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Abstract

In this paper, we implement Monte Carlo simulation to examine asymptotic properties of the estimator of

random-coefficient logit models of demand for non-durable consumer goods under an equilibrium assumption

in the presence of micro moments as the number of the examined regional markets increases. The national

micro moments are manufactured from the joint distribution of demographic information of consumers

choosing those products with certain discriminating attributes. We observe that adding an equilibrium

assumption and the micro moments gives asymptotic normality with sharper asymptotic variance-covariance

matrix, while correcting asymptotic bias reported in Freyberger (2015). We discuss possible reasons for such

a phenomenon.
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1 Introduction

Industrial organization and some marketing science hterature is concerned with the structure of industries

in the economy and the behavior of firms and individuals in these industries.

Suppose you observe high prices in an industry. We ask ourselves if this is due to market power, or

due to high costs? Unfortunately, however, the important determinants of firm behavior, costs, are usually

unobserved. The
$u$

new empirical industrial organization” (NEIO; a moniker coined by Bresnahan (1989))

is motivated by this data problem. NEIO takes an indirect approach, in that we obtain estimate of firms’

market power expressed by markups by estimating firms’ demand functions.

Under NEIO, products are treated as bundles of characteristics and preferences are defined on those

characteristics: Each consumer chooses a bundle that maximizes its utility. This characteristics space models

as opposed to the more traditional product space models solve
‘

too many paramete$r^{n}$ and
$u$

new good$s^{n}$

problems assoicated with the latter.

Since consumers have different preferences for different characteristics, and hence make different choices.

In this sense, consumers are heterogeneous. Thus we need to allow different consumers to have different

demographics-income, age, family size, location of residence, and other factors. We then formulate a demand

system which is conditional on the $\infty$nsumer
’

$s$ characteristics and a vector of parameters which determines

the relationship between those characteristics and preferences over products.

To formulate such a demand system using market level data, we proceed as follows. First we draw vec-

tors of consumer characteristics from the distribution of those characteristics, we then determine the choice

probability that each of the drawn households would make for a given value of the parameter. Next we

aggregate those choice probabilities into a predicted aggregate demand conditional on the parameter vector.

Finally we employ a search routine to find the value of that parameter vector that makes these aggregate

probabilities as close as possible to the observed market shares. This idea of simulation estimators devel-

oped by Pakes (1986) enabled us to “disaggregate”aggregate demand to individual/household heterogeneous

behavioral model in principle.

However, there is a problem. Consumer goods are differentiated in many ways. As a result even if we

econometricians measured all the relevant characteristics, we could not expect to obtain precise estimates

of their impacts. One solution proposed in Berry (1994) is to put in the $u_{importmt}n$ differentiating

characteristics and an unobservable, $\xi$ , which picks up the aggregate effect of the multitude of characteristics

that are being omitted. The unobservable $\xi$ was thought to be buried deep inside a highly non-linear set of

equations, and hence it was not obvious how to recover it. Berry (1994) showed that there is a unique value

for the vector of unobservables that makes the predicted shares exactly equal to the observed shares. Berry,

Levinsohn, and Pakes (1995; henceforth BLP(1995)) further provide a contraction mapping technique which

transforms the demand system into a system of equations that is linear in these unobservables.

This $\xi$ represents the effect of characteristics that are unknown only to econometricians but not so to

132



consumers as well as producers: Consumers purchases products knowing $\xi$ and producers know $\xi$ when

they set prices. As a result, goods that have high values for $\xi$ will be priced higher in any reasonable

notion of equilibrium. This produces an a1zalogue to the standard simultaneous equation “endogeneity”

or (simultaneity problem in estimating demand systems in the older demand literature; i.e. prices are

correlated with the disturbance term. However, because of the way these unobservables are set up in BLP

(1995), we are able to use instruments to formulate generaliled method of moments estimation (GMM for

short) to overcome this simultaneity problem. ”’

Some recent empirical studies in industrial organization and marketing science ex$\sqrt{}end$ the framework

proposed by Berry, Levinsohn and Pakes (1995, henceforth BLP (1995)) by integrating infomation on

consumer demographics into the utility functions in order to make their demand models more realistic and

convincing.

Wide availability of public sources of information such as the Current Population Survey (CPS) and

the Integrated Public Use Microdata Series (IPUMS) makes these studies possible. Those sources give

us information on the joint distribution of the U.S. household’s demographics including income, age of

household’s head, and family size. For example, Nevo $(2001\rangle$ ’s examination on price competition in the U.S.

ready-to-eat cereal industry uses individual’s income, age and a dummy variable indicating if $s/he$ has a child

in the utility function. Sudhir (2001) includes household’s income to model the U.S. automobile demand in

his study of competitive interactions among firms in different market segments.

In analyzing the U.S. automobile market, Petrin (2002) goes further and links demographics of new-

vehicle purchasers to characteristics of the vehicles they purchased. Petrin adds a set of functions of the

expected value of consumer’s demographics given specific product characteristics (e.g. expected family size

of households that purchased minivans) as additional moments to the original moments used in BLP (i995)

in the GMM estimation. Specifically, he matches the model’s probability of new vehicle purchase for different

income groups to the observed purchase probabilities in the Consumer Expenditure Survey (CEX) automobile

supplement. He also matches model prediction for average household characteristics of vehicle purchasers

suCh as family-size to the data in CEX automobile supplement. Petrin presupposes readily accessible and

publicly available market information on the population average.2 He maintains that “the extra information

plays the same role as consumer-level data, allowing estimated substitution patterns and (thus) welfare to

directly reflect demographic-driven differences in tastes for observed characteristics” (page, 706, lines 22-25).

His intention, it $\Re ens$ , is to reduce the bias associated with “a heavy dependence on the idiosyncratic logit

“taste” error (page 707, lines 5-6).

He explains that “the idea for using these additional moments derives from Imbens and Lancaster (1994).

They suggest that aggregate data may contain useful information on the average of micro variables” (page

$-$hand, uses detailed consumeplevel data, which include not only individwals’
choices but also the choices they would have made had their first choice products not been available. Although the proposed
method should improve the out of-sample model’s prediction, it requires proprietary consumer-level data, which are not readily
available to researchers, as the authors themselves acknowledged in the paper: the CAMIP data “are generally not available to
researchers outside of the company” (page 79, line 30).
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713, lines 27-29$)^{}$

It should be noted that these additional moments are subject to simulation and sampling errors in BLP

estimation. This is because the expectations of consumer demographics are evaluated conditional on a set

of exogenous product characteristics $X$ and an unobserved product quality $\xi$ , where the $\xi$ is evaluated with

the simulation error induced by BLP’s contraction mapping as well as with the sampling error contained in

observed market shares. In addition, market information against which the additional moments are evaluated

itself contains another type of sampling error. This is because the market information is typically an estimate

for the population average demographics obtained from a sample of consumers (e.g. CEX sample), while

observed market shares are calculated from another sample of consumers. This error also affects evaluation of

the additional moments. In summary each of the four errors (the simulation error, the sampling error in the

observed market shares, the sampling error induced when researcher evaluates the additional moments, and

the sampling error in the market information itself) as well as stochastic nature of the product Characteristics

affects evaluation of the additional moments.

The estimator proposed by Petrin appears to assume that we are able to control impacts from the first

four errors. However, it is not apparent if Petrin estimator is consistent and asymptotically normal (CAN)

without such a control. Furthermore, it is not known either if how many and in what way individuals need

to be sampled in order for Petrin estimator to be more efficient than BLP estimator. Myojo and Kanazawa

(2012) formalized $Petrin^{)}s$ idea and provide the conditions under which Petrin estimator not only has CAN

properties, but is more efficient than BLP estimator as the number ofproducts increases in a national market,

a framework designed to analyze durable goods such as automobiles.

On the other hand, packaged goods such as foods, beverages, grooming aids, laundry powder, toiletries

and others are sold in a retail outlet whose shelf space is limited. Thus it is unrealistic for manufacturer to

increase the number of products and expect retailers to carry all of them. In addition, shoppers for those

packaged goods are likely to shop locally, so their prices are likely to be determined in the local market.

Each one of these markets, of course, reflects regional or local demographics, and this may induce certain

product characteristic(s) to be valued in one local/regional market, but not so much \’in the other. As a

result, consumers in different markets may perceive the same product somewhat differently. To capture

their heterogeneity for those product categories, we need to be able to have a tool to analyze circumstances

where the number of products is fixed, but we are able to observe many of these local/regional markets.

Reyberger (2015) develops asymptotic theory for estimated parameters in differentiated product “de-

mand” systems with a small number of products and a large number of markets $T$ . His asymptotic theory

takes into account the fact that “the predicted market shares are approximated by Monte Carlo integration

with $R$ draws and that the observed market shares are approximated from a sample of $N$ $\infty$nsumers As

expected, he found “both approximations affect the asymptotic distribution, because they both lead to a

3Original intunsion of Imbens and Lancaster is to improve efficiency for a class of the extremum estimators. There is a
difference between Petrin’s and Imbens and Lancaster’s approaches in sampling process to construct original and additional
sample moments. Petrin combines the sample moments calculated over pnducts with additional moments calculated over
indivUuals, while Imbens and Lancaster use the moments calculated over the same individuals.
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bias and a variance term in the asymptotic expansion of the estimator.” He showed that “when $R$ and $N$

do not increase faster than the number of markets, the bias terms dominate the $vari\epsilon nce$ terms, and the

asymptotic distribution might not be centered at $0$ and standard confidence intervals do not have the right

size, even asymptotically.” He showed that the leading bias terms can be eliminated by using an analytic

bias correction method.

In this paper, we also deal with the same circumstances as Freyberger (2015) in which the number

of products is fixed while the number of markets increases. We introduce the pricing equation as well as

the additional micro moments or summary statistics that provide information on the joint distribution of
consumer demegraphics and product characteristics as Petrin (2002) and Myojo and Kanazawa (2012) did to

the model and investigate if the accuracy, both in terms of bias and variance, of the estimator is improved

upon via Monte Carlo simulation. This study is designed to facilitate theoretical examination of the problem.

2 System of Demand and Supply with Additional Moments in

Multiple Markets

In this section, we define the product space precisely, and reframe the estimation procedure of BLP (1995)

when combining the demand and supply side moments with the additional moments relating consumer

demographics to the characteristics of products they purchase. For convenience in comparison to Berry,

Linton, and Pakes $\langle$2004) ($BI_{J}P(2004)$ for short), notation and most definitions are kept as same as possible

to those in BLP (2004).

2.1 Demand Side Model

Regional markets are indexed by $m=1$ , $\cdots$ , $M$ and the population in market $M$ is $I_{m}$ . We assume the same

finite set of products, $j=1,$ $\rangle J$ , is available in each regional market. We also assume that each consumer

only participates in one market and chooses one product including “outside” good that maximizes his/her

utility within that market. We assume the utility of consumer $i$ for product $j$ in regional market $m$ to be

$u_{ij}^{m} = \alpha\ln\langle y_{t}^{m}-p_{j}^{rn})+x_{j}’\beta+\xi_{j}^{m}+\sum_{k=1}^{K}\pi_{k}x_{jk}\nu_{ik}^{rn}+\epsilon_{ij}^{rn}$

(1) $= \alpha\ln(y_{i}^{m}-p_{j}^{m}\rangle+\sum_{k=1}^{K}x_{jk}(\beta_{k}+r_{k}\nu_{ik}^{rn})+\xi_{j}^{m}+\epsilon_{ij}^{\tau r\iota}.$

This specification closely parallels with that of BLP (1995) except that some demographic and product

characteristics are indexed by $m$ as well. For instance, $y_{i^{n}}^{7}$ is the income of consumer $i,$ $p_{j}^{m}$ is the price of

product $j,$ $\xi_{j}^{rn}$ is the unobserved product characteristics for product $j,$ $\nu_{ik}^{m}$ is consumer $i$ ’s taste for k-th

product characteristic, and $e_{ij}^{rn}$ is unobserved idiosyncratic tastes of consumer $i$ , all in market $m$. We assume

that $\epsilon_{ij}^{rn}$ are i.i. $d$ with type I extreme value.

The price and the unobserved product characteristic of the same product may as weil vary from one

135



market to the other because of the differences in demographics between markets. However, we assume the

parameters $(\alpha,\beta)$ are not indexed by $m.$

Although most observed product characteristics are not correlated with the unobserved product charac-

teristics $\xi_{j^{n}}’\in\Re,$ $j=1$ , . . ., $J$ , some of them (e.g. price) are. We denote the vector of observed product

characteristics $x_{j}=(x_{1j}’, x_{2j}’)’$ where $x_{1j}\in \mathfrak{R}^{K_{1}}$ are exogenous and not correlated with $\xi_{j}^{m}$ , while $x_{2j}\in \mathfrak{R}^{K_{2}}$

are endogenous and correlated with $\xi_{j}^{m}$ where $K=K_{1}+K_{2}$ . Observed product characteristics other than

price, denoted as $x_{1j}$ are not indexed by $m$ because we assume that the same set of products is sold in

every market. We assume the set of exogenous product characteristics $(x_{1j},\xi_{j}^{1},\xi_{j}^{2}, \ldots, \xi_{j}^{M})$ , $j=1$ , $\cdots$ , $J$ is

a random sample from the underlying population of product characteristics, and is thus independent across

$j$ similar to the framework of BLP $(1995\rangle.$

The $\xi_{j}^{m\prime}s$ are assumed to be mean independent of $X_{1}=(x_{11}, \ldots,x_{1J})’$

(2) $E_{\xi|X_{1}}[\xi_{j}^{rn}|X_{1}]=0$

with probability 1. We also assume the conditional variance of $\xi_{j}^{m}$ on $x_{1j}$ is finite

$\sup \max E_{\zeta^{m}|x_{1j}}[(\xi_{j}^{m})^{2}|x_{1j}]<\infty$

$1\leq m\leq M^{1\leq j\leq J}$

with probability one. We denote by $X=(x_{1}, \ldots, x_{J})’$ the set of all observed product characteristics.

We define the utility for outside good as

$u_{0}^{m}=\alpha\ln(y^{m})+\epsilon_{i0}^{m},$

and redefine the utility as difference from outside good, $U_{1j}^{m}=u_{ij}^{m}-u_{i0}^{m}$ as

$U_{j}^{\dot{m}} = u_{1j}^{m}-u_{i0}^{m}$

$= \alpha\ln(y_{i}^{m}-p_{j}^{m})+\sum_{k=1}^{K}x_{jk}(\beta_{k}+\pi_{k}\nu_{ik}^{m})+\xi_{j}^{m}+\epsilon_{ij}^{m}-(\alpha\ln(y_{i}^{m})+\epsilon_{i0}^{m})$

$= \alpha\ln(1-\frac{p_{j}^{m}}{y_{1}^{m}})+x_{j}’\beta+\sum_{k=1}^{K}x_{jk}\pi_{k}\nu_{\grave{l}}^{m_{k}}+\xi_{j}^{m}+\epsilon_{ij}^{m}-\epsilon_{0}^{\dot{m}}$

(3) $= ff_{j}^{n}(x_{j},\xi_{j}^{m};\beta)+\mu_{ij}^{m}(x_{j},p_{j)}^{m}y_{1}^{m}, v_{i}^{m};\alpha,\pi)+\epsilon_{ij}^{m}-\epsilon_{/0}^{m},$

where

$\delta_{j}^{m}(x_{j},\xi_{j}^{m};\beta) = x_{j}’\beta+\xi_{j}^{m},$

$\mu_{ij}^{m}(x_{j},p_{j}^{m},y_{i}^{m}, v_{l}^{\tau n};\alpha, \pi) = \alpha\ln(1-\frac{p_{j}^{m}}{y_{\dot{\iota}}^{m}})+\sum_{k=1}^{K}x_{jk}\pi_{k}\nu_{k}^{m}.$

This redefinition standardizes the utility function so that $U_{i0}=$ O. Note that $\delta_{j}^{m}(x_{i},\xi_{j}^{m};\beta\rangle$ depends on

product characteristics, but not on consumer demographics, while $\mu_{1j}^{m}(x_{j},p_{j}^{m},y_{i}^{m}, \nu_{1}^{m};\alpha, \pi)$ depends on both.

136



The conditional probability $\sigma_{ij}^{m}$ for consumer $i$ in market $m$ to choose product $j$

(4) $\sigma_{ij}^{m}\langle X, \xi^{m}, y_{l}^{m}\prime, v_{i\rangle}^{m}\cdot\theta_{d})=\frac{\exp(\delta_{j}^{m}+\mu_{ij}^{m})}{\sum_{j=0}^{J}\exp(\delta_{j}^{m}+\mu_{ij}^{m}\rangle},$

is a map from the set of observed and unobserved product characteristics $X$ and $\xi^{m}=(\xi_{1}^{m}, \ldots,\xi_{J}^{m})’,$

demographics $y_{i}^{\prime n}$ and tastes $v_{i}^{rn}\in \mathfrak{R}^{v}$ of consumer $i$ in market $m$, and a demand parameter vector $\theta_{d}\in\Theta_{d}.$

We assume $\sigma_{{\} j}^{m}\prime(X,\xi^{\nu n}, y_{i}^{rn}, v_{i}^{rn};\theta_{d})>0$ for all possible values of $(X,\xi^{\tau n},y_{i}^{m}, v_{t}^{m};\theta_{d})$ .
The BLP framework generates the vector $\sigma^{m}$ of market shares in region $m$ by aggregating over the

individuaJ choice probability $\sigma_{ij}^{m}$ over the joint distribution $P^{\prime n}(\cdot)$ of the consumer demographics and tastes

$(y_{i}^{m}, v_{i}^{n})$ as

(5) $\sigma_{j}^{ln}(X,\xi^{m}, \theta_{d}, P^{m}\rangle=\int\sigma_{i_{\hat{J}}}^{rn}(X,\xi^{m}, y_{i)}^{rn}v_{i)}^{m}\cdot\theta_{d})dP^{m}(y_{i}^{m}, v_{i}^{m}\rangle$

where $P^{m}$ is typically the empirical joint distribution of the consumer demographics and tastes from a

random sample drawn from the underlying population joint distribution $P^{m,0}$ of demographics and tastes in

market $m$ . If we evaluate (5) at $(\theta_{d}^{0},P^{m,0})$ , where $\theta_{d}^{0}$ is the true value of demand side parameters, we have

the “conditionally true” market shares $s^{m,0}$ given the product characteristics (X, $\xi^{rn}\rangle$ in market $m$ . That

is,

(6) $\sigma^{m}(X,\xi^{m},\theta_{d}^{0},P^{m,\zeta)})\equiv 8^{m,0}.$

where $s^{m,く)}=$ $(s , \cdots, s_{J}^{\tau n,O})’.$

ffwe solve the identity (6) at any $(\theta_{d}, X, s^{m}, P^{m})\neq(\theta_{d}^{0}, X, s^{m,0},P^{rn,0})$ , the independence assumi)tion for

the resulting $\xi_{j}^{rn}(\theta_{d},X,s_{j}^{m}, P^{m})$ no longer holds because the two factors deciding the $\xi_{j}^{rn}$–the market share

$s_{f}^{m}$ and the endogenous product characteristics $x_{2j}^{rn}$ for product j–are endogenously determined through

the market equilibrium as a function of the characteristics of all products. However, if we solve (6) at

$(\theta_{d},X, s^{m}, P^{m})=(\theta_{d}^{0},X, s^{m,0}, P^{\gamma n,0})$ , we are $abl\epsilon$ to retrieve the original $\xi^{m}=\xi^{\gamma n}(\theta_{d}^{0}, X, s^{m,0}, P^{m,0})$ for

$m=1$ , $\cdots$ , $M$ and they are independent. 4

2.2 Supply Side Model

The supply side model formulates the pricing equations for the $J$ products marketed. We assume an

oligopolistic market where a finite number $F$ of “national” suppliers $(f=1$ , . .. , $F\rangle$ , and each supplier

produces $J_{f}$ products. Suppliers are $mmmi_{1}ers$ of profit from the combination of Iroducts they produce.

Assuming Bertrand-Nash pricing provides the first order condition for the product $j\in \mathcal{J}_{f}$ of the manufac-

$-$which there $is$ a unique solution $\xi$ for

$(7\rangle \epsilon-\sigma(X, \xi, \theta_{d}, P)=0$

for every (X, $\theta_{d},$ $s,P\rangle\in \mathcal{X}\cross\Theta_{d}\cross S_{J}\cross \mathcal{P}$ , where $X$ is a space for the product &aracteristics $X,$ $S_{J}$ is a space for $tl\iota e$ xnarket
share vector $s$ , and $\mathcal{P}$ is a family of probability measures.
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turer $f$ in regional market $m$ is

(8) $\sigma_{j}^{rn}(X,p^{m},\xi^{m},\theta_{d}, P^{m})+\sum_{h\in J_{f}}(p_{\hslash}^{m}-\pi\kappa_{h}^{m})\frac{\partial\sigma_{h(X,p,\theta_{d},P^{m})}^{mm}}{m}=0,$

where $p^{m}=(p_{1,}^{m}p_{J}^{m})$ . This equation can be expressed in matrix fom as

(9) $\sigma^{m}(X,\xi^{m},\theta_{d},P^{m})+\Delta^{m}(p^{m}-mc^{m})=0$

where $\Delta^{m}$ is the $J\cross J$ non-singular gradient matrix whose $(j, h)$ element is defined by

$\Delta_{jh}^{m}=\{\begin{array}{ll}\partial\sigma_{h}^{m}(X,\xi^{m},\theta_{d}, P^{m})/\partial p_{j}^{m}, if theproducts j and h are produced by the same firm,0, otherwise.\end{array}$

We define the marginal cost $\pi\kappa_{j}^{m}$ as an implicit function of the observed cost shifters $w_{j}$ common to all

the regional markets and the unobserved cost shifter $\omega_{j}^{m}$ that depends on the market as

(10) $g(mc_{j}^{m})=w_{j}’\theta_{c}+\omega_{j}^{m},$

where $g$ is a monotonic function and $\theta_{c}\in e_{c}$ is a vector of cost parameters.

While the choice of $g$ depends on the application, we assume $g$ is continuously differentiable with

a finite derivative for all realizable values of cost. Suppose that the observed cost shifters $w_{j}$ consist

of exogenous $w_{1j}\in\Re^{L_{1}}$ as well as endogenous $w_{2j}\in\Re^{L_{2}}$ , and thus we write $w_{j}=(w_{1j}’, w_{2j}’)’$ and

$W=(w_{1}, \ldots, w_{J})’$ . The exogenous cost shifters include not only the cost vanables detemined outside the

market under $\infty$nsideration (e.g. factor price), but also the product design characteristics suppliers cannot

immediately change in response to fluctuation in demand. The cost variables determined by the market

equilibrium (e.g. production scale) are treated as endogenous cost shifters.

As in the formulation of $(x_{1j},\xi_{j}^{1},\xi_{j}^{2},$
$\ldots,$

$\xi_{j}^{M}\rangle,$ $j=1,$ $\ldots,$
$J$ on the demand side, we assume the set

of exogenous $\infty st$ shifters $(w_{1j}, \omega_{j}^{1}, \omega_{j}^{2},\ldots,\omega_{j}^{M})$ , $j=1$ , $\cdots$ , $J$ is a random sample from the underlyin$g$

population of coet shifters. Thus $(w_{1j}, \omega_{j}^{1}, \omega_{j}^{2},\ldots,\omega_{j}^{M})$ are assumed to be independent acroes $j$ , while $w_{2j}$

are in general not independent across $j$ as they are determined in the market as functions of cost shifters of

other products. Similar to the demand side unobservables, the unobserved cost shifter $\omega_{j}$ is assumed to be

mean independent of the exogenous cost shifters $W_{1}=(w_{11}, \ldots, w_{1J})’$ , and satisfy with probability one,

(11) $E_{\omega^{m}|X_{1}}[\omega_{j}^{m}|W_{1}]=0$ , and $\sup_{1\leq m\leq M}\max_{1\leq j\leq J}E_{\omega^{n}|X_{1}}[(\omega_{j}^{m})^{2}|w_{1j}]<\infty.$

Define $g(x)\equiv(g(x_{1}), \ldots,g(x_{J}))$ . Solving the first order condition (9) with respect to $mc^{m}$ and substi-

tuting for (10) give the vector of the unobserved cost shifters

(12) $\omega^{m}(\theta,s^{m},P^{m})=g(p^{m}+(\Delta^{m})^{-1}\sigma^{m})-W\theta_{c}.$
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Notice that the parameter vector $\theta$ in $\omega$ contains both the demand and supply parameters, i.e. $\theta=$

$(\theta_{d}’, \theta_{c}’)’$ . Since the profit margin $m_{g_{j}}(\xi,\theta_{d}, P)$ for product $j$ is determined not only by its unobserved

product characteristics $\xi_{j}$ , but by those of the other products in the market, these $\omega_{j}$ are in general dependent

across $j$ when $(\theta, s, P)\neq(\theta^{0}, s^{0},P^{0})$ . However, when (12) is evaluated at $\langle\theta,$

$s,$ $P$) $=(\theta^{\mathfrak{o}}, s^{0}, P^{0})$ , we are

able to recover the original $t\iota fj,j=1$ , $\cdots$ , $J$ , and they are assumed independent across $j$ and $m.$

2.3 GMM Estimation with National Micro Moments

Let us define the $J\cross L_{d}$ demand side instrument matrix $Z_{d}=(z_{1}^{d},$
$\ldots$ , $z_{J}^{d}\rangle’$ whose components $z_{j}^{d}$ can be

written as $z_{j}^{d}(x_{11}, \ldots, x_{1J})\in\Re^{L_{d}}$ , where $z_{j}^{d}$ : $\mathfrak{R}^{K_{1}xJ}arrow \mathfrak{R}^{L_{d}}$ for $j=1$ , $\cdots$ , $J$. It should be noted that

the demand side instruments $z_{f}^{d}$ for product $j$ are assumed to be a function of the exogenous characteristics

not only of its own, but of the other products in the market. This is because the instruments by definition

must correlate with the product characteristics $x_{2j}$ , and these endogenous variables $x_{2_{J’}}$ (e.g. price) are

determined by both its own and its competitors’ product characteristics.

Similar to the demand side, we define the $J\cross L_{c}$ supply side instruments $Z_{c}=(z_{1}^{c}, \ldots, z_{J}^{c})’$ as $a$

function of the exogenous cost shifters $(w_{11}, \ldots, w_{1J}\rangle of all the$ products. Here, $z_{j}^{c}\langle w_{11}, . w_{1J})$ $\in \mathfrak{R}^{L_{o}}$

and $z_{j}^{c}$ : $\mathfrak{R}^{L_{1}\cross J}arrow \mathfrak{R}^{L_{c}}$ for $j=1$ , . .., $J$. We also note that some of the exogenous product characteristioe

$x_{1j}$ affect the price of the product because they affect manufacturing cost. Thus those く$x_{1j}$ may be included

among the exogenous cost shifters $w_{1j}$ if they are uncorrelated with the unobservable cost shifter $\omega_{j}.$

Assume, for moment, that we know the underlying taste distribution of $P^{O}$ and that we are able to

observe the true market share $s^{0}$ . Considering stochastic nature of the product characteristics $X_{1}$ and $\xi,$

we set forth the demand side restriction as

(13) $E_{x_{1},\xi^{n}}[z_{j}^{d}\xi_{f}^{m}(\theta_{d},X,\epsilon^{m,0},P^{m,0})]=0$

at $\theta_{d}=\theta_{d}^{0}$ where the expectation is taken with respect not only to $\xi$ , but also to $X_{1}$ for $m=1$ , . .., $M$ . The
supply side restriction we use is

(14) $E_{w_{1},\omega^{n}}[z_{j}^{c}\omega_{j}^{rn}(\theta,X,s^{m,0},P^{m,0})]=0$

at $\theta=\theta^{0}$ for $m=1$ , . $M$ . We extend the BLP framework to use the orthogonality conditions between the

unobserved product characteristics $(\xi_{j^{n}},\omega_{f}^{r,/\iota}\rangle and the$ exogenous instrumental variables $(z_{i}^{d},z_{j}^{c})$ as moment

conditions to obtain the GMM estimate of the parameter $\theta$ . The “sample” moments for the demand and

supply systems are

(15)

$G_{M}(\theta,X,s^{\mathfrak{o}},P^{0})=(\begin{array}{l}G_{M}^{d}(\theta_{d},X,s^{0},P^{0}\rangle G_{M}^{c}(\theta,X,\epsilon^{0},P^{()})\end{array})=(\begin{array}{ll}\sum_{m=l}^{M}\sum_{j=1}^{J}z_{j}^{d}\xi_{j}^{m}(\theta_{d},X,s^{o} P^{0})/M\sum_{rn=1}^{M}\sum_{j=1}^{J}z_{j}^{c}\omega_{j}^{m}(\theta,X,\epsilon^{0} P^{0})/M\end{array}).$

139



It should be noted that we are interested in circumstances where the number $J$ of products in region $m$ is

fixed, while the number $M$ of markets increases and this requires averaging of $\sum_{j=1}^{J}z_{j}^{m}\xi_{j}^{m}$ over $m$ thanks

to the assumption that $\xi_{j}^{m},$ $j=1$ , $\cdots$ , $J,$ $m=1$ , .. ., $M$ are i.i. $d$ when conditional on $X_{1}.$

For some markets, market summaries such as average demographics of consumers who purchased a specific

type of product are publicly available, even if detailed individual-level data such as purchasing histories are

not. We now operationalize the idea put forth by Petrin (2002), which extends the BLP framework by adding

moment conditions constructed from the market summary data. First we require a few definitions. A $disarrow$

criminating attribute is an observable product characteristic of products that determines a subset of products

in the market, those products that possess the attribute. We denote the set of products with discriminat-

ing attribute $q$ as $Q_{q}$ , and the consumer’s choice as $C_{i}$ . We will write “consumer $i$ chooses discriminating

attribute $q$ when $C_{i}\in Q_{q}$ . We assume there is a finite number of discriminating attributes $q=1$ , . .., $N_{p},$

and that the market shaoe of each $di\mathfrak{X}riminat\dot{m}g$ attribute is poeitive, i.e., $Pr[C_{i}\in Q_{q}|X,\xi(\theta_{d}, s^{0}, P^{0})]>0$

for all $q$ in 1, $\cdots$ , $N_{p}.$

We next consider the expectation of a consumer’s demographics conditional on a specific discriminating

attribute. Suppose that consumer $i$ ’s demographics can be decomposed into observable and unobservable

$\infty$mponents $v_{i}=(v_{i}^{ob\epsilon}, v_{1}^{unobs})$ . The densities of $v_{i}$ and $\nu_{i}^{ob\epsilon}$ are respectively denoted as $P^{0}(dv_{i})$ and

$P^{0}(dv_{:}^{ob\iota}\rangle$ . Some observable demographic variables such as age, family size, or income, are already numerical,

but other demographics such ss household with children, belonging to a certain age group, choice of residential

area, must be numerically expressed using indicators. We denote this numericauy represented $D$ dimensional

demographics as $v_{i}^{obs}=(\nu^{\dot{\sigma}_{1}b\epsilon}, \ldots,\nu_{iD}^{obs})’$ . We assume that the joint density of demographics $v_{i}^{ob\epsilon}$ is of

bounded support. Consumer $i$ ’s d-th observed demographic $v_{u}^{obs},$ $d=1$ , . .. , $D$ is averaged over all consumers

choosing discriminating attribute $q$ in the population to obtain the conditional expectation $\eta_{dq}^{0}=E[\nu_{id}^{obc}|C_{i}\in$

$Q_{q},$ $X,$ $\xi(\theta_{d)}^{0}s^{0}, P^{0})].$

We assume $\eta_{dq}^{0}$ has a finite mean and variance for all $J$ , i.e. $E_{x,\xi}[\eta_{dq}^{0}]<\infty$ and $V_{x,\xi}[\eta_{\phi}^{0}]<\infty$ for

$d=1$ , $\cdots$ , $D,$ $q=1$ , $\cdots$ , $N_{p}.$

Let $Pr[dv_{id}^{ob\alpha}|C_{i}\in Q_{q}, X, \xi(\theta_{d}, s^{0}, P^{0})]$ be the conditional density of consumer $i$ ’s demographics $v_{u}^{ob\epsilon}$

given his/her choice of discriminating attribute $q$ and product characteristics $(X, \xi(\theta_{d}, \epsilon^{0}, P^{0}\rangle)$ . Since the

$\infty$nditional expectation $\eta_{dq}^{0}$ can be written as

(16) $E[\nu_{u}^{ob\epsilon}|C. \in Q_{q},X,\xi(\theta_{d},\epsilon^{0},P^{0})]$

$= \int v_{u}^{ob\epsilon}Pr[d\nu_{1d}^{obs}|C_{1}\in Q_{q},X,\xi(\theta_{d}, s^{0},P^{0})]$

$= \frac{\int v_{d}^{ob\epsilon}Pr[C_{i}\in Q_{q}|X,\xi(\theta_{d},s^{0},P^{\mathfrak{o}}),\nu_{d}^{ob\epsilon}]P^{0}(d\nu_{id}^{ob\epsilon}\rangle}{Pr[C_{i}\in Q_{q}|X,\xi(\theta_{d},\epsilon^{0},P^{0})]}$

$= \frac{\int v_{id}^{ob\epsilon}Pr[C_{i}\in Q_{\eta}|X,\xi(\theta_{d},s^{0},P^{0}),v_{i}]P^{0}(dv_{t’})}{Pr[C_{i}\in Q_{\eta}|X,\xi(\theta_{d},\epsilon^{0},P^{0})]}$

$= \int\nu_{id}^{ob\epsilon}\frac{\sum_{j\in Q_{q}}\sigma_{ij}(X,\xi(\theta_{d},\epsilon^{0},P^{0}),v_{i};\theta_{d})}{\sum_{j\in Q_{q}}\sigma_{j}(X,\xi(\theta_{d},\epsilon^{0},P^{0}\rangle,\theta_{d},I^{\infty})}P^{\mathfrak{o}}(dv_{i})$ ,
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we can form an identity, which is the basis for additional moment conditions

(17) $\eta_{dq}^{(}-\int v_{\iota’d^{\theta}}^{ob}\frac{\sum_{j\in Q_{q}}\sigma_{ij}(X,\xi(\theta_{d}^{0},e^{0},P^{0}),v_{i};\theta_{d}^{0}\rangle}{\sum_{j\epsilon Q_{\eta}}\sigma_{j}\langle X,\xi(\theta_{d^{8^{0}}}^{0},,P^{0}\rangle,\theta_{d}^{)},P^{0}\rangle}P^{0}(d\nu_{i})\equiv 0$

for $q=1$ , , .., $N_{p},$ $d=1$ , $\cdots$ , $D.$

Although $P^{0}$ is so far assumed known, we typically are not able to calculate the second term on the

left hand side of (17) analytically and will have to approximate it by using the empirical distribution $P^{T}$ of

an i.i. $d$ . sample $v_{t},$ $t=1$ , . . ., $T$ from the underlying distribution $P^{0}$ . The corresponding sample moments

$G_{J,T}^{a}(\theta_{d}, s^{0}, P^{0}, \eta^{0})$ , where superscript $a$ stands for “additional,” are

(18) $G_{M,T}^{a}( \theta_{d}, s^{0}, P^{0}, \eta^{0})=\eta^{0}-\frac{1}{T}\sum_{t=1}^{T}v_{t}^{ob\delta}\otimes\psi_{i}(\xi(\theta_{d}, s^{0}, P^{0}),\theta_{d}, P^{0})$

where

The symbol $\otimes$ denotes the Kronecker product. The quantity $\psi_{t}(\xi, \theta_{d}, P)$ is consumer $t$ ’s model-calculated

probability of purchasing $\zeta$Jroducts with discriminating attribute $q$ relative to the model-calculated market

share of the same products. Note that these additional moments are again conditional on product charac-

teristics $\langle$X, $\xi(\theta_{d}, s^{0}, P^{0})$ ), and thus depend on the sample sizes $J$ and $T.$

We use the set of the three moments, two from (16) and from (18) as

$(20\rangle G_{M,T}(\theta, X, \epsilon^{0}, P^{0}, \eta^{0})=(\begin{array}{lll}G_{M}^{d}(\theta_{d},s^{0} X,’ P^{(j})8^{0}G_{M}^{c}(\theta,X, P^{0})G_{M,T}^{a}(\theta_{i}p,\delta^{0} P^{0},\eta^{0})\end{array})$

to estimate $\theta.$

As pointed out in BLP (2004), we have two issues when evaluating $||G_{J,T}(\theta,$ $s^{0},$ $P^{0},\eta^{0}\rangle||$ . First, although
we assume $P^{m,0}$ is known, we typicaly are not able to calculate $\sigma(X,\varphi, \theta_{d}, P^{\ovalbox{\tt\small REJECT} n,0})$ analytically and have

to $a)$ it by a simulator, say $\sigma\langle X,$ $\xi,$ $\theta_{d},$ $P^{m,R_{m}}$ ), where $P^{fn,R_{m}}$ is the empirical measure of an i.i. $d.$

sample $(y_{r}^{m}, v_{r}^{m})$ , $r=1$ , .. ., $R_{m}$ in market $m$ from the underlying true distribution $P^{m,0}$ in market $m$ . The
sample $v_{r},$ $r=1$ , . . . , $R$ is assumed independent of the sample $\nu_{t},$ $t=1$ , . .. , $T$ in (18) for evaluating the

additional moments. The simulated market shares are then given by

$(21\rangle$

$\sigma_{j}(X,\xi^{m},\theta_{d)}P^{m,R_{m}}\rangle=\int\sigma_{ij}(X,\xi^{m},y_{i}^{m},v_{i^{n}}^{7};\theta_{d})dP^{n,R_{n}}(y_{i}^{rn},v_{i})\equiv\frac{1}{R_{m}}\sum_{r=1}^{R_{m}}\sigma_{rj}(X,\xi^{m},y_{r}^{\tau n},v_{r}^{rn}\fbox{Error::0x0000};\theta_{d})$ .
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Second, we are not necessarily able to observe the true market shares $s^{m,0}$ in market $m$ . instead, the vector

of observed market shares, $s^{m,n_{n}}$ , are typically constructed from $n_{m}$ i.i.d. draws from the population of

consumers, and hence is not equal to the population value $s^{m,0}$ in general. The observed market share of

product $j$ in market $m$ is

(22) $s_{j}^{m,n_{n}}= \frac{1}{n_{m}}\sum_{\dot{\iota}=1}^{n_{m}}1(C_{1}=j)$ ,

where the indicator variable $1(C_{1}=j)$ takes value 1 if $C_{1}=j$ and $0$ otherwise. Since $C_{1}$ denotes the choice

of randomly sampled consumer $i$ , they are i.i. $d$ . across $i.$

We substitute $\xi_{j}^{m}(\theta_{d}, X, s^{m,n_{m}},P^{m,R_{m}})$ , $m=1$ , $\cdots$ , $M$ , the solution of $s^{m,n_{m}}=\sigma(X,\xi^{m},\theta_{d},P^{m,R_{m}}\rangle$

for $\xi_{j}(\theta_{d},X, s^{\mathfrak{o}}, P^{0})$ in (16) to obtain

(23) $G_{M}^{d}( \theta_{d}, \{s^{m}\}, \{P^{R_{m}}\})=\sum_{m=1}^{M}w_{m}\{\sum_{j=1}^{J}z_{j}^{d}\xi_{j}^{m}(\theta_{d)}X, s^{m,n_{n}},P^{m,R_{m}})\},$

where $w_{m}$ is non-stochastic weight summed up to 1, such as market size.

Similarly, for the supply side, we construct the sample analogue of the regional orthogonality conditions

for supply side as follows.

(24) $G_{M}^{c}( \theta, \{s^{m}\}, \{P^{R_{m}}\})=\sum_{m=1}^{M}w_{m}\{z_{j}^{c}\omega_{j}^{ln}(\theta, X, W, s^{mn_{m}}, P^{m,R_{m}})\}.$

Suppose that a national micro moments are avialble as in Petrin (2002) and we assume the econometrician

obtains the national population database $P$ , not regional databsses $P^{m}(m=1, \ldots , M)$ . In general, we do not

know the conditional expectation of demographics $\eta_{dq}^{0}$ . instead, we have an estimate $\eta_{dq}^{N}$ from independent

source, typically generated from a sample of $N$ consumers. The sample $\infty$unterparts to (18) for the additional

moments are thus

$G_{M,T}^{a}( \theta_{d}, \{s^{m}\}, \{P^{R_{m}}\}, \eta^{N})=\eta^{N}-\frac{1}{T}\sum_{t=1}^{T}v_{t}^{m,\circ b\epsilon}\otimes\psi^{m}(\xi^{m}(\theta_{d}, \epsilon^{n_{n}},P^{R_{m}}), \theta_{d}, P^{R_{m}})$

(25)

where the symbol $\otimes$ denotes the Kronecker product and

$\eta^{N} = (\eta_{11}^{N}, \ldots,\eta_{1N_{p}}^{N}, \ldots,\eta_{D1}^{N}, \ldots,\eta_{DN_{p}}^{N})’,$

$\psi_{t}^{m}(\xi,\theta,P) = (\begin{array}{l}\frac{\sum_{j\in Q_{l}}\sigma_{j}^{n}(X,\xi,\nu.;\theta_{d})}{\sum_{j\epsilon o_{1}^{\sigma_{j}(X,\xi,\theta_{i},P)}}}\vdots\frac{\Sigma\sigma^{n}(X.\xi,v.\cdot\theta_{d})}{\sum_{j\in 9_{N_{p}}}\sigma_{j}(X,C\theta_{d},P)}\end{array}).$
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3 Monte Carlo Experiments

We now examine the effect of adding pricing equation as well as additional micro moments in the multiple

market demand and supply system by Monte Carlo experiments. Since we consider the case where one

national market is divided into multiple $M$ markets, as the number of markets grows larger, we obtain the

more detailed information on the products and consumers. We want to know whether the additional moment

conditions only on “national” consumel$\cdot$ information works in this situation. Further, we check the needed

order of sample size $T$ relative to the number of markets to show CAN properties. We do not check the

effect of sample size $R_{m}$ in this paper. Note that sample size $R_{m},$ $m=1$ , . . . , $M$ , and $T$ are chosen by the

econometricim. 5.

3.1 Primary Settings of the Simulation

In this subsection, the primary settings of the simulation are shown. In the simulation study, the utility

function of consumer $i$ for product $j$ in regional market $m$ is specified as

(26) $u_{ij}^{rn} =-\alpha p_{j}^{m}+\beta_{0}x_{j}+\beta_{1}x_{j}\nu_{i}^{m}+\xi_{4^{n}}^{7}+\epsilon_{ij}^{m}.$

The observed product characteristics $x_{j}$ and unobserved product characteristics $\xi_{f}^{m}$ are random draws

from $N(3,1)$ and $N(O, 1)$ respectively and $x_{j}$ and $\xi_{m}^{j}$ are independently drawn. The consumer demographics

$\iota ノ_{}i^{m}$ is random draws from $N(O, 1)$ and consumer’s idiosyncratic tastes term $e_{cj}^{m}$ is assumed to be i.i. $d$ . with

extreme value to derive logit model.

The prices $p_{j}^{m}$ of product $j$ in market $m,$ $j=1$ , . . . , $J,$ $m=1$ , .. ., $M$, is endogenously determined in each

regional market equilibrium, so differ from market to market by solving (9) with Newton-Raphson method.

The price is the only endogenous variable in this experiment We set the true demand side parameters as

$\alpha=1.0,$ $\beta 0=1.0$ and $\beta_{1}=0.5$ common to all regional markets.

We set the total number of consumers in the national market to be $I=10,000$ and there exist the same

number $I/M$ of consumers in each regional market. We need the population of size $I$ because we must

construct the true market share. The weight for each regional market $m$ is $w_{m}=l_{m}=1/M$ common to all

the regionai markets. We draw $R_{m}$ or $T$ consumers from these regional or national population database to

construct sample analogue of moment conditions.

For the supply side, we assume there are $F=5$ suppliers in national market and each produces the same

number $J_{f}=4$ of products. The same set of products are sold in the all regional markets. Thus, there exist

$J=J_{f}\cross F=20$ products in national as wffi as each regional market.

The cost function of product 2 in market $m$ is defined as

(27) $mc_{j}^{m}=x_{j}\gamma+\omega_{j}^{m},$

$-N$because (1) the econometrician usually does not have control over them
anyway, and (2) we assume those collecting relevant data to use large enough sample size.
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where the unobserved cost shifters $\omega_{j}^{m}$ are random draws from $N(O, 1)$ . All suppliers have the same form of

cost function. We set the cost side parameter to be $\gamma=1.5.$

To estimate $\alpha=1.0,$ $\beta_{0}=1.0,$ $\beta_{1}=0.5$ and $\gamma=1.5$ , we need instruments. We construct three

instruments from X for the product $j$ produced by $f:x_{j}$ itself, the sum of $xk$ within the firm $f$ except

$x_{j}$ , and the sum of $x_{k}$ over the other firms than $f$ , as BLP (1995) proposed. These three instruments are

commonly used for both demand side and supply side.

As stated, we use the model-calculated conditionally true share as observed share, or we use $s^{0}$ and not

$s^{n}$ to uncover the effect of the micro moment, without confounded by the sampling error in market share.

For the same reason, we use $\eta^{\mathfrak{o}}$ instead of $\eta^{N}$ for the micro moment matching. Note we assume that the

distribution of each regional variable is common to all the regions and moreover all drawn variables are

independent.

For the additional micro moment conditions, we use two types: (1) the average of $\nu$ of consumers who

choose from a set $Q_{1}$ of the products priced higher than the national average price, (2) the average of $\nu$ of

consumers who choose a set $Q_{2}$ of the products with characteristic $x_{j}$ greater than the national average.

Then we construct the additional moment $G_{T}^{a}(\theta_{d}, s^{0},P^{R}, \eta^{0})$ as in (25).

The objective function to minimize is $Q_{M.T}=G_{M,T}’$WG$M,T$ , where

$G_{M,T}=(\begin{array}{l}G_{M}^{d}(\theta_{d},\{\epsilon^{0}\},\{P^{R}\})G_{M}^{c}(\theta,\{\epsilon^{\mathfrak{o}}\},\{P^{R}\})G_{M,T}^{a}(\theta_{d},\{s^{\mathfrak{o}}\},\{P^{R}\},\eta^{\mathfrak{o}})\end{array})$

and $W$ is the weight. We use $8\cross 8$ identity matrix $E$ as the weight, which may not give the estimator whose

variance is asymptotically efficient. As with the framework of BLP (1995), we choose downhill simplex

method as minimzing method and set the true value as the initial value.

We examine if and to what extent the additional moment conditions with different number $T$ of consumer

draws improve the estimation as the number of markets $M$ increases. We use fixed $R_{m}=100$ and $T=$

$\{0$ , 50, 100, 500, 1000 $\}$ as the number of consumer draws for each market size $M=\{1$ , 5, 10, 20$\}$ . Note that

$T=0$ means that additional moments are not calculated.”

Tables 1 and 2 shows the result for the averages and standard errors of the estimated parameters of

$\alpha(1.0)$ , $\beta_{0}(1.0)$ , $\beta_{1}(0.5)$ and $\gamma(1.5)$ with/without the additional micro moment conditions for 100 Monte

Carlo repetitions. Each column and each row respectively corresponds to the number of markets and the

number $T$ of consumer draws to construct those micro moments. The standard errors are in each parenthis

below the corresponding means.

As expected, accuracy of the estimate measured in terms of the corresponding standard error improves

as the number of market increases for both with and without additional moments. We also noticed that

there are persistent biases, albeit small, in the estimates without micro moments.

For $\beta_{1}$ , which measures consumer heterogeneity, the standard error with the micro moments is noticeably
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smaller than that without for the same number of markets. As expected, however, the ameliorating effects

of the micro moments become weaker as the number of markets glow larger. For example, at the number

of markets $M=5$, the standard error of $\beta_{1}$ is greatly improved from 0.237166 with without the micro

moments $(T=0)$ to $0.07\langle$}$259$ with the micro moments constructed from the consumer draws of $T=1000.$

On the other hand, when we set the number of markets to be $M=20$, the reduction of the standard error

associated with $\beta_{1}$ is relatively small: from 0.109436 to only 0.060952. Although the improving effect of the

micro moments diminishes, it seems to remain even when the number of markets increases.

When we calculate the micro moments with relatively few number of consumer draws at $T=50$ or $100,$

the estimates are worse than that without micro moment for each number of markets. For instance, at

$T=50$, even when we set the number of markets to be $M=20$, the average of the estimates is 0.522409

relative to the average of the estimates of 0.514595 without the micro moments. Only when we use $T=500$

or greater consumer draws to calculate the micro moments, the standard error of the estimators starts to

improve in relation to the standard errors computed without the micro moments.

For parameters other than $\beta_{1}$ , it seems that the estimates are slightly improvod with large $T$ and regardless

of the number $M$ of markets. This is contrary to the results of Myojo and Kanazawa (2012). There the

improving effects of the parameter estimates does not seem to occur in parameters other $than\beta_{1}$ . Because

the added moment is about consumer demographics $v$ , it is reasonable that additional moment conditions

improves the estimate of $\beta_{1}$ greatly, but not for other estimates. The only reason we can come up is that

the stability of the estimate of $\beta_{1}$ helps the estimation of other parameters. This needs to be investigated

further.

$l4om$ figures 1, 2, 3 and 4, the asymptotic normality starts to take hold for all the paxameter estimates

as the number of markets increases where the additional moment condition is available. Thble 3.1 shows

that both Jarque-Bera and Shapiro-Wilk tests do not reject the normality hypothesis of the estimates with

$M=20,$ $R_{m}=100$ and $T=1000.$

When we can reasonably assume the asymptotic normality of the parameter estimates at $M=20$, we

can test whether the standard error of a estimator with $T=1000$ is significantly smaller than that without

additional moments. Table 4 shows the result of the test. From the result, accuracy improving effects of the

additional moments remains at $M=20$ and beyond.
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Table 1: Monte Carlo Simulation Results of $(\alpha, \beta_{0})$ for Multiple Markets Model With/Without Additional Moment
1(K) repetitions, with no sampling error $\langle J=20,$ $n=10,$ $0\infty,$ $n_{m}=n/M,R_{m}=100$ each)

$\#$ of $\alpha(1.0)$ $\#$ of $\beta_{\mathfrak{o}}(1.0)$

Consumer $\#$ of Markets (M) Consumer $\#$ of Markets (M)

$\frac{Draw\epsilon(T)151020Draws(T\rangle 151020}{001.269941.033131.016450.975081.528521.073611.039040.95\mathfrak{M}}$

(1.03294) (0.37532) (0.204981) (O.158212) $\langle$1.86754$)$ (0.690521) $(0.36\infty 34)$ (0.283556)

1.31111 1.06338 1.04777 1.00239 1.57892 1.13397 1.09765 1.01297se so
(0.875849) (0.374163) (0.256261) (0.214051) (1.00783) (0.681033) (0.454746) (0.371711)

1.31559 1.0212 1.03771 0.984661 1.59892 1.05349 1.07691 0.98192
$1\infty$ 100

(0.867226) $(0.2\Re KP3)$ (0.273552) (0.206735) (1.59301) (0.530612) (0.492299) (0.368529)

1.31444 1.02442 1.04496 0.991862 1.58161 1.0548 1.08701 0.987647
$5\infty$ 500

(0.825948) $(0.2\mathfrak{V}638)$ (O.191984) (O.141564) (1.517) (0.455524) (0.353673) (0.257662)

1.29778 1.03497 1.0447 0.999625 1.54479 1.07235 1.08683 0.999648
$1\propto K\}$ $1\alpha n$

(0.823522) (0.247841) (O.191337) $(0$.128913$)$ (1.51631) (0.464049) (0.354719) (0.237586)

$S\overline{tandard}$errors of $mh$ repetitions in the parenthoeis.
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%ble 2: Monte Carlo Simulation $R\epsilon$sults of $(\beta_{1}, \gamma)$ for Multiple Markets Model $With/$Without Additional Moment

$\overline{\#}$of
$\beta_{1}(0.5)100$

repetitions, with no
$smpling\#of$

error
$(J=20, n=10,000, n_{n}\gamma(1.5\rangle=n/M,R_{m}=100$

each)

Consumer $\#$ of Markets (M) $co1\mathfrak{B}$umer $\#$ of Markets (M)

$\frac{Draws(T)1510\mathfrak{A})Draws(T)151020}{000.566090.4923\Re 0.5242970.5145951.448681.476121.487031.47739}$

(0.679877) (O.237166) $\langle$O.172493$)$ (O.10943\^o) (0.239105) (0.113698) $(0.0793864\rangle$ ($0$.OS60014)

0.580772 0.522223 0.523877 0.522409 i.49485 1.48419 1.49174 1.$4788S$se 50
(O.SS5857) (O.21608) $(0.209301\rangle$ $(0.212403\rangle$ $(0.2\propto)528\rangle$ (0.126429) (0.0952291) $\langle$0.0929717$)$

0.593833 0.53132 0.530457 0.533023 1.49347 1.47787 1.49048 1.47432$100 1\alpha)$(0.32299) (O.I60593) (0.162806) $($O. $163413\rangle$ $(0.222(\}92\rangle$ (O. $108769\rangle$ (0.0816977) (0.0846689)
$0.554(\hslash 7$ 0.505637 O.W5657 0.504008 1.50725 1.48927 1.50225 1.48696mo 500

$(0.224106\rangle$ $(0.093237\rangle (0.0901611) (0.0807463) \langle O.198426)$ $(0.0\Re\}8213)$ (0.0655352) (0.0587172)

0.565112 0.496941 0.506038 $0.494\}23$ 1.49857 1.4931 $1.\alpha\}303$ 1.49161$10\infty 1\alpha n$
$(0_{\backslash }239662)$ (0.0702588) (0.0696279) (0.0609522) $(O.2\propto k2)$ (0.0898322) (0.0625012) (0.0542441)

Standard errors of each repetitions in the parenthesis.
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Table 3: Test of normality of each estimators

$\frac{JBp-va1ue}{\alpha 3.6060.164} \frac{Wp-va1ue}{\alpha 0.9800.135}$

$\beta_{0}$ 4.697 0.0955 $\beta_{0}$ 0.976 0.0705
$\beta_{1}$ 1.677 0.432 $\beta_{1}$ 0.983 0.234

$\gamma$ 0.666 0.716 $\gamma$ 0.993 0.879
Jarque-Bera test and Shapiro-Wilk test of each estimators when $M=$

$20,$ $T=1000$ and $R_{w}=100.$

Table 4: Test of variances of the estimators

$\frac{F-.vduep-vduedf}{\alpha 150620.0214(99,99)}$

$\beta_{0}$ 1.4244 0.03998 $(99,99)$

$\beta_{1}$ 3.2236 7.$80E-09$ $(99,99)$

$\gamma$ 1.4985 0.02274 $(99,99)$

Alternative hypothesis: the variance of the estimator when $M=20,$ $T=0$

is greater than that when $M=20,$ $T=1000$

4 Conclusion and Discussion

In this paper, we implement Monte Carlo simulation to examine asymptotic properties of the estimator of

random-coefficient logit models of demand for non-durable consumer goods under an equilibrium assumption

in the presence of micro moments as the number of the examined regional markets increases. The national

micro moments are manufactured from the joint distribution of demographic information of consumers

choosing those products with certain discriminating attributes. We observe that adding an equilibrium

assumption and the micro moments gives asymptotic normality with sharper asymptotic variance-covariance

matrix, while correcting asymptotic bias reported in Reyberger (2015), an unexpected and rather surprising

result.

Expanding the number of markets to examine seems a good idea at first, because it simply increases the

number of consumers to be analyzed. Our Monte Carlo experiments as well as that of Freyberger (2015)

show that this is not necessarily so, because there is no mechanism inherent in this increase in the number of

markets to guarantee that the sampling is done randomly and doing so enables to achieve a good coverage

of the national market. It seems adding “national” micro moments will correct possible bias inherent in this

increase in the number of markets. Further research is needed to understand the mechanism under which

this bias reduction is achieved.
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Figure 1: Histograms for the $\alpha$ with the additional moment $(T=500)$ with the number $M=1,$ $S$ , 10, 20 of

markets. Density estimates (solid) as well as the normal curves (dashed) for the $\alpha$ with the estimated mean
and standard error are drawn in.
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Figure 2: Histogram of $\beta_{0}$ with additional micro moment $(T=500)$ with the number $M=1$ , 5, 10, 20 of
markets. Density estimates (solid) as well as the normal curves (dashed) for the $\beta_{0}$ with the estimated mean
and standard error are drawn in.
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Figure 3: Histogram of $\beta_{1}$ with the additional moment $(T=500)$ with the number $M=1$ , 5, 10, 20 of
markets. Density estimates (solid) as well as the normal curves (dashed) for the $\beta_{1}$ with the estimated mean
and standard error are drawn in.
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Figure 4; Histogram of $\gamma$ with the additional moment $(^{r}f=500$) with the number $M=1$ , 5, 10, 20 of markets.
Density estimates (solid) as well as the normal curves $\langle$dashed) for the $\gamma$ with the estimated mean and
standard error are drawn in.
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