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Abstract: We consider the problem of recovering a low-rank signal ma-
trix in high-dimensional situations. We first consider the conventional
PCA to recover the signal matrix and show that the estimation of the
signal matrix holds consistency properties under severe conditions. The
conventional PCA is heavily subjected to the noise. In order to reduce
the noise, we consider using the noise reduction (NR) methodology
to recover the signal matrix and show that the estimation by the NR
method improves the error rate of the conventional PCA effectively.
We also apply the cross-data-matrix (CDM) methodology to recover
the signal matrix and propose a new estimation of the signal matrix.
We show that the proposed estimation by the CDM method performs
well for high-dimensional non-Gaussian data.
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p small n, Noise-reduction methodology.
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In this paper, we address the problem of recovering an unknown d x n low-rank
matrix, A = [ay,...,a@,]. A is called the signal matrix. Let r = rank(A). We
assume 7 (< min{d,n}) is fixed. Suppose we have a d x n data matrix, X =
[@1, ..., 5], where

X =VnA+W.

(1)

Here, W = [wy,..., w,] is a d X n noise matrix, where w;, j = 1,...,n, are
independent and identically distributed (i.i.d.) as a d-dimensional distribution with
mean zero and covariance matrix Xy (# O). Note that x; — \/na;, j = 1,...,n,



areiid. Let X4 = AAT. Then, it holds that E(X XT)/n = 24+ Xy (= X, say).
Shabalin and Nobel [6] considered (1) in a high-dimensional setting, where the data
dimension d and the sample size n increase at the same rate, i.e. n/d — ¢ > 0.
They assumed that the elements of W are i.i.d. normal random variables. We note
that the conditions such as “n/d — ¢ > 0” and the Gaussianity of the noise are
often strict in real high-dimensional analyses. Yata and Aoshima [10] considered
(1) in high-dimension, low-sample-size (HDLSS) settings without assuming those
conditions.

The eigen-decomposition of Ty is given by Ty = UwAwU%,, where Aw
is a diagonal matrix of eigenvalues, Aiw)y = <o+ 2 dgw)(= 0), and Uw is an
orthogonal matrix of the corresponding eigenvectors. Let W = U WA%,(}Z . Then,
Z is a d X n sphered data matrix from a distribution with the identity covariance
matrix. Here, we write Z = (21, ..., 24]" and z; = (21, ..., zju)7, = 1,...,d. Note
that E(zxzk) = 0 (j # j') and Var(z;) = I,, where I, is the n-dimensional
identity matrix. We assume that the fourth moments of each variable in Z are
uniformly bounded. The singular value decomposition of A is given by

_ . 1/2
A= Z Aj(A)“ﬂA)”f(A)’
J=1

where )\i{i) > e 2 Ai(/i) (> 0) are singular values of A and w;(4 (or vjay)

denotes a unit left- (or right-) singular vector corresponding to )\;(/j) G=1,..,r).

Note that X4 = Z;___l )\j(A)uj(A)u'f( 4y Also, note that A;(4)s depend not only on
d but also on n. In this paper, we assume the following model.
tr(Sh)

lim —5—=~ =0 when n is fixed or n — oo. (2)
d—r00 )\T(A)

The model (2) is a special case of the power spiked model given by Yata and
Aoshima [9]. Murayama et al. [5] considered the estimation of A for a special case
of (2). When r > 2, we assume that A;(4)s are distinct in the sense that

A
liminf ~24) 5 1 when n is fixed or n — oo for all j < 5/ (< 7).
d—00 Aj'(A)

The sample covariance matrix is given by § = n~!X X7T. We consider the dual
sample covariance matrix defined by Sp = n ! X7 X. Let m = min{d,n}. Note
that Sp and S share non-zero eigenvalues and rank(S) = rank(Sp) < m. Let
:\1 > e 2> 5\m > 0 be the eigenvalues of Sp. The eigen-decompositions of S
and Sp are given by S = -7, Mai;ai] and Sp = Y7, \;0;67, where @, (or
;) denotes a unit left- (or right-) singular vector of X /n'/? corresponding to
)A\;/ ?. Note that i; can be calculated by @; = (nd;)"Y2X®; from the fact that

X /2 =37 A el
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Jung and Marron [4] investigated the inconsistency of the eigenvalues and eigen-
vectors of the sample covariance matrix for HDLSS data. Yata and Aoshima
[8] gave consistent estimators for both the eigenvalues and eigenvectors together
with the principal component (PC) scores by developing the noise-reduction (NR)
methodology. Moreover, Yata and Aoshima [7] created a new principal component
analysis (PCA) called the cross-data-matriz (CDM) methodology that is applica-
ble to constructing an unbiased estimator in nonparametric settings. Aoshima and
Yata [1] developed a variety of high-dimensional statistical inference by using the
cross-data-matrix methodology. See Aoshima and Yata [2, 3] for a review covering
this field of research.

In this paper, we consider the problem of recovering the signal matrix A in
high-dimensional settings. In Sections 2 and 3, we introduce the results of Yata
and Aoshima, [10]. In Section 2, we consider using the conventional PCA to recover
A and show that the estimation of A holds consistency properties under severe
conditions. In Section 3, we consider the noise reduction (NR) methodology by
Yata and Aoshima [8] in (1) and apply it to recovering A. We show that the
estimation of A by the NR method holds the consistency properties under mild
conditions and improves the error rate of the conventional PCA. In Section 4, we
consider the cross-data-matrix (CDM) methodology by Yata and Aoshima (7] in
(1) and apply it to recovering A. We show that the estimation of A by the CDM
method performs well for high-dimensional non-Gaussian data.

2 Estimation of the signal matrix by conventional

PCA

In this section, we consider recovering the signal matrix A by using the conven-
tional PCA in high-dimensional settings such as d — oo either when n is fixed or
n — oo We reconstruct A by using \;s, @;s and ;5. We assume u uja) = 0

and 7 i Via) > 0 for all j (< r) without loss of generality.
We consider the following conditions when d — oo while n is fixed or n — oc:

Z‘si,tzl ’\S(W))‘t(W)E{(Zsk 1)(Ztk - 1)}
n/\r( 4)

= o(1).

(C-i) =o(1);

tl‘(zw)

7(A)

(C-ii)

Remark 1. We note that zik,...., zax (k = 1,...,n) are independent when W is
Gaussian. Then, it holds that

d
> A hm B{(2 — V(2 — 1)} = O{tn(Zy)}, (3)

8,t=1



so that (C-i) holds under (2) when W is Gaussian or zi, ..., zg (k = 1,...,n) are
independent.

If (3) holds, (C-i) is met even when n is fixed. Let x; = tr(Zw)/(nAja)) for
J=1,...,r. Yata and Aoshima [10] gave the following results.

Theorem 2.1 ([10]). Under (C-i), it holds that for j = 1,...,r
A

3(4)
and 6fvj(A) =1+ Op(l)

=14 K; + 05(1), '&fuj(A) =1+ nj)"w" + 0,(1)

>

as d — oo either when n is fired or n — 0.
Corollary 2.1 ([10]). Under (C-i) and (C-ii), it holds that for j =1, ...,r
X

=1 1 0l wia =1 1
et +0p(1) and  WiA) + 0p(1)

as d — oo either when n is fized or n — oo.

Note that ;s hold the consistency property without (C-ii) contrary to st and
4;5. Based on the theoretical background, we consider recovering the signal matrix
Aby A=3"7_ A/*@;57. Yata and Aoshima [10] discussed the choice of r in A.
We define a loss function by

L(AlA) = ||A - Al

where || - ||z denotes the Frobenius norm. Let 9 = tr(Zw)/n. Then, Yata and
Aoshima [10] gave the following results.

Theorem 2.2 ([10]). Under (C-i), it holds that
L(A|A) = 1y + 0p(Aria))
as d — oo either when n is fized or n — oo.
Remark 2. If (3) holds, Theorem 2.2 is claimed even when n is fized.
Corollary 2.2 ([10]). Under (C-i) and (C-ii), it holds that
L(A|A) = 0p(\r(a))
as d — oo either when n is fized or n — oo.

From Theorem 2.2, if (C-ii) does not hold, the loss of A becomes rtr(Zw)/n
asymptotically. In order to reduce the noise, we consider using the NR method to
recover the signal matrix in Section 3.
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3 Estimation of the signal matrix by NR method

In this section, we consider applying the noise-reduction (NR) methodology by Yata
and Aoshima [8] to recover the signal matrix A. By using the NR method, we
obtain an estimator of A;4) as

. < tr(Sp) - N .
>‘_7(r) - )\] — ( Dzb —§1’-1 (J = 1, ...,T). (4)

Note that the second term in (4) is an estimator of . Then, Yata and Aoshima
[10] gave the following result.
Theorem 3.1 ([10]). Under (C-i), it holds that for j =1,...,r
As
J0 — 14 0,(1)
Aj(a)
as d — oo either when n is fized or n — oo.

From Theorem 3.1, Xj(r) holds the consistency property without (C-ii). Re-
member that S\j requires (C-ii) to hold the consistency property.

We consider recovering A by A = Y°I_, /\:(/f)ﬁﬁ;? Yata and Aoshima [10]
discussed the choice of 7 in A. Let

8 = ul gy Woia)/(nAya))/? fori=1,..,r.

For the loss function by L(A|A) = ||A — A||2, Yata and Aoshima [10] gave the
following results.

Theorem 3.2. Under (C-i), it holds that

“ . 1+ 6;
L(A|A) = 221:/\,-(,4)(1 +8)(1- T 19507

and 6; = Op{(/\r(A)/)\.i(A))l/z} fori=1..r

) + 0p(Ar(a))

as d — oo either when n is fired or n — oo.
Remark 3. If (3) holds, Theorem 3.2 is claimed even when n is fized.
Corollary 3.1 ([10]). Under (C-i) and (C-ii), it holds that
L(A|A) = 0,(\r(a)
as d — oo either when n is fired or n — oo.

From Theorems 2.2 and 3.2, we compare 2X;(4){1 — 1/(1 + ;)*/?} with ¢ (=
Xi(ayki) by noting &; = 0,(1). It holds that 2{1 — 1/(1 + %:)*/?} < &; (i = 1,...,7)
for any #; > 0, so that L(A|A) is smaller than L(A|A) asymptotically. Thus, A
improves the loss of A.



4 [Estimation of the signal matrix by CDM method

In this section, we consider applying the cross-data-matriz (CDM) methodology by
Yata and Aoshima [7] to recover the signal matrix A.

Let n; = [n/2] and ny = n — n(), where [z] denotes the smallest integer > .
We assume ny > 7. Let X = [@1, ..., @y, ] and X5 = [€y, 41, ..., ). We define

SD(l) = (nlng)‘l/zX:fXg.

Let mo = min{d, ny}. The singular value decomposition of Sp(;) is given by

mo
_ X\ =~ ~T
Spa) = E RV
=1

where \; > -+ > )\, (> 0) denote singular values of § py and ¥y; (or ¥y;) denotes
a unit left- (or right-) singular vector corresponding to :\j (j=1,...,mp). Let A; =
(@1, ... Gy, A2 = [@nyt1y ey G, W1 = [wy, ..., w5, ] and Wy = [wp, 41, ..., W)
Then, we write that

Xi=\/ﬁAi+W¢, 1=1,2.

Let vj(a) = (v7j(4), V3507 forj = 1,...,7, where v;(a) €R™. Note that ||vy;4)||*+
llva2j)l? = [|vjwl* = 1 for j = 1,...,r, where || - || denotes the Euclidean norm.
Then, we write that

,
1/2 .
Ai = Z)‘j{A)“j(A)”g}(A), t=1,2.
j=1

Hereafter, we assume that

A
lim sup 1(4)

<oo and ||vijal*=1/2+0(1) asm — oo foralli,j. (5)
m—00 /\r(A)

We assume ﬁgvij( 4) = 0 for all ¢, j without loss of generality. Then, we have the
following result.

Theorem 4.1. It holds that for j =1, ...,r

~

Aj
Aj(4)

=1+0,(1) and V20Lwija =1+0,(1), i=1,2

as m —» Q.

From Theorem 4.1, A; holds the consistency property without (C-i) and (C-ii).

Remember that )’\j(,) requires (C-i) to hold the consistency property.
Next, we consider estimation of wu;(4)s by using the CDM methodology. Let
@i = (niA) Y2 X9y, i = 1,2. Then, we have the following result.
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Theorem 4.2. It holds that for 5 =1,...,r
aiuja =1+0p(1), i=1,2,

as m — O0.

Let d45(x) = @;;/||1s5]| for all 4, 5. Let A = DY Al/zu,,(,)v V2 for i =1,2.
We consider recovering A by A= [;11, Ag]. From Theorems 4.1 and 4.2, we expect
that A performs well for high-dimensional non-Gaussian data. In Section 5, we
examine the performance of A with the help of numerical simulations.

5 Simulations

In this section, we give numerical comparisons of A, A and A.

Wesetd = 2%, t=4,..,10,n = 15, r = 3, X4 = diag(A;(a), /\2(A), A3(4),0, ..., 0)
with (Al(A),,\2<A),A3(A)) (d/5,d/15,d/45) and Ty = (0.34"°). Note ‘that
tr(Xw) = d. We considered three cases:

(a) wys are i.i.d. as a d-variate normal distribution, N;(0, Xy ) with mean zero
and covariance matrix Xw;

(b) wys are i.i.d. as a d-variate t-distribution, t4(0, Xy, v) with mean zero, co-
variance matrix Xy and degrees of freedom v = 10;

(c) wys are i.i.d. as a d-variate t-distribution, ¢4(0, Xy, v) with v = 30.
Let F(M) = ||M — A||%/d for any d X n matrix, M. The findings were ob-
tained by averaging the outcomes from 2000 (= K, say) replications. Under
a fixed scenario, suppose that the k-th replication ends with estimates, F(A)k,
F(A);c and F(A)k, for k=1,.., K. Let us simply write F=K1YK F(A),
F=K1YX F(A)and F = K‘1 K, F(A);c We also considered the Monte
Carlo variability. Let var(F) = (K —1)" 15K 1(F(A),c - F)2 var(F) = (K —
1) 36 (F(A), — F)? and var(F) = (K — 1)7 3o, (F(A), — F)?. Figure 1
shows the behaviors of (F, F, F) and (var(F), var(F), var(F)) for (a), (b) and (c).

We observed that the NR method and the CDM method give more prefer-

able performances compared to the conventional PCA. It seems that the NR
method performs better than the CDM method for (a). Note that ¢4(0, Zw,v) =
N4(0,2w) as v — 0o. When v = 10, the NR method seems not to give a feasible
estimation. This is probably because v = 10 is not large enough for W to satisfy
(C-i). On the other hand, the CDM method does not require (C-i). As observed
in Figure 2, the CDM method seems to perform well even when v = 10.

A Appendix

Throughout, let e;,, = (e, ..., €n,)T, % = 1,2, be arbitrary unit random vectors.
Let z1; = (251, ..., 2jn, )T and zg; = (z; e zin)t, i =1,..,d.
1j 'Ly o0y #9ny 2j jni+ly e Zgn) 5 J PREES]



Lemma 1. It holds that as m — oo

wiw
T 1 2
— 1 2 e = 0p(1
€1ny (nlnz)l/z)\r(m62 2 = 0p(1)
under (2).
Proof. We write that
d
-, WIW, o Lim A 2152

S TS — = .
61"1(721722)1/2)\,»(A) 2ng = €1p, (nlnz)l/z)\r(A) €2n,

Then, by using Lemma 4 given in Yata and Aoshima [9], we can conclude the
result. O

Lemma 2. It holdé that as m — oo

r ATW, » WTA,

€ln, i€, = 0,(1) and e}, ———ez,, = 0p(1)
in né/g)\r(A) n2 » 1n; ’ni/zAr(A) n2 P

under (2) and (5).
Proof. We first consider the first result of Lemma 2. We note that

et AT Waesn,| < 3 N3 lul 4 Waenn,|. (6)
g==1

We write that ugz ayWaez, = Yo ezkw‘};l +xWi4)- Note that Ayw) = o(An(a)) 88
m — oo from (2). By using Markov’s inequality, for any 7 > 0 and 2 = 1, ..., r, we
have that as m — oo

E{I2 (wl ui)?t  uiaEwuia

nn )
p (wy, xuia))®/n2 2 TAray ) < =
(kZ:; nit+k i) ( )) Tng)\,.(A) T)\,.(A)

AI(W)
< ——L =0of1

from the fact that ufE A)Z‘Wui(A) < Mw). Then, by noting that

< T 1/2 “ 2 M2 - T 2 1/2
l > eanl(wl, | uwia)/ng l < {Z e2k} {Z(wnl-{-kui(A)) / nz}
k=1 k=1 k=1
n2 1/2
= {Z(Wf1+kui<A>)2/nz} = o\l (D
k=1

from (6), we can conclude the first result. Similarly, we can conclude the second
result. The proof is completed. O
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Proof of Theorem 4.1. We write that for j = 1,...,r

X =T SD(I)'TJ =T (n*2A; + W1)T(n2A, + W2),~,2..
Ny 7 A I (nan2)'/2Xj(a) ?

(8)

Then, by combining (8) with Lemmas 1 and 2, under (2) and (5), it holds that for
1=1,..,r

r AT A,
=2{1+4+0(1 )}”1: S '02, + 0,(1)

j(A)
- Z; 1)‘J(A)"’ly(A)"’zy(A)~

= 2{1 + o(1)}%7, vy 3 =1+ 0,(1).
i (4)
as m — 00. Thus, we have that
2 /2vTv,3(A) =1+40p(1) for alls,j. 9)
It concludes the results. a

Proof of Theorem 4.2. We write that for all 4, j

1/2y1/2
'V T uia Wi

Gt = (nady) 2

Then, from Theorem 4.1, (7) and (9) under (2) and (5), it holds that for all %, j

J(A)u,, 1+ Op(l)

as m — oo. It concludes the result. O
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Figure 1: The behaviors of three estimates, A denoted by @, A denoted by A
and A denoted by M. The values of F, F and F are given in the left panels and
their sample variances, var(F), var(F) and var(F), are given in the right panels.



