
RELATIVE OPERATOR ENTROPY AND KARCHER MEAN

JUN ICHI FUJII1 AND YUKI SE02

1. $IN^{r}I’$RODUCTION

Lawson and Lim [10] showed that the Karcher equation for positive invertible operators
$A_{j}(j=1,2, \ldots, n)$ , $X$ on a Hilbert space and a weight $\{\omega_{j}\}(\omega_{j}\geq 0, \sum_{j}\omega_{j}=1)$ :

(KE) $0= \sum_{j=\lambda}^{n}\omega_{j}\log(X^{-\frac{1}{2}}A_{j}X^{-\frac{1}{2}})$

has a unique positive invertible solution

$X=G_{K}(\omega_{j};A_{j})=G_{K}(\omega;\mathbb{A})$

for $\omega=$ $(w_{1}, . . . , \omega_{n})an(i\mathbb{A}=(A_{1}, \ldots, A_{n})$ . It is called the (weighted $n$-variable) Karcher
mean. This definition depends on the invertibility of operators: Their theory depends
on the Thompson metric $d(A, B)=\Vert\log(A^{-1/2}BA^{-1/2}\Vert$ and the power operator mean
corresponding to the power function $f_{m_{r,t}}(x)=(1-t+tx^{r})^{\frac{1}{\gamma}}$ : The Karcher mean of
positive invertible operators coincides with the strong operator limit of the power means
$P_{t}(\omega;A)$ as $tarrow 0$ :

$G_{K}( \omega;A\rangle=s-\lim_{tarrow 0}P_{t}(\omega_{)}\cdot A)$ .

Thus it needs substantially the invertibility of positive operators.
In this note, we extend it to a mean for (non-invertible) positive operators by virtue

of the relative operator entropy. So, wee observe the properties for the relative operator
entropy with the existence conditions which are closely related the kernels and ranges for
operators. Defining the Karcher mean for nbn-invertible operators as the strong-operator
limit, we discuss their properties and kernels. Then we see that the original Kubo-Ando
geometric mean satisfies the Karcher equation with the kernel condition. Also we verify
that the Karcher mean for operators with the closed ranges is a unique solution of this
equation.

2. RELATIVE OPERATOR ENTOROPY

First we review the relative operator entropy $S(A|B)$ for positive (bounded linear)
operators $A,$ $B$ on a Hilbert space, see [5, 6, 7, 2, 3, 4].

Nakamura and Umegaki [11] extended the notion of the entropy formulated by von
Neumann and gave the entorpy by $-A\log$ $A$ for a positive operator $A$ on a Hilbert space.
Also, Umegaki [13] introduced the relative entorpy as a noncommutative version of the
Kullback-Leibler entorpy, which is given by the trace of Alog $A-A\log B$ for positive
operators $A,$ $B$ affiliated with a semifinite von Neumann algebra. In [5], Fujii and Kamei
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introduced the relative operator entorpy which is a relative version of the operator entorpy
defined by Nakamura-Umegaki: Let $A$ and $B$ be positive operators on a Hilbert space $H.$

If $B$ is invertible, then the relative operator entorpy is defined by

$S(A|B)=B^{\frac{1}{2}}\eta(B^{-\frac{1}{2}}AB^{-\frac{1}{2}})B^{\frac{1}{2}}$

where $\eta$ is the entropy function:

$\eta(x)=$ -xlog $x$ if $x>0,$ $\eta(0)=0.$

In addition, if $\mathcal{A}$ is invertible, then the relative operator entropy is rewrited as follows:

$S(A|B)=A^{\frac{1}{2}}\log(A^{-\frac{\lambda}{2}}BA^{-\frac{1}{2}})A^{\frac{1}{2}}.$

In the case, since $\log t$ is operator monotone, $S(A|B)$ has the right monotonicity:

$B\leq C$ implies $S(A|B)\leq S(A|C)$ .

Moreover, by using the fact that $\lim_{tarrow 0}\frac{x^{\ell}-1}{t}=\log t$ , it is constructed by Uhlmann’s way
[12]:

$S(A|B)= s-\lim_{tarrow 0}\frac{A\#_{t}B-A}{t},$

where the geometric operator mean $A\#_{t}B$ is defined by

$A\#_{t}B=A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}.$

Next, let $A$ and $B$ be non-invertible. For each $\epsilon>0$ , since $B+\epsilon$ is invertible, the
relative operator entropy $S(A|B+\epsilon)$ exists and

$S(A|B+ \epsilon)=s-\lim_{\delta\downarrow 0}S(A+\delta|B+\epsilon)$

in the strong operator topology. Since for each $\delta>0,$ $S(A+\delta|B+\epsilon)$ has the right-term
monotone decreasing property as $\epsilon\downarrow 0$ , we have

$S(A+\delta|B+\epsilon)\geq S(A+\delta|B+\epsilon’)$ for $g>e’>0$

and so $S(A|B+\epsilon)\geq S(A|B+\epsilon’)$ as $\delta\downarrow 0$ . Therefore, in the case of non-invertible $A$ and
$B$ , we can define

$S(A|B)= s-\lim_{\epsilon\downarrow 0}S(A|B+\epsilon)$

if the strong-operator limit exists as a bounded operator. In fact, by the right-term
monotonicity, the lower boundedness for $\{S(A|B+\epsilon)|\epsilon>0\}$ guarantees the strong-
operator limit. But, in general, $S(A|B)$ does not always exist. For example, $S(A|B)$ does
not exists for invertible $A$ and non-invertible $B.$

Here, we state a existence condition of the relative operator entropy:

Lemma 2.1. Let $A,$ $B$ be positive operators. The relative operator entropy $S(A|B)$ exists

if and onty if $E(\alpha)=(-1-\log\alpha)A+\alpha B$ is bounded below for all $a>0.$

Next, we consider another equivalent definition of Uhlmann’s type. For this, based on
the fact that $\frac{x^{\ell}-1}{t}\searrow\log t$ as $t\downarrow 0$ , it follows that $\frac{A\# eB-\mathcal{A}}{t}$ is monotone-decreasing as $t\downarrow 0,$

so that another equivalent definition of Uhlmann’s type is the derivative one for the path
of geometric means $A\#_{t}B$ for $t\in(O, 1$ ]:

$S(A|B)= s-\lim_{t\downarrow 0}\frac{A\#_{t}B-A}{t}$
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if the strong-operator limit exists. In fact, put $X= s-\lim_{t\downarrow 0}\frac{A\# tB-A}{t}$ and since

$\frac{A\#_{t}B-A}{t}\leq\frac{(A+\epsilon)\#_{t}(B+\epsilon)-(A+\epsilon)}{t}$ for each $\epsilon:>0,$

we have $X \leq s-\lim_{t\downarrow 0}\frac{(A+\epsilon)\# t(B+\epsilon)-(A+\epsilon)}{t}=S(A+\mathcal{E}j|B+\epsilon)$ as $t\downarrow 0$ and so $X\leq S(A|B)$ as
$\epsilon\downarrow 0$ . On the other hand, since

$\frac{(A+\epsilon)\#_{t}(B+\epsilon)-(A+\epsilon)}{t}\geq S(A+\epsilon|B+\epsilon)$ for each $\epsilon>0$ and $t\in(O, 1$ ],

we have $\frac{A\#\prime B-A}{t}\geq S(A|B)$ as $\epsilon\downarrow 0$ for $b>0$ and so $X\geq S(A|B)$ . Therefore, $X=S(A|B)$

and we have another equivalent definition of Uhlmann’s type for non-invertible case.
If $A$ and $B$ are commuting and $S(A|B)$ is defined, then

$S(A|B)=A\log B-A\log A,$

in particular, $S(O|B)=0$ for all $B\geq 0$ . In fact, since $S(A|B)$ exists, by Lemma 2.1, there
exists a scalar $c\in \mathbb{R}$ such that for all $\alpha>0$

$c\leq(-1-\log\alpha)A+\alpha B$

$\leq(-1-\log a)A+\alpha(B+\epsilon)$ for each $\epsilon>0$

and so

$c\leq(B+\epsilon)(-(B+\epsilon)^{-1}A\log(B+\epsilon)^{-1}A)$

$=-A\log A+A\mathfrak{i}og(B+\epsilon)$ .

Therefore, since Alog $B-A\log A$ exists, we have A $\log B-A\log A=S(A|B)$ .

Under the existence, we have the following properties of $S(A|B)$ for positive operators
$A$ and $B$ by those for operator means:

Lemma 2.2. Under the existence, the following properties like operator means hold:
(1) right monotonicity: If $B\leq B^{l}$ , then $S(A|B)\leq S(A|B’)$ .
(2) transformer inequality: $T^{*}S(A|B)T\leq S(T^{*}AT|T^{*}BT)$ for all $T$

(the equality holds for invertible $T$).
(2’) informational monotonicity: $\Phi(S(A|B))\leq S(\Phi(A)|\Phi(B))$

for all normal positive linear maps $\Phi.$

(3) sub-additivity: $S(A_{1}|B_{1})+(A_{2}|B_{2})\leq S(A_{1}+A_{2}|B_{1}+B_{2})$ .
$(3’)$ joint concavity:

$(1-t)S(A_{1}|B_{1})+tS(A_{2}|B_{2})\leq S((I-t)A_{1}+tA_{2}|(1-t)B_{1}+tB_{2}\rangle$ for $ailt\in[0,1].$

(4) upper bound: $S(A|B)\leq B-A.$

(5) kernel inclusion: $kerS(A|B)\supset kerA.$

(6) orthogonality: $S(\oplus_{k}A_{k}|\oplus_{k}B_{k})=\oplus_{k}S(A_{k}|B_{k})$ .
(7) affine parametrization: $S(A|A\#_{t}B)=tS(A|B)$ for all $t\in[0$ , 1 $].$

Here we recall the equality condition for the transformer inequality (2) of Lemma 2.2:

Lemma 2.3. Let $A$ and $B$ be positive operators. Under the existence of $S(A|B)$ , the

transformer equality
$T^{*}S(A|\mathcal{B})T=S(T^{*}AT|T^{*}BT)$

holds for an operator $TMthkerT^{*}\subseteq$ kerA $\cap$ kerB.
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We have the following relations around the existence condition for the relative operator
entropy:

Theorem 2.4. The implications (1) $\Rightarrow(2)\Rightarrow(3)\Rightarrow(4)$ hold in the following conditions

for a pair of $A,$ $B\geq 0$ and each converse does not always hold.

$(2)(1)$

existence condition.$\cdot S(A|B)$ exists a$saboundd\acute{d}$operatormajorizationo$rr$ange i
$nc1usion:\exists\alpha>0;A\leq\alpha B,i.e.,$

’ $ranA^{\frac{1}{2}}i.e.,\subset ranB^{\frac{1}{2}}.$

$\inf_{\alpha>0}[\frac{1}{\alpha}B-A+(\log\alpha)A]>-\infty.$

(3) $B$-absolute continuity: $A=[B]A(=A^{\frac{1}{2}}P_{M}A^{\frac{1}{2}}= \lim_{t\downarrow 0}A\#_{t}B)$ .

(4) kernel inclusion: $kerA\supset kerB.$

Remark 2.1. If both ranges of $A$ and $B$ are closed, in particular, for the case of matrices,

the above conditions in Theorem 2.4 are all equivalent since the relation ran $A^{\frac{1}{2}}=\overline{ranA}=$

$(kerA)^{\perp}$ holds for all positive operators $A.$

For invertible positive operators $A$ and $B$ , it is easy to see that the positivity (resp.
negativity) of $S(A|B)$ is equivalent to $B\geq A$ (resp. $A\geq B$ ) and hence $S(A|B)=0$ if
and only if $A=B$ . Second we discuss non-invertble case:

Theorem 2.5. Let $A$ and $B$ be positive operators. Suppose $S(A|B)$ exists. $S(A|B)\geq 0$

if and only if $B\geq A.$ If $ker$ $A$ is trivial, then $S(A|B)\leq 0$ if and only if $A\geq B.$

Consequently, for $A$ with the trivial kernel, $S(A|B)=0$ if and only if $A=B.$

3. KARCHER MEAN FOR NON-INVERTIBLE POSITIVE OPERATORS

For non-invertible positive operators $A_{j}(j=1,2, \ldots, n)$ , for each $\epsilon>0$ the Karcher
mean $X_{\epsilon}=G_{K}(\omega_{J}\prime;A_{j}+\epsilon)\geq 0$ exists and the monotonicity of $G_{K}$ guarantees the strong-
operator limit:

$X_{0}= s-\lim_{\epsilonarrow 0}X_{\epsilon}=s-\lim_{\epsilonarrow 0}G_{K}(\omega_{j};A_{j}+\epsilon)$ .

Naturally we write $X_{0}=G_{K}(\omega_{j};A_{j})$ for non-invertible $A_{j}$ and call it $\acute{t}he$ Karcher mean
again.

Here we extend the extremal means with a weight $\{\omega_{j}\}$ synchronously to $G_{K}$ : The
arithmetic mean $A$ and the harmonic one $H$ for non-invertible $A_{j}$ are defined by

$A( \omega_{j};A_{j})=\sum_{j}\omega_{J}A_{j}$

$H( \prime;)=s-\lim_{\epsilonarrow 0}H(\omega;A+\epsilon)=s-\lim_{\epsilonarrow 0}(\sum_{j}\omega\prime(A_{j}+\epsilon)^{-1})^{-1}.$

As for this construction of corresponding mean, we say $H$ is the adjoint of $A$ ’ as in the
Kubo-Ando theory.

Theorem 3.1. For a weight $\{\omega_{j}\}$ and positive operators $A_{j}(j=1,2, \ldots, n)$ , the following
properties hold:

(1) monotonicity: If $A_{j}\leq B_{j}$ for all $j$ , then $G_{K}(\omega_{j};A_{j})\leq G_{K}(\omega_{j};B_{j})$ .
(2) transformer inequality,$\cdot$ $T^{*}G_{K}(\omega_{j};A_{j})T\leq G_{K}(\omega_{j};\dot{T}^{*}A_{j}T)$ for all $T$

(the equality holds for invertible $T$).

48



$(2^{f})$ informational monotonicity: $\Phi(G_{K}(w_{j};A_{j}))\leq G_{K}(\omega_{j};\Phi(A_{j}\rangle)$

for all normal positive linear maps $\Phi.$

(3) sub-additivity.$\cdot$

$G_{K}(\omega_{j};A_{j})+G_{K}(\omega_{j};B_{j})\leq G_{K}(\omega_{j};A_{j}+B_{j})$ .
(3’) joint concavity:

$(1-t)G_{K}(\omega_{j};A_{j})+tG_{K}(\omega_{j};B_{j})\leq G_{K}(\omega_{j}, (1-t)A_{j}+tB_{j})$ for all $t\in[O$ , 1 $].$

(4) consistency with scalars:

If all $A_{j}$ are commuting, then $G_{K}( \omega_{j};A_{j})=\prod_{j=1}^{n}A_{j}^{\omega_{J}}$ with convention $A^{0}=I.$

(5) self-adjointness: $G_{K}( \omega_{j};A_{j})=s-\lim_{\epsilon\downarrow 0}G_{K}(\omega_{j};\langle A_{j}+\epsilon)^{-1})^{-1}.$

(6) joint homogeneity: $G_{K}( \omega_{j};c_{j}A_{j})=\prod_{J=1}^{n}c_{j}^{\omega_{j}}G_{K}(\omega_{j\rangle}A_{j}\rangle$

for non-negative numbers $c_{j}\geq 0(j=1,2, \ldots, n)$ .
(7) AGH weighted mean inequality:

$H(\omega_{j};A_{j})\leq G_{K}(\omega_{j};A_{j})\leq A(\omega_{j};A_{j})$ .

(8) orthogonality: $G_{K}( \omega_{j};\bigoplus_{tn}A_{j,m})=\bigoplus_{m}G_{K}(\omega_{j};A_{j_{\backslash }m})$ ,

Note that if $\omega_{k}=0$ for some $k$ , then $n$-mean $G_{K}(\omega_{j};A_{j}\rangle$ is nothing but $(n-1)$-mean
without $\omega_{k_{\rangle}}A_{k}$ . So we call $G_{K}(w_{j};A_{j})$ the proper Karcher mean if $\omega_{J}\prime>0$ for all $j$ . Then
we also call the weight $\{\omega_{j}\}$ proper.

Lemma 3.2. For a proper $u/eight$ $\{\omega_{J}\grave{\}}$ and positive operators $A_{j}(j=1,2, \ldots, n)$ ,

ran $A( \omega_{j}; A_{j})^{\frac{1}{2}}=\bigvee_{j}$ ran $A^{\frac{1}{j2}}$ and ran $H( \omega_{j}; A_{j})^{\frac{1}{2}}=\bigcap_{J^{J}}$ ran $A^{\frac{1}{j2}}.$

By Lemma 3.2 and the $t_{1}\cdot$ansformer inequaity (2) of Theorem 3.1, we have the following
kernel condition for the Karcher mean.

Theorem 3.3. Let $A_{j}$ be positive operators $forj=:$ , 2, . . . , $n.$
$F\fbox{Error::0x0000}$or a proper weight $\{\omega_{j}\},$

$kerG_{K}(\omega_{j};A_{j})=\vee kerA_{j}j.$

For any projections $P$ and $Q$ , it is known in [9] that $P\#_{t}B=P\wedge Q$ for $t\in[O$ , 1 $]$ . The
following result is an extension of 2-variable case:

Corollary 3.4. For a proper weight $\{\omega_{J}\hat{\}},$

$G_{K}(a)j;P_{j})= \bigwedge_{j}F_{j}$ for projections $P_{j}(j=1$ , 2, . . . , $n\rangle.$

In this invertible case, note that (KE) is equivalent to a simple equation by the relative
operator entoropy

$(**)$ $0= \sum_{j=1}^{n}\omega_{i}S(X|A_{j})$ ,

which also makes sense for non-invertible $A_{j}$ . But this equation always has a trivial
solution $X=0$ since $S(0|A_{j})=0$ . For the case of Corollary 3.4, the entropy is $S(P|P_{j})=$
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$P\log P_{j}-P\log P=0$ , and hence $P$ is indeed a solution of the equation $(**)$ . But this
consideration shows that each projection $Q$ with $0\leq Q\leq P$ is a solution of $(**)$ .

Thereby, a reasonable extension of (KE) is the following EKE(Extended Karcher equa-
tion) with the kernel condition under the existence of each $S(X|A_{g})$ :

(EKE) $0= \sum_{j=1}^{n}\omega_{j}S(X|A_{j})$ with
$kerX=\omega_{j}>0\vee kerA_{j}.$

Remark 3.1. If operators $A_{j}$ are commuting for all $j$ , then $X_{0}=G_{K}( \omega_{j};A_{j})=\prod_{j}A_{j}^{\omega_{j}}$

and $X_{0}$ is a solution of (EKE). But, if the kernel condition is removed, the following
example gives another solution $X$ even if $X$ commutes with all $A_{j}.$

Example 1. For diagonal matrices $A=$ diag $(a, b, c, 0)$ and $B=$ diag $( \frac{1}{a}, b, 0, d)$ , take
$X_{1}=$ diag ($0, b, 0,0)$ . Then, all matrices are commuting and hence

$S(X_{1}|A)+S(X_{1}|B)=-2X_{1}\log X_{1}+X_{1}\log A+X_{1}\log B$

$=$ diag ($0, -2b\log b, 0,0)+$ diag ($0, b\log b, 0,0)+$ diag ($0, b\log b, 0,0)=0.$

So $X_{1}$ is a solution while $X_{1}\neq X_{0}=$ diag ( $1, b, 0,0)$ .

Remark 3.2. For the case of projections $A_{j}=P_{j}$ , the above $P$ is a unique solution of
(EKE). In fact, suppose $Y$ is another solution. Then the kernel condition $P\leq P_{j}$ shows
$PYP=Y$ and hence we have $YP_{j}=P_{j}Y=Y$ and $Y\log P_{j}=YP_{j}\log P_{j}=0$ . Therefore

$0= \sum_{j}\omega_{j}S(Y|P_{j})=\sum_{j}\omega_{j}(Y\log P_{j}-Y\log Y)$

$= \sum_{j}\omega_{j}(-Y\log Y)=-Y\log Y,$

which implies that $Y$ must be a projection and consequently $Y=P$ by the kernel condi-
tion.

Moreover note that $S(A|B)$ does not always exist as a bounded self-adjoint operator
as in the preceding section. But $S(X_{0}|A_{j})$ indeed exists for the Karcher mean $X_{0}=$

$G_{K}(\omega_{j};A_{j})$ :

Lemma 3.5. Let $A_{j}$ be positive operators and $\{\omega_{j}\}$ a weight. For the Karcher mean
$X_{0}=G_{K}(\omega_{j};A_{j})$ , each entropy $S(X_{0}|A_{j})$ exists for $w_{j}>$ O. For $\omega_{k}>0$ , bounds are
expressed by

$- \frac{M_{k}}{\omega_{k}}\leq S(X_{0}|A_{k})\leq M_{k}$

for $M_{k}= \max_{j\neq k}\Vert A_{j}\Vert+1.$

Thus far, we have not showed that our Karcher mean $X_{0}= s-\lim_{\epsilonarrow 0}X_{\epsilon}$ satisfies (EKE)
for general positive operators. Here we can obtain only the inequality:

Lemma 3.6. Let $A_{j}$ be positive operators for $j=1$ , 2, .. ., $n$ and $\{\omega_{j}\}$ a weight. Then

$0 \leq\sum_{j=1}^{n}\omega_{j}S(X_{0}|A_{j})$ with
$kerX_{0}=\omega_{j}>0\vee kerA_{j}.$

However, in the case of $n=2$ , we have the following result:
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Theorem 3.7. For positive operators $A$ and $B$ and $t\in(O, 1)$ , the original geometric
mean $A\#_{f}B$ satisfies (EKE).

Recall that a non-invertible positive operators $A$ has the closed range if and only if $0$ is
an isolated point in $\sigma(A)$ . Any positive semi-definite matrix has the closed range. Finally
in this section, we show that the Karcher mean for such operators is a unique solution of
(EKE). To see this, we verify the following fact:

Lemma 3.8. If $A_{j}(j=1,2, \ldots, n)$ are positive opereators whose ranges are closed, then
so is $X_{0}=G_{K}(\omega_{j};A_{j})$ .

So we have a unique solution of (EKE):

Theorem 3.9. If $A_{j}$ are positive opereators whose ranges are closed for $j=1,$ $2_{\}}\ldots$ , $n,$

the Karcher mean $X_{0}=G_{K}(\omega_{j};A_{j})$ is a unique solution of (EKE).

Therefore, we have the following result in the matrix case:

Corollary 3.10. For positive semi-definite matrices $A_{j}$ for $j=1$ , 2, .. . , $n$ and a weight
$\{w_{j}\}$ , the Karcher mean $X=G_{K}(\omega_{j};A_{j})$ is the unique solution of (EKE):

$0= \sum_{j=1}^{n}w_{j}S(X|A_{J})$ with
$kerX=\omega_{j}>0\vee kerA_{j}.$

4. POWER MEANS FOR NON-INVERTIBLE CASE

Let $A_{j}$ be positive operators for $j=1$ , 2, . . . , $n$ and $\{\omega_{j}\}$ a weight. For each $\epsilon>0,$

similarly to the Karcher mean $X_{\epsilon}=G_{K}(\omega_{j)}\cdot A_{j}+\epsilon)$ , the power means $P_{t}(\omega_{i};A+\epsilon\rangle$ for
$t\in(0,1]$ is the unique positive invertible solution of the power mean equation

$X= \sum_{j=1}^{n}\omega_{j}(X\#_{t}(A_{j}+\epsilon$

Then the Karcher mean for invertible case is the strong-operator limit of the power
means:

$s-\lim_{t\downarrow 0}P_{t}(\omega_{J}\prime;A_{j}+e:)=X_{\epsilon}.$

The power means $P_{t}(w_{j};A_{j}+\epsilon)$ are monotone decreasing for $\epsilon\downarrow 0$ by [10, Proposition
3.6 (4)] and lower bounded by the zero operator. Hence $P_{t}( \omega_{j};A_{j})=\inf_{\epsilon>0}P_{t}(\omega_{j};A_{j}+\epsilon)$

exists and
$P_{t}( \omega_{j};A_{j})=s-\lim_{\epsilon\downarrow 0}P_{t}(\omega_{j’}, A_{j}+\epsilon)$

in the strong operator topology and so $P_{t}(\omega_{i\rangle}A_{2})$ is a solution of the power mean equation

(1)
$X= \sum_{j}\omega_{j}(X\#_{t}A_{j})$

for $t\in(0_{\}}1].$

Similarly to the Karcher equation for positive operators, the power mean equation (1)
always has a trivial solution $X=0$ . Thereby, we consider the following EPE (Extended
Power mean equation) with the kernel condition:

(EPE)
$X= \sum_{j}\omega_{j}X\#_{t}A_{j}$

, with
$kerX=\bigcap_{w_{j}>0}k_{\mathfrak{X}}A_{j}.$
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Theorem 4.1. Let $A_{j}$ be positive operators and $\{\omega_{j}\}$ a weight. Then the power means
$P_{t}(\omega_{j};A_{J}\prime)$ for $t\in(0,1]$ satisfy $(EPE)$ and

$P_{t}(\omega_{j};A_{j})\searrow G_{K}(\omega_{j};A_{j})$ as $t\downarrow 0.$

Theorem $Y$ (Yamazaki [14]). Let $A_{j}$ and $X$ be positive operators for $j=1$ , 2, . . ., $n$ and
$\{\omega_{j}\}$ a weight. Then

$\sum_{j}\omega_{j}S(X|A_{j})\geq 0$
implies $G_{K}(\omega_{j};A_{J}\prime)\geq X.$

Moreover, if $A_{j}$ and $X$ are invertible, then

$\sum_{j}\omega_{j}S(X|A_{j})\leq 0$
implies $G_{K}(\omega_{j};A_{j})\leq X.$

The following result follows from the uniqueness of the power means and is an extension
of Theorem $Y$ :

Theorem 4.2. Let $A_{j}$ and $X$ be positive operators for $j=1$ , 2, $\rangle n$ and a weight $\{\omega_{j}\}.$

Then

$X \leq\sum_{j}\omega_{j}X\#_{t}A_{j}$
implies $X\leq P_{t}(\omega_{j};A_{j})$ .

Moreover, if $A_{j}$ and $X$ are invertible, then

$X \geq\sum_{j}\omega_{j}X\#_{t}A_{j}$
implies $X\geq P_{t}(\omega_{j};A_{j})$ .

Remark 4.1. Theorem 4.2 is an extension of Theorem Y. Indeed, suppose $\sum_{j}\omega_{J}\prime S(X|A_{j})$ ) $\geq$

O. Then

$0 \leq\sum_{j}\omega_{j}S(X|A_{j}))\leq\frac{\sum_{j}\omega_{J}X\#_{t}A_{j}-X}{t}$

and it follows from Theorem 4.2 that $X\leq P_{t}(\omega_{j};A_{j})$ for all $0<t\leqq 1$ . Taking limit as
$t\downarrow 0$ , we have $X\leq G_{K}(\omega_{j};A_{j})$ . Another part is obtained by this result.

Remark 4.2. Finally, considering the power means for negative parameters as the adjoint
in the sense of Kubo-Ando theory, for invertible case, we can show that the uniqueness of
the Karcher equation follows from the case of power means without the implicit function
theorem. See [8] for more detail,

Though the properties for power means are supplied, the following general problems
are not still answered:

Conjecture. For non-invertible positive operators on a Hilbert space, the Karcher mean
satisfies (EKE) and it is a unique solution of (EKE).

Conjecture 2. For non-invertible positive operators on a Hilbert space, each power mean
$P_{t}(\omega_{j};A_{j})$ for $t\in(0,1] is a$ unique solution $of (EPE)$ .
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