>1$ for
all $\epsilon\in[0_{:}1]$ , and the disease is thus again $unC^{O1}!^{t_{lO_{-}}11able}$ by the. $vacc!.\underline{1}1_{\sim..-\wedge\dot{d}arrow}a_{-}t\underline{i}O\underline{1}.\cdot.1.$

because the fully $yacci_{1}$zated population can be $in\backslash ^{v}a.ded$ bv the disease.
Let $\sigma$ $:=R_{1}\prime R_{0,}.i.(?.,$ $\sigma$ is the ratio of the effective reproduction number of

the $ful1_{tノ}y$ vaccinated $s_{\iota}\backslash ,sten1$ to the basic reproduction number. Given that the
qualitative change in the epidenyiological implication occurs for the prevalence
and controllability a,t $R_{0}=1/\sigma,$ $Go12^{\cdot}tes$ et al. ([7]: [8]) referred to $1/\sigma$ as
the reinfection threshold of $R_{0}$ . As seen above, the leinfection threshold of $R_{0}$

corresponds to the fact that $\sigma\sqrt{}0=R_{1}=1_{\grave{J}}$ i,e.. $R_{0}=1/\sigma$ does not imply a
$\mathfrak{i}_{J}if_{U1^{\backslash }}$cation point of the $|$)asic s$\backslash \prime$

’
stem (2), but the $th_{1}\cdot$eshold c$o12diti_{01l}R_{1}=1$ of

the fully vaccinated svstem (26). In the above setting, we have $\sigma=\theta_{\tau}^{*}$ but its
$\backslash \prime$alue depends on the basic model assumptions.

35



3.2 Bifurcation of endemic steady states

Let $(s^{*}, i_{\dot{2}}^{*}r^{*})$ be the steady state of the basic svstem (2) with the boundary
condition (23). We then have

$s^{*}(\tau)=(1-\epsilon)\mu Ne_{\dot{r}}^{-\mu\tau-\lambda^{*}\tau}$

$i^{*}(\tau)=i^{*}(0)e^{-\mu\tau}\Gamma(\tau)$ , (29)

$r^{*}(\tau)=r^{*}(0)e^{-\mu\tau-\lambda^{*}\int_{0_{:}}^{\tau_{\theta(x)dx}}}$

where
$\lambda^{*}=i^{*}(0)\langle\beta, \Gamma\rangle,$

$i^{*}(0)= \lambda^{*}\int_{0}^{\infty}(s^{*}(\tau)+\theta(\tau)r^{*}(\tau))d_{\mathcal{T},}\backslash$

(30)
$r^{*}(0)=\epsilon\mu N+i^{*}(0)\langle\gamma\backslash \Gamma\rangle.$

From the above equations, we can calculate $i^{*}(O)$ as

$i^{*}(0)= \lambda^{*}\iota\int_{0}^{\infty}(s^{*}(\tau)+\theta(\mathcal{T})r^{*}(\tau))d\tau$

$= \lambda^{*}\frac{(1-\epsilon)\mu N}{\mu+\lambda^{*}}+\lambda^{*}r^{*}(0)\int_{0}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda^{*}\int_{0}^{\tau}\theta(x)dx}d\tau$

$= \lambda^{*}\frac{(1-\epsilon)\mu N}{\mu+\lambda^{*}}+\lambda^{*}(\epsilon\mu N+i^{*}(0)\langle\gamma, \Gamma\rangle)\int_{()}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda’.\int_{0^{\tau}}\theta(\alpha)dx}d\tau.$

(31)
$1\prime_{J}{\}^{\gamma}e$ then have the expression:

$i^{*}(0)= \frac{\lambda^{*}\frac{(1-e)\mu N}{\mu+\lambda^{*}}+\epsilon\mu N\lambda_{c}^{*}\square _{0}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda^{*}\int_{0}^{\tau}\theta(x).dx}d\tau}{1-\lambda^{*}(\gamma,\Gamma\rangle\int_{()}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda\int_{0}^{\tau}\theta(x)dx}d\tau}$ . (32)

From (32) and the relation

$\lambda^{*}=\frac{R_{0}}{N}i^{*}(0)$ .

we know tha,$t$ a positive root $\lambda^{*}>0$ must satisfy the equation:

$1=R_{0} \frac{v(\lambda^{*})}{?/(\lambda^{*})}$ , (33)

where

$v( \lambda):=\frac{(1-\epsilon)\mu}{\mu+\lambda}+\epsilon\mu\int_{0}^{\infty}\theta(\tau)e^{-\mu\tau-\lambda\int_{()}^{\tau}\theta(x)dx}d\tau$ ,
(34)

$?l(\lambda):=1- \Gamma\rangle\phi(\lambda)$ .

Here we have used the notation (20) and

$\phi(\lambda):=\lambda\int_{0}^{\infty}\theta(\tau)e^{-\mu r-\lambda\int_{0^{\tau}}\theta(x)dx}d\tau$ . (35)
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Observe that

$\lambda\int_{\sigma\prime}0^{\tau}$ . (36)

$\phi$ is then an increasing function, and $u(\lambda)$ is thus a decreasing function. XK’e can
now conclude the following.

Proposition 3.1 If $\mathcal{R}(\epsilon)>1_{:}$ there exists at least one endemic steady state.
Suppose.that the condition

$\theta^{*}\langle\gamma, \Gamma\rangle>\frac{1-\epsilon(1-\theta^{**})}{1-\epsilon(1-\theta^{*})}$ , (37)

holds, where

$\theta^{**}:=\mu^{2}0^{\infty}e^{-\mu\prime r}\theta(\tau)\int_{0}^{\tau}\theta(x)dxd\tau$ . (38)

Endemic steady states then $back/\prime wardl$ bifurcate from the disease free steady

state when $\mathcal{R}(\epsilon)$ crosses unity, i.e., muttiple endemic steady states exist $if\mathcal{R}(\epsilon)<$

$1$ and $|\mathcal{R}(e)-1|$ is small enough.

proof: Relation (33) implies that the effective reproduction number in the en-
demic steady state with the force of $infecti_{on1}\lambda^{*}$ is given by

$R( \lambda^{*})=R_{0}\frac{\iota^{\rangle}(\lambda^{*})}{u(\lambda^{*})}=\frac{\mathcal{R}(\epsilon)}{r(0)}\frac{v(\lambda^{*})}{1i(\lambda^{*})}.$

$The:\iota R(O)=\mathcal{R}(\epsilon)$ and $R(\infty)=0_{:}$ a.lld thus $R(\lambda^{*})=11$)$as$ at least one $positi\backslash \check{\prime}e$

root if $\mathcal{R}(\epsilon)>1_{ノ}$. which implies that there exists one endemic steady state. If
$R(O^{\backslash })=\mathcal{R}(\epsilon\rangle=R_{(\rangle}v(O)=1$ and condition $(37\rangle$ holds. $R’\langle O)=v(())_{t^{\{}}^{-1,,/}(O)-$

$u’(O)>$ O. $R(\lambda^{*})=1$ then has at least one positive root. Moreover, it has at

least two positive roots \’if $R(O)=\mathcal{R}(\epsilon)<1$ and $|\mathcal{R}(\epsilon\rangle-1|$ is small enough. To
see this precisely, let us again define a function $f\cdot(\lambda, R_{0})$ $:=R(\lambda)-1$ . Then
$f(O, ?^{1}\langle O)^{-1})=0$ and

$\frac{\partial f}{\partial R_{0}}|_{(\lambda,R_{\zeta)})=(0,e^{\backslash }(()\rangle^{-1})}=1,$ $\frac{\partial f}{\partial\lambda}|_{(\lambda_{t}R_{0})=(0_{7}\iota(0)^{-1})}=\prime\iota^{\iota}\prime(0)^{-i}\cdot\iota’,(0)-\prime\{\iota’(0)$ .

where
$v’( O)=-\frac{1}{\mu}(1-\epsilon\langle 1-\theta^{1*})\rangle_{{\}} u’(0)=-\frac{1}{\mu}\langle\gamma_{)}I^{t}\rangle\theta^{*}$

If condition (37) holds, $f=0$ is solved as $\lambda=\lambda(R_{0})ss.$tisf.$\backslash _{J}^{r}ing\lambda(v(O)^{-1})=0$ and
$d\lambda(v(O)^{-1})/dR_{0}<0$ in the neighboyhood of $(\lambda, R_{0}\rangle=(0, \tau)(O)^{-1}).$ If

$\cdot$

$R_{0}c.(0\rangle<I$

and $|R_{0}v(O)-1|$ is $s:\cdot$nall enough, for each $R_{0\backslash }1^{-}.$here exist multiple positive

roots such that $f(\lambda, R_{0})=0_{:}$ because $f(O, R_{0})<1_{\backslash }f\langle\lambda\langle R_{0}$ ), $R_{0}\rangle=0$ and
$f(\infty, R_{0})=-1<0$ . 口

Proposition 3.1 tells us that the subcritical $co$}ldition $\mathcal{R}(\epsilon)<1$ is not suffi-
cient to eradicate the disease if condition (37) holds. Note that if $\epsilon=1$ in (37),

we know that a backward bifurcation occurs even in the xecovered infected-
recovered model if $(\theta^{*})^{2}>\theta^{**}$ , though this condition does not hold vvhen 9 is
constant.
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4 Discussion

As shown above, it is not easy to realize subcritical endemic steady states with-
out enhancement of susceptibility in the reinfection model. However, we can
consider more realistic $rein\{$ection mechanisms that allow backward bifurcations.
Let us consider two examples, malaria and measles.

Although reinfected individuals are not distinguished from the infecteds re-
sulting from completely susceptible individuals in the original Kermack-McKendrick
model, it will become a natural extension if we assume that epidemiological pa-
rameters for the reinfecteds are different from parameters of the infecteds pro-
duced from completely susceptible individuals. In fact, $A_{guas,}$. et al. ([1]) de-
veloped an age-structured population model for the dynamics of malaria trans-
mission, and observed that stable endemic steady states coexist with stable
disease-free steady states. In their model, the infecteds resulting from com-
pletely susceptible individuals are clinical malaria cases, and recovery from clin-
ical cases confers protection against the clinical manifestat,ion of diseases, but
not against infection per se. A recovered individual can then be reinfected and
develops a non-clinical form of malaria, which can be called an asymptomatic

infection. If the net reproductivity of asymptomatic cases is larger than that of
clinical cases, it is possible to show that there could exist a backward bifurcation
even when $\theta^{*}\leq 1$ . This situation could occur if the duration of infection of the
asymptomatic case is much longer, because it does not $necessa1^{\backslash }ily$ need clinical
treatment.

Next consider an epidemic model of measles with fluctuation of the immunity
level for vaccinees. We again assume that there are $t\tau\nwarrow/\cdot os$orts of infectious states.
The host population is divided into five subpopulations: the completely sus-
ceptible population, the vaccinated population, the recovered population with
complete immunity, the classical infectious population for measles, and the sub-
clinical infectious population for measles. Different from the assumption of the
Kermack-McKendrick reinfection model, the recovered individuals have. com-
plete immunity and no susceptibility, and instead, the vaccinated individuals
have partial susceptibility (according to the waning of immunity) depending ou
the duration since vaccination. By $(1^{\sim}e\rangle$ infection, $SO1^{\cdot}ne$ of $t$ }$le$ vaccinated indi-
viduals develop subclinical infection, and the immunity level of the remaining
vaccinated individuals is boosted to the level of newly vaccinated individuals.
That is, the boosting effect is expressed by the (rese$t^{\dot{l}}$ of local time to zero
for vaccinated individuals. Kishida ([15]) investigated this kind of reinfection
model, and he found that multiple endemic steady states can exist un der sub-
critical reproduction number. If we take into account subclinical infection, the
covelage of immunization to eradicate the disease must be larger than the critical
proportion of immunization calculated from the standard SIR model neglect-
ing the subclinical cases. An introduction of imperfect vaccination would make
it difficult to eradicate measles, although it can reduce the number of clinical
cases.
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