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1 Introduction

In a seminal series of papers published during the 1930s, Kermack and McK-
endrick proposed an infection-age structured endemic model that takes into
account the demography of the host population, the waning immunity (variable
susceptibility) and reinfection of recovered individuals ([13], [14]). Their model
has less attention than the well-known outbreak model proposed in 1927 ([12]).
In their model, the total population is decomposed into three compartments,
the never infected (full susceptible), infectious and recovered populations. The
host population is structured by a duration variable for each status, while the
chronological age is neglected. The susceptibility of recovered individuals de-
pends on the time that has passed since the last recovery, and the model thus
has much flexibility to capture many facets of reinfection phenomena.

The concept of reinfection is becoming increasingly important in understand-
ing emerging and reemerging infectious diseases, since it makes the control of
infectious diseases difficult, and a waning immunity is widely observed if there
is no (natural or artificial) boosting. In fact, the recovered individuals or vacci-
nated individuals could be reinfected as time passes owing to the natural decay
of host immunity, or a genetic change in the virus. Reinfection often leads to
non-clinical infection. It is thus likely that its occurrence is overlooked, and
that we will fail in calculating the basic reproduction number and the critical
coverage of immunization by neglecting the effect of reinfection.

As was pointed out by Gomes, et al. ([7]), we can introduce the reinfection
threshold of Rg at which a qualitative change in the epidemiological implication
occurs for the prevalence and controllability in the reinfection model. Moreover,
owing to enhancement of susceptibility or infectivity by reinfection, we expect
that there is a backward bifurcation of endemic steady states. In such a case,
we have bistable endemic steady states, and attaining a subcritical level of Ry
is not a complete policy for disease prevention.



In this short article, we introduce the Kermack-McKendrick reinfection
mode] as an age-structured population model and sketch its basic endemic
threshold phenomena. For more details, extensions and proofs, readers may
refer to [11].

2 Kermack—McKendrick reinfection model

We first formulate the Kermack-McKendrick reinfection model as an age-structured
population model. Let s(t,7) be the density of the susceptible population who
have never been infected (virgin population in the terminology of Kermack and
McKendrick) at time ¢ and duration 7 (the time elapsed since entry into the
s-state) , which can be interpreted as the chronological age when a person en-
ters the s-state at birth. Let i(¢, 7) be the density of the infected and infectious
population at time ¢ and infection-age (the time elapsed since infection) 7 and
let 7(¢,7) be the density of the recovered population at time ¢ and duration 7
(the time elapsed since the last recovery). Let m and u respectively denote the
birth (or immigration) rate and the death rate, and y(7) denotes the recovery
rate at infection-age 7.

We assume that the force of infection applied to the fully susceptible popu-
lation (virgin population) is given by

oC
A0 = [ B0)itt,0)do, (1)

0
where B(r) denotes the infectivity for the virgin population at infection—-age .
The force of (re)infection applied to the recovered population at duration 7 is
assumed to be given by 8(7)A(t), where 8(7) is the relative susceptibility schedule
of recovered individuals at time since recovery 7. The relative susceptibility
would be inversely correlated with the wanning of immunity.

Assumption 2.1 It is assumed that B;v,0 € LT (R..), and that the state space
of the age distribution functions s, i and r is L} (R,).

The Kermack-McKendrick reinfection model is then formulated as

Os(t,7) | Os(t,7) _ —us(t, T) — A(t)s(t, ),

ot or
di di
1((;;7”) + 7(;;7) = (A,
Brgfi T) n 87*((;;7') = —pr(t,7) — 0(T)AE)r(t, 7),

s(t,0) = m/o (s(t,7) +i(t,7) + r(t,7))dr,
i(t,0) = A(t)/b (s(ty7) + 0()r(t, 7)) dr,
w0 = [ it riar
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with initial data
8(0,7) = so(7), (0,7) = do(7), 7(0,7)=r0(T). (3)

Let N(t) be the total size of the host population given by

N(t) := /Ooc(s(t,'r) +i(t, ) +r(t,7))dT. (4)

It is then easily seen that the total size of the host population is constant if
m = p. In the following we consider the case of a constant total population
size, denoted by N, and the boundary condition of s(t,a) is thus replaced by
s(t,0) = uN.

The basic system (2) has a trivial, disease-free (completely susceptible)
steady state (s*,i*,7*) = (uNe #7,0,0). The linearized equation for the in-
fected population in the disease-free steady state is then given by

o¢(t, ) N o¢(t, )

6t 87’ - —‘(/1'+’7(T))<(t77-)~
7 (5)
C(t,0)= N / Br)C(t, 7)dr,
0

and it is easily seen that the basic reproduction number for the basic model (2)
is given by

Ro=N /O.Oc e 7 B(r)T(r)dr, (6)

where I'(7) := exp(— fOT ~v(x)dz) is the survival probability. By the principle
of linearized stability, the stability of zero solution of (5) determines the local
stability of the disease-free steady state of system (2), and the disease-free steady
state is thus locally asymptotically stable if Ry < 1, while it is unstable if Ry > 1.
Readers may refer to [5], [6] and [10] for the role of the basic reproduction
number in population dynamics.

Model (2) can be rewritten as the Gurtin-MacCamy model for an age-
dependent population. Its mathematical well-posedness has been established

(19D).
For simplicity, instead of considering the initial value problem, we assume
that the epidemic starts at t = —oc. Integrating the partial differential equations

in (2) along the characteristic line, we have a set of equations:

S(ta T) = uNe“‘”‘foT ’\(t-7'+a)da7
i(t,7) = bt = T)e™#TL(r), (7)
T(tz T) = bg(t - 7‘)6_’”“[0T A(t—f+a)9(cr)d0’

where b;(t) := i(¢,0) and by(t) := 7(t,0). Inserting equations (7) into the



boundary conditions of (2), we obtain a set of integral equations:
bi(t) = A(t) U N e 7= J5 N7 )de g
0
; - T
+ f 0(7)ba(t — T)e~FT o k<f-f+°>'8<d>d“d7-J, (8)
; _

ba(t) = /Ooc by (t — 7)e *Ty(m)[(7)dr

where

Alt) = /0~oc e HTB(T)T(7)bi(t — T)dT. (9)

Inserting the expression for by into the equation for b; in (8) and changmg
the order of integrals, we obtain

bi(t) = / S(t,7)d (10)

S(t,7):=s(t,7)+6(r)r(t,7)
— HNem,uxr-—fQT At—7+0)do

T .
+ 0y (t —1)e™H7 / 6(c)e™ Jo HON=o+Od (1 _ 5\T(r — 5)do,
0
(11)

where fooc S(t,7)d7 is the effective size of susceptibles. The expression (10)
implies a simple fact that the new incidence at time f is given by the force of
infection times the size of effective susceptibles ([2]).

From (10) and (11), we obtain a linear renewal equation for b; if we see the
force of infection A as a given function, and thus, by solving the linear renewal

equation formally, we have an expression of b; with unknown A. Inserting

this solution into (9), we arrive at a nonlinear “scalar” renewal equation for A.
Alternatively, eliminating A from (9), (10) and (11), we again obtain a nonlinear
scalar integral equation for b;. We can then establish the well-posedness of the
Kermack-McKendrick reinfection model (2) based on the well-known method
of the nonlinear integral equation.

If & = 0, (2) becomes the suceptible-infected-recovered (SIR) model with
permanent immunity, and it has a unique endemic steady state if and only if
Ry > 1 and it is globally stable ([16]). If 8 = 1, the recovered population can be
identified with the virgin population, and (2) is thus reduced to the infection-
age dependent SIS epidemic model, and it is formulated by a nonlinear renewal
equation, its endemic steady state is unique but can lose stability and Hopf
bifurcations can occur when Ry > 1 ([3], [4], [17]). Under the assumption that
@ is monotone increasing and less than unity, it is concluded that if Ry > 1,
there exists a unique endemic steady state that is locally asymptotically stable
as long as |Ry — 1] is small enough ([9]). «
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If supf > 1, we conjecture that the subcritical condition Ry < 1 does not
necessarily guarantee the eradication of diseases. In fact, from (10), we formally
define a time-dependent, (period) reproduction number as

= 3(t) /0 " BT (r)e T dr, (12)

where S(t fo (t,7)dT is the effective size of susceptibility. Since S(t (t) can

be larger than the total population size N, R(t) can be larger than Ry, and

Ry < 1 would thus not be a sufficient condition for eradication of the disease.
Let o := max{1,sup,»,6(7)}. Then S < aN and it follows from (10) that

) < aN/ B(r)T(T)e™ ¥ by (t — 7)dr. (13)

Using the comparison argument, we know that lim;,.. b1(t) = 0 if Ry < 1.
We then have a simple criterion for the global stability of the disease-free steady
state.

Proposition 2.2 If Ry < 1/, the disease-free steady state of (2) is globally
asymptotically stable. '

2.1 Bifurcation of endemic steady states

We now check the bifurcation of endemic steady states. Let s*(7), ¢*(7) and
r*(7) be the steady state solution. It then holds that

s*(1) = uNe~ (w4 2%)T
i*(r) = *(0)e” T (), (14)
7*(T) ( )e—-;rr b Y 9(a)da’

where o
0 =X | (5" () + 0 (), |
Jo (15)
(0) = / ()i (7)dr.

0
and A* is the force of infection in the steady state given by

- /ooc B(r)i*(r)dr = b*(B,T). (16)

In expression (16), b* := i*(0) is the density of the newly infecteds in the steady
state and we have used the notation as

o= [ sor@e e o



Inserting (‘16) into the first equation of (15), we obtain
oC
b* = b*(3,T) / (uNe= AT 2 (0)g(r)erm =N J Bloddeygr  (18)
0 . :

which shows a renewal relation in a steady state with the force of infection A*.
Since (5,T) = Ry/N and r*(0) = b*(v,T'), we arrive at an equation for unknown
A%

RO s = 2 mn [ p(ryemsN I oo g

/\*
ﬂ;}%o 0 N N (19)
— {1~ —ur=A" fg 6(o)do g =1,
#+/\*+<m>( /0 pe T)
where we used the notation as
oC
(1,T) = / (P (r)e™" dr. (20)

0

Equation (19) implies that the effective reproduction number, given by R(\*).
must be unity in a steady state.

It follows from (19) that there exists at least one endemic steady state if
Ry > 1, because R(0) = Ry > 1 and limy— o R(A) = (7,T)- < 1. Given that
R(X*) is not monotone decreasing, there is a possibility that multiple endemic
steady states exist.

Proposition 2.3 If the inequality
(v, IDO" > 1. (21)
holds., where

oC

6" = / O(r)ue H*dr, (22)
0

then endemic steady states backwardly bifurcate from the disease—free steady

state when Ry crosses unity, i.e.. multiple endemic steady states exist if Ry <'1

and |Ry — 1| is small enough.

proof: Define a function f(A, Rg) := R(A) — 1, where Ry is seen as a bifurcation
parameter and f(0,1) = 0. Observe that

af 1 of

T =—(0"(y,T)-1), —=—=—

OX|(x Ro)=(0.1) DD R, (A Ro)=(0.1)
Therefore if condition (21) holds, then f = 0 is solved as A = A(Rp) with
A(1) = 0 at the neighborhood of (A, Rg) = (0,1). Since dA(1)/dRy < 0, we have
A(Rg) > 0 for Ry € (1—n, 1) for sufficiently small > 0. For each Ry € (1-n,1),
we have f(0,Rp) <1, f(A(Ro), Rg) = 0 and limy_o f(A, Rg) = (7,T) =1 <0,
and there are then at least two endemic steady states. [

= 1.

Condition (21) was first given in [18] by using the ordinary differential equa-
tion version of (2). It is easily seen that condition (21) does not hold if there is
no enhancement of susceptibility, i,e., if 6(7) <1 for all 7 > 0.
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3 Vaccination model and reinfection threshold

3.1 Reinfection threshold

We now introduce a mass vaccination (host immunization) in the basic model
(2). In fact, it is intuitively clear that reinfection phenomena would make disease
control more difficult and complex, and we thus need an index to capture the
difficulty. An important effect of vaccination policy is the reduction of the
effective size of the susceptible population. In the reinfection model, there is a
possibility that a disease can invade a fully vaccinated population, and we are
naturally led to the idea of the reinfection threshold.

Suppose that newborns or immigrants in the virgin population are mass vac-
cinated with coverage € € [0,1] and, for simplicity, the immunological status of
newly vaccinated individuals is identical to that of the newly recovered individ-
uals. This assumption will be relaxed in section 5. The boundary condition in
the basic system (2) is then replaced:

s(t,0) = (1 — €)uN,

i(t,0) = A(t) /0 (s(t,7) +6(r)r(t, 7)) dr, (23)

o
r(t,0) = e,u,N+/ ~v(7)i(t, T)dT.
0
The disease-free steady state is then given by
(s*,1*,7%) = (1 — e)uNe™#7,0,euNe™#7),

and the linearized renewal equation in the initial invasion phase is thus given
by

()= ((1 —¢)N +eNG¥) /OOC e~ HTB(r)T(7)é(t — 7)dT, (24)

where £(t) := ((t,0) denotes a small perturbation in the infected population
density.

Therefore, the effective reproduction number, denoted by R(¢), in the par-
tially immunized disease—free steady state is given by '

R(e) = (1 — )Ry + eRy = (1 — e(1 — %)) Ry, (25)

where R; := 6*Rp. Then if R(e) < 1, the disease—free steady state is locally
asymptotically stable, while it is unstable if R(e) > 1. However, it is unclear
whether the disease-free steady state becomes globally asymptotically stable
when R(e) < 1. '

Here we note that R; is the effective réproduction number for the fully
vaccinated system. In fact, if € = 1, the virgin population is eradicated, and we
obtain the limiting recovered—-infected-recovered system as



ai(at:) + 875;:) ~(p+ (7)), 7),

D) 2T o irte ) — BN e, )

A() / 8(r)r(t, 7)d
r(1,0) = uN + /0 Y ()ilt, 7)dr

This new system (26) can be seen as a duration-dependent SIS model with
vaccination if we view the recovered class as a new susceptible class. Then (26)
has a disease-free steady state (i*,7*) = (0, uNe™#7), and the linearized system
in the disease free steady state is given as

O((t,T) 5C(t 7) :
= —(u +(7))¢(t, 7)),
ot GTOC b 27)

¢(t,0) =6"N B(T)((t, T)dr.

0

(26)

Therefore the effective reproduction number for the hmltmg system (26) is given
by Ry = 6*Ry.

Suppose that Ry > 1. From (25), the critical coverage of immunization €*
such that R(e*) = 1 is given by

' 1 1
) F o

but it is meaningful only when 6* < 1. The disease is uncontrollable by the
vaccination if 8% > 1. Moreover, if Ry = 6*Ry > 1, we have R(e) > 1 for
all € € [0.1], and the disease is thus again uncontrollable by the vaccination,
because the fully vaccinated population can be invaded by the disease.

Let o := Ry /Ry, i.e., o is the ratio of the effective reproduction number of
the fully vaccinated system to the basic reproduction number. Given that the
qualitative change in the epidemiological implication occurs for the prevalence
and controllability at Ry = 1/0, Gomes et al. ([7], [8]) referred to 1/0 as
the reinfection threshold of Ry. As seen above, the reinfection threshold of Ry
corresponds to the fact that cRy = Ry = 1, i.e., Ry = 1/o does not imply a
bifurcation point of the basic system (2), but the threshold condition R; = 1 of
the fully vaccinated system (26). In the above setting, we have o = *, but its
value depends on the basic model assumptions.




3.2 Bifurcation of endemic steady states

Let (s*,7*,7*) be the steady state of the basic system (2) with the boundary
condition (23). We then have

$* (1) = (1 — e)uNe #7=2"",
(1) =i (0)e™ " T'(7), (29)
r*(r) = r*(0)e™HT~ A Jg B(@)dz,

where

A" =i*(0)(8,T),
i*(0) = A* /Ooc(s*(v') + 8(7)r*(7))dr,

(30)
r*(0) = epN +77(0)(y.T).
From the above equations, we can calculate i*(0) as
— A" / r(r))dr
:>\ ) + At * 0)/ —pT=A" [ O(I)d'rd,r
s
(1—¢uN / — AT
S L P S L R N pr—=A" [ 6(x) de"
ST (euN +14*(0)(v,T)) 0
(31)
We then have the expression:
AUl ey N fo =T AT g lda gy
7 (0) = - . (32)
l;) L —pr=2* [ B(r)dmd,r
From (32) and the relation
« _ Fo.
A N ~(0),
we know that a positive root A* > 0 must satisfy the equation:
v(A*)
1= Ryp——=
RO ’U()\*) s (33)
where
N /OC —ut=A [T 6
v(A) 1= ——— + € 6(r)e Ao (z)dz gp
(A) A T (7) (34)

u(A) :=1-(7,T)$(A).

Here we have used the notation (20) and

d(A) = /\/ O(T)e”“""’\fOT b(z)dz g (35)
0
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Observe that
oc ) oc
A/ 9(7_)6-—;17'-—)\.]0* B(x)dmd,r =1 / p,e-u'r—~)~ Jo B(x.)dzdr (36)
0 0

¢ is then an increasing function, and u()) is thus a decreasing function. We can
now conclude the following.

Proposition 3.1 If R(e) > 1, there exists at least one endemic steady state.
Suppose that the condition

. 1—¢(1-6*)
holds, where - o
6 = ,u2/ e”"”é’(f)/ 6(z)dzdr. (38)
0 0

Endemic steady states then backwardly bifurcate from the disease-free steady
state when R(€) crosses unity, i.e., multiple endemic steady states exist if R(e) <
1 and |R(¢) — 1] is small enough.

proof: Relation (33) implies that the effective reproduction number in the en-
demic steady state with the force of infection A* is given by
v(A*)  R(e) v(A*)
R(\)=R = .
(%) %W T u(0) u(x*)
Then R(0) = R(e) and R(oc) = 0, and thus R(A*) = 1 has at least one positive
root if R(e) > 1, which implies that there exists one endemic steady state. If
R(0) = R(e) = Rov(0) = 1 and condition (37) holds, R'(0) = »(0)~1v/(0) —
«'(0) > 0. R(A*) = 1 then has at least one positive root. Moreover, it has at
least two positive roots if R(0) = R(e) < 1 and [R(€) — 1| is small enough. To
see this precisely, let us again define a function f(A, Ry) := R(A) — 1. Then
f(0,v(0)~!) = 0 and
af

5 |
' / =1, == = fu(())“lil"(()) — 11»’(0),
IR0 | (x, Ro)=(0.0(0)-1) O (3 Ro)=(0.0(0)~1)

where 1 .
v'(0) = —=(1—¢(1=6")), «'(0)=—=(y,T)6".
M H

If condition (37) holds, f = 0is solved as A = A(Ry) satisfying A(v(0)™!) = 0 and
d\(v(0)~1)/dRy < 0 in the neighborhood of (A, Rg) = (0,v(0)™}). If Rov(0) < 1
and |Rov(0) — 1] is small enough, for each Ry, there exist multiple positive
roots such that f(\, Rg) = 0, because f(0,Ro) < 1, f(A(Rop),Ro) = 0 and
f(oo,Ry) =~-1<0. 0

Proposition 3.1 tells us that the subecritical condition R(e) < 1 is not suffi-
cient to eradicate the disease if condition (37) holds. Note that if e = 1 in (37),
we know that a backward bifurcation occurs even in the recovered-infected-
recovered model if (6*)? > 6**, though this condition does not hold when § is
constant.
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4 Discussion

As shown above, it is not easy to realize subcritical endemic steady states with-
out enhancement of susceptibility in the reinfection model. However, we can
consider more realistic reinfection mechanisms that allow backward bifurcations.
Let us consider two examples, malaria and measles.

Although reinfected individuals are not distinguished from the mfecteds re-

38

sulting from completely susceptible individuals in the original Kermack-McKendrick

model, it will become a natural extension if we assume that epidemiological pa-
rameters for the reinfecteds are different from parameters of the infecteds pro-
duced from completely susceptible individuals. In fact, Aguas, et al. ([1]) de-
veloped an age-structured population model for the dynamics of malaria trans-
mission, and observed that stable endemic steady states coexist with stable
disease-free steady states. In their model, the infecteds resulting from com-
pletely susceptible individuals are clinical malaria cases, and recovery from clin-
ical cases confers protection against the clinical manifestation of diseases, but
not against infection per se. A recovered individual can then be reinfected and
develops a non-clinical form of malaria, which can be called an asymptomatic
infection. If the net reproductivity of asymptomatic cases is larger than that of
clinical cases, it is possible to show that there could exist a backward bifurcation
even when 6* < 1. This situation could occur if the duration of infection of the
asymptomatic case is much longer, because it does not necessarily need clinical
treatment.

Next consider an epidemic model of measles with fluctuation of the immunity
level for vaccinees. We again assume that there are two sorts of infectious states.
The host population is divided into five subpopulations: the completely sus-
ceptible population, the vaccinated population, the recovered population with
complete immunity, the classical infectious population for measles, and the sub-
clinical infectious population for measles. Different from the assumption of the
Kermack-McKendrick reinfection model, the. recovered individuals have. com-
plete immunity and no susceptibility, and instead, the vaccinated individuals
have partial susceptibility (according to the waning of immunity) depending on
the duration since vaccination. By (re)infection, some of the vaccinated indi-
viduals develop subclinical infection, and the immunity level of the remaining
vaccinated individuals is boosted to the level of newly vaccinated individuals.
That is, the boosting effect is expressed by the “reset” of local time to zero
for vaccinated individuals. Kishida ([15]) investigated this kind of reinfection
model, and he found that multiple endemic steady states can exist under sub-
critical reproduction number. If' we take into account subclinical infection, the
coverage of immunization to eradicate the disease must be larger than the critical
proportion of immunization calculated from the standard SIR model neglect-
ing the subclinical cases. An introduction of imperfect vaccination would make
it difficult to eradicate measles, although it can reduce the number of clinical
cases.
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