\＃P－complete problems and linear representations

Norichika Matsuki
Toyama Chemical Co．，Ltd．

1 Introduction

Let $I_{n}=\left(x_{1}{ }^{2}-1, \ldots, x_{n}{ }^{2}-1\right)$ be an ideal of $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and let $R_{n}=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I_{n}$ ． For $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ ，we define \bar{f} as the right－hand side of the congruence

$$
f \equiv \sum_{S \subseteq\{1, \ldots, n\}} a_{S} x^{S}\left(\bmod I_{n}\right)
$$

where x^{S} is a multilinear monomial that has factor x_{i} if and only if $i \in S$ ．Denote by S_{i} the i－th set of the lexicographically ordered sets

$$
\emptyset<\{n\}<\{n-1\}<\{n-1, n\}<\{n-2\}<\cdots<\{1\}<\cdots<\{1, \ldots, n\} .
$$

We define $T(\bar{f})=\left(T(\bar{f})_{i j}\right)$ to be the matrix whose (i, j) entry is $a_{S_{i} \Delta S_{j}}$ ，where $S_{i} \Delta S_{j}$ is the symmetric difference of S_{i} and S_{j} ．Then the following properties hold $[4,5]$ ：

1．f has a zero point in $\{-1,1\}^{n}$ if and only if f is either a zero element or a zero divisor of R_{n} ．

2．f has no zero point in $\{-1,1\}^{n}$ if and only if f is a unit of R_{n} ．
3．T is an injective ring homomorphism from R_{n} to $M\left(2^{n}, \mathbb{Q}\right)$ ．
4．f has a zero point in $\{-1,1\}^{n}$ if and only if $\operatorname{det} T(\bar{f})=0$ ．
In this article，we describe the problem of counting the number of zero points in $\{-1,1\}^{n}$ of f ．This is \＃P－complete［9］，so that it relates to many counting problems in discrete mathematics．

2 Number of zero points and rank of a matrix

Denote by v^{t} the transpose of a vector v and by v_{i} the column vector

$$
\left(1, c_{i n}, c_{i n-1}, c_{i n-1} c_{i n}, c_{n-2}, \ldots, c_{i 1}, \ldots, c_{i 1} \cdots c_{i n}\right)^{t}
$$

where $c_{i j}=(-1)^{\left[(i-1) / 2^{j-1}\right]}$ for $1 \leq i \leq 2^{n}$ and $1 \leq j \leq n$ ，namely，

$$
\left(c_{1 j}, c_{2 j}, \ldots, c_{2^{i} j}^{j}\right)=(\underbrace{1, \ldots, 1}_{2^{j-1}}, \underbrace{-1, \ldots,-1}_{2^{j-1}}, \ldots)
$$

$\left(v_{1}, \ldots, v_{2^{n}}\right)$ is an Hadamard matrix and $\left(v_{1}, \ldots, v_{2^{n}}\right)$ are eigenvectors of $T(\bar{f})$ ．Hence we have the following theorem［6］．

Theorem 1 Let $n(f)$ be the number of zero points in $\{-1,1\}^{n}$ of $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. Then $n(f)=2^{n}-\operatorname{rank} T(\bar{f})$.

Next we consider a polynomial $f=a_{0} x^{p-2}+a_{1} x^{p-3}+\cdots+a_{p-2}$ over \mathbb{F}_{p}. We write

$$
D=\left(\begin{array}{cccc}
a_{0} & a_{1} & \ldots & a_{p-2} \\
a_{1} & a_{2} & \ldots & a_{0} \\
\ldots & \cdots & \cdots & \cdots \\
a_{p-2} & a_{0} & \ldots & a_{p-3}
\end{array}\right)
$$

Kronecker proved that the number of roots distinct from one another and from zero of $f \equiv 0(\bmod p)$ is $p-1-\operatorname{rank} D($ see $[3])$. Here D can be interpreted as a linear representation of $\mathbb{F}_{p}[x] /\left(x^{p-1}-1\right)$ in the same way as T.

3 Application

We apply Theorem 1 to the n-queens problem (see [1] for details).

x_{11}	x_{12}	\cdots	$x_{1 n}$
x_{21}	x_{22}	\cdots	$x_{2 n}$
\cdots	\cdots	\cdots	\cdots
$x_{n 1}$	$x_{n 2}$	\cdots	$x_{n n}$

Let $Q(n)$ be the number of ways to place n nonattacking queens on an $n \times n$ board and let

$$
\begin{aligned}
& f_{i}=\sum_{j=1}^{n}\left(\frac{x_{i j}+1}{2}\right)^{2}-1, \quad g_{i}=\sum_{j=1}^{n}\left(\frac{x_{j i}+1}{2}\right)^{2}-1, \\
& h_{k}=\left(\sum_{i+j=k}\left(\frac{x_{i j}+1}{2}\right)^{2}\right)\left(\sum_{i+j=k}\left(\frac{x_{i j}+1}{2}\right)^{2}-1\right), \\
& l_{k}=\left(\sum_{i-j=k}\left(\frac{x_{i j}+1}{2}\right)^{2}\right)\left(\sum_{i-j=k}\left(\frac{x_{i j}+1}{2}\right)^{2}-1\right) .
\end{aligned}
$$

Since there are n nonattacking queens if and only if

$$
q_{n}=\sum_{i=1}^{n}\left(f_{i}{ }^{2}+g_{i}{ }^{2}\right)+\sum_{k=2}^{2 n}{h_{k}}^{2}+\sum_{k=-n+1}^{n-1} l_{k}{ }^{2}
$$

has a zero points in $\{-1,1\}^{n^{2}}$, we have $Q(n)=2^{n^{2}}-\operatorname{rank} T\left(\overline{q_{n}}\right)$.

4 System of polynomial equations

For the common solutions of a system of polynomial equations, we can not yet find the above relation with linear representation. Instead, we give an analogue of Smale's discussion [8]. The problem deciding whether a system of polynomial equations

$$
\begin{gather*}
s_{1}=a_{10}+\sum_{i=1}^{3} a_{1 i} x_{1 i}+\sum_{i<j} a_{1 i j} x_{1 i} x_{1 j}+a_{1123} x_{11} x_{12} x_{13}=0 \tag{1}\\
\vdots \\
s_{m}=a_{m 0}+\sum_{i=1}^{3} a_{m i} x_{m i}+\sum_{i<j} a_{m i j} x_{m i} x_{m j}+a_{m 123} x_{m 1} x_{m 2} x_{m 3}=0
\end{gather*}
$$

$\left(s_{1}, \ldots, s_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]\right)$ has a common solution in $\mathbb{F}_{2}{ }^{n}$ is equivalent to 3-SAT [2]. From the following theorem [7], we see that (1) has no common solution in $\mathbb{F}_{2}{ }^{n}$ if and only if there are $t_{1}, \ldots, t_{m} \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
s_{1} t_{1}+\cdots+s_{m} t_{m} \equiv 1 \quad\left(\bmod \left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)\right),
$$

where $\left(x_{1}{ }^{2}-x_{1}, \ldots, x_{n}{ }^{2}-x_{n}\right)$ is an ideal of $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$.
Theorem $2 \operatorname{Let}\left(x_{1}{ }^{p}-x_{1}, \ldots, x_{n}{ }^{p}-x_{n}\right)$ is an ideal of $\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$. Then $f \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$ has a zero point in $\mathbb{F}_{p}{ }^{n}$ if and only if

$$
f^{p-1} \not \equiv 1 \quad\left(\bmod \left(x_{1}^{p}-x_{1}, \ldots, x_{n}^{p}-x_{n}\right)\right) .
$$

Hence this problem is reduced to the system of linear equations whose unkowns are the coefficients of t_{1}, \ldots, t_{m} and the computational complexity depends on $\max \left\{\operatorname{deg} t_{1}, \ldots, \operatorname{deg} t_{m}\right\}$.

References

[1] J. Bell, B. Stevens, A survey of known results and research areas for n-queens, Discrete Math. 309 (2009) 1-31.
[2] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings of the 3rd ACM Symposium on Theory Computing (1971) 151-158.
[3] L. E. Dickson, History of the Theory of Numbers, Dover, New York, 2005.
[4] N. Matsuki, The linear representations of decision problems, Adv. Appl. Discrete Math. 13 (2014) 65-69.
[5] N. Matsuki, NP-complete problems and matrix representations (in Japanese), in: A. Yamamura (Ed.), RIMS Kokyuroku 1873, Algebra and Computer Science (2014) 98-101.
[6] N. Matsuki, Counting problems and ranks of matrices, Linear Algebra Appl. 465 (2015) 104-106.
[7] N. Matsuki, A note on Diophantine equations over finite fields, Univers. J. Math. Math. Sci. 3 (2013) 105-108.
[8] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998) 7-15.
[9] L. G. Valiant, The complexity of computing the permanent, Theoret. Comput. Sci. 8 (1979) 189-201.

