ON K ${ }_{f}$ IN IRRATIONAL CASES

神戸大学大学院システム情報学研究科 桔梗宏孝（HIROTAKA KIKYO） GRADUATE SCHOOL OF SYSTEM INFORMATICS，KOBE UNIVERSITY


#### Abstract

Consider an ab initio amalgamation class $\mathbf{K}_{f}$ with an un－ bounded increasing concave function $f$ ．We conjecture that if $\mathbf{K}_{f}$ has the free amalgamation property then the generic structure for $\mathbf{K}_{f}$ has a model complete theory．We consider the case where the predimension function has an irrational coefficient．We show some statements which seem to be useful to show our conjecture．


## 1．Introduction

Hrushovski constructed a seudoplane which is a counter example to a conjecture by Lachlan［6］using amalgamation classes of the form $\mathbf{K}_{f}$ which will be defined below．In his case，the predimension function has an irra－ tional coefficient．The author proved that a generic graph for $\mathbf{K}_{f}$ has a model complete theory if the predimension function has a rational coeffi－ cient under some mild assumption on the function $f$［10］．

We show some propositions towards the model completeness of the generic graph for $\mathbf{K}_{f}$ in the case that the predimension function has an irrational co－ efficient．

We essentially use notation and terminology from Wagner［11］．We also use terminology from graph theory［4］．

For a set $X,[X]^{n}$ denotes the set of all $n$－element subsets of $X$ ，and $|X|$ the cardinality of $X$ ．

For a graph $G, V(G)$ denotes the set of vertices of $G$ and $E(G)$ the set of edges of $G . E(G)$ is a subset of $[V(G)]^{2}$ ．For $a, b \in V(G), a b$ denotes $\{a, b\}$ ． For $a \in V(G)$ ，the number of edges of $G$ containing $a$ is called a degree of $a$ in $G$ ．$|G|$ denotes $|V(G)|$ ．

To see a graph $G$ as a structure in the model theoretic sense，it is a struc－ ture in language $\{E\}$ where $E$ is a binary relation symbol．$V(G)$ will be the universe，and $E(G)$ will be the interpretation of $E$ ．

Suppose $A$ is a graph．If $X \subseteq V(A), A \mid X$ denotes the substructure $B$ of $A$ such that $V(B)=X$ ．If there is no ambiguity，$X$ denotes $A \mid X . B \subseteq A$ means that $B$ is a substructure of $A$ ．A substructure of a graph is an induced subgraph in graph theory．$A \mid X$ is same as $A[X]$ in Diestel＇s book［4］．We
say that $X$ is connected in $A$ if $A \mid X$ is a connected graph in graph theoretical sense [4].

If $A, B, C$ are graphs such that $A \subseteq C$ and $B \subseteq C$, then $A B$ denotes $C \mid(V(A) \cup V(B)), A \cap B$ denotes $C \mid(V(A) \cap V(B))$, and $A-B$ denotes $C \mid(V(A)-$ $V(B)$ ).
Definition 1.1. Let $\alpha$ be a real number such that $0<\alpha<1$. For a finite graph $A$, we define a predimension function $\delta_{\alpha}$ as follows:

$$
\delta_{\alpha}(A)=|A|-\alpha|E(A)| .
$$

Suppose $A$ and $B$ are substructures of a common graph. Put

$$
\delta_{\alpha}(A / B)=\delta_{\alpha}(A B)-\delta_{\alpha}(B)
$$

Definition 1.2. Assume that $A, B$ are graphs such that $A \subseteq B$ and $A$ is finite.
$A \leq{ }_{\alpha} B$ if whenever $A \subseteq X \subseteq B$ with $X$ finite then $\delta_{\alpha}(A) \leq \delta_{\alpha}(X)$.
$A<{ }_{\alpha} B$ if whenever $A \subsetneq X \subseteq B$ with $X$ finite then $\delta_{\alpha}(A)<\delta_{\alpha}(X)$.
We say that $A$ is closed in $B$ if $A<_{\alpha} B$. We also say that $B$ is a strong extension of $A$.

Note that $\leq_{\alpha}$ and $<_{\alpha}$ are order relations. In particular, $A<_{\alpha} A$ for any graph $A$.

With this notation, put

$$
\mathbf{K}_{\alpha}=\left\{A \text { : finite } \mid \emptyset<_{\alpha} A\right\} .
$$

We usually fix the value of the parameter $\alpha$. Therefore, we often write $\delta$ for $\delta_{\alpha},<$ for $<_{\alpha}$, and $\leq$ for $\leq_{\alpha}$.

Suppose $A \subseteq B$ and $A \subseteq C$. A graph embedding $g: B \rightarrow C$ is called a closed embedding of $B$ into $C$ over $A$ if $g(B)<C$ and $g(x)=x$ for any $x \in A$.
Definition 1.3. Let $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$ be an infinite class. $\mathbf{K}$ has the amalgamation property if for any $A, B, C \in \mathbf{K}$, whenever $A<B$ and $A<C$ then there is $D \in \mathbf{K}$ such that there is a closed embedding of $B$ into $D$ over $A$ and a closed embedding of $C$ into $D$ over $A$.
$\mathbf{K}$ has the hereditary property if for any finite graphs $A, B$, whenever $A \subseteq$ $B \in \mathbf{K}$ then $A \in \mathbf{K}$.
$\mathbf{K}$ is called an amalgamation class if $\emptyset \in \mathbf{K}$ and $\mathbf{K}$ has the hereditary property and the amalgamation property.
Definition 1.4. Suppose $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$. A countable graph $M$ is a generic graph of $(\mathbf{K},<)$ if the following conditions are satisfied:
(1) If $A \subseteq M$ and $A$ is finite then there exists a finite graph $B \subseteq M$ such that $A \subseteq B<M$.
(2) If $A \subseteq M$ then $A \in \mathbf{K}$.
(3) For any $A, B \in \mathbf{K}$, if $A<M$ and $A<B$ then there is a closed embedding of $B$ into $M$ over $A$.
If $\mathbf{K}$ is an amalgamation class then there is a generic graph of $(\mathbf{K},<)$.
There is a smallest $B$ satisfying (1), written $\operatorname{cl}(A)$. We have $A \subseteq \operatorname{cl}(A)<$ $M$ and if $A \subseteq B<M$ then $\operatorname{cl}(A) \subseteq B$. The set $\operatorname{cl}(A)$ is called a closure of $A$ in $M$. Apparently, $\operatorname{cl}(A)$ is unique for a given finite set $A$. In general, if $A$ and $D$ are graphs and $A \subseteq D$, we write $\operatorname{cl}_{D}(A)$ for the smallest substructure $B$ of $D$ such that $A \subseteq B<D$.
Definition 1.5. Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a monotone increasing concave (convex upward) unbounded function. Assume that $f(0) \leq 0$, and $f(1) \leq 1$. Define $\mathbf{K}_{f}$ as follows:

$$
\mathbf{K}_{f}=\left\{A \in \mathbf{K}_{\alpha} \mid B \subseteq A \Rightarrow \delta(B) \geq f(|B|)\right\} .
$$

Note that if $\mathbf{K}_{f}$ is an amalgamation class then the generic graph of $\left(\mathbf{K}_{f},<\alpha\right)$ has a countably categorical theory.
Definition 1.6. Let $\mathbf{K}$ be a subclass of $\mathbf{K}_{\alpha}$. A graph $A \in \mathbf{K}$ is absolutely closed in $\mathbf{K}$ if whenever $A \subseteq B \in \mathbf{K}$ then $A<B$.

Definition 1.7. Put $R_{f}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x) \leq y \leq x\right\}$. A graph $A$ is normal to $f$ if $(|A|, \delta(A))$ belongs to $R_{f}$.
$A \in \mathbf{K}_{f}$ if and only if every substructure of $A$ is normal to $f$.
Definition 1.8. Let $m, n$ be integers. A point of the form $(n, n-m \alpha)$ is called a lattice point in this paper.
Proposition 1.9. Suppose $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a monotone increasing concave unbounded function. with $f(0) \leq 0, f(1) \leq 1$. Suppose that whenever $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are lattice points in $R_{f}$ with $x_{1} \leq x_{2} \leq x_{3}$ and $y_{1}<y_{2}$ then $\left(x_{3}+x_{2}-x_{1}, y_{3}+y_{2}-y_{1}\right)$ belongs to $R_{f}$. Then $\mathbf{K}_{f}$ has the free amalgamation property.

Note that Hrushovski's $f$ in [6] satisfies the assumption of the proposition above.

In the rest of the paper, we assume that the assumption of Proposition 1.9 holds:
Assumption 1.10. (1) $h: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$is a monotone increasing concave unbounded function.
(2) $f(0) \leq 0, f(1) \leq 1$.
(3) Whenever $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ are lattice points in $R_{f}$ with $x_{1} \leq x_{2} \leq x_{3}$ and $y_{1}<y_{2}$ then $\left(x_{3}+x_{2}-x_{1}, y_{3}+y_{2}-y_{1}\right)$ belongs to $R_{f}$.
The following definition is from [10].

Definition 1.11. Suppose $X, Y$ are sets and $\mu: X \rightarrow Y$ a map. For $Z \subseteq[X]^{m}$, put $\mu(Z)=\left\{\left\{\mu\left(x_{1}\right), \ldots, \mu\left(x_{m}\right)\right\} \mid\left\{x_{1}, \ldots, x_{m}\right\} \in Z\right\}$.

Let $B, C$ be graphs and assume that $X \subseteq V(B) \cap V(C)$. Let $D$ be a graph.
We write $D=B \rtimes_{X} C$ if the following hold:
(1) There is a 1-1 map $f: V(B) \rightarrow V(D)$.
(2) There is a 1-1 map $g: V(C) \rightarrow V(D)$.
(3) $f(x)=g(x)$ for any $x \in X$.
(4) $V(D)=f(B) \cup g(C)$.
(5) $f(B) \cap g(C)=f(X)=g(X)$.
(6) $E(D)=f(E(B)) \cup g(E(C)-E(C \mid X))$.
$f$ is a graph isomorphism from $B$ to $D \mid f(V(B))$ but $C$ and $D \mid g(V(C))$ are not necessarily isomorphic as graphs.

If $E(C \mid X)=\emptyset$, then $B \rtimes_{X} C$ is a graph obtained by attaching $C$ to $B$ at points in $X$. We have $\delta\left(B \rtimes_{X} C\right)=\delta(B)+\delta(C)-\delta(C \mid X)$.

In case that $B|X=C| X$, we write $B \otimes_{X} C$ for $B \rtimes_{X} C$. If $A=B|X=C| X$, then we also write $B \otimes_{A} C$ instead of $B \otimes_{V(A)} C$. We assume that operators $\rtimes_{X}$ and $\otimes_{X}$ are left associative.

When we write $B \rtimes_{X} C$, we assume that $X \subseteq V(B) \cap V(C)$. When $b \in$ $V(B)$ and $c \in V(C), B \otimes_{b=c} C$ denotes $B \otimes_{b} C$ after identifying $b$ and $c$.

If $A \subseteq B$ and $q \geq 1$ is an integer, then $\bigotimes_{A}^{q} B$ is defined inductively as follows: $\otimes_{A}^{1} B=B$ and $\otimes_{A}^{q} B=\left(\otimes_{A}^{q-1} B\right) \otimes_{A} B$ if $q \geq 2$.

The following lemma is immediate.
Lemma 1.12. Suppose $D=B \rtimes_{X} C$.
(1) If $C \mid X<C$ then $B<D$.
(2) If $C \mid X \leq C$ then $B \leq D$.

Definition 1.13. Suppose $K \subseteq K_{\alpha}$. $K$ has the free amalgamation property if whenever $A, B, C \in \mathbf{K}$ with $A<B, A<C$ then $B \otimes_{A} C \in \mathbf{K}$.
Fact 1.14. If a class $\mathbf{K} \subseteq \mathbf{K}_{\alpha}$ has the free amalgamation property then it has the amalgamation property.
Lemma 1.15. Suppose $A, B, C$ are graphs such that $A \subseteq B, A \subseteq C, \delta(A)<$ $\delta(B)$ and $\delta(A)<\delta(C)$. If $B$ and $C$ are normal to $f$ then $B \otimes_{A} C$ is normal to $f$.
Proposition 1.16. $\left(\mathbf{K}_{f},<\right)$ has the free amalgamation property.

## 2. Minimal Extensions

To prove our conjecture, given a graph $A \in \mathbf{K}_{f}$, we would like to construct an extension $B$ of $A$ such that $A<B$ and $B$ is absolutely closed. In order to do this, we want to expand $A$ by attaching "twigs" to make a tower of
"minimal" strong extensions first. Then we want to make an alternating tower of "minimal" strong extensions and "minimal" intrinsic extensions so that the $\delta$-rank stays around some specific value. We expect that it will eventually be absolutely closed.

Definition 2.1. Suppose $A, B$ are graphs such that $A \subseteq B . B$ is a minimal strong extension of $A$ if $A<B$ and whenever $A \subsetneq X \subsetneq B$ then $\delta(B / A)<$ $\delta(X / A)$.
$B$ is a minimal intrinsic extension of $A$ if $\delta(B / A) \leq 0$ but whenever $A \subsetneq$ $X \subsetneq B$ then $0<\delta(X / A)$.
Fact 2.2 ([10]). Suppose $m$, $d$ are relatively prime integers such that $0<$ $m<d$. Then there is a tree (a graph with no cycles) $G$ such that $V(G)=$ $F \cup B, F \cap B=\emptyset,|B|=m, G \mid F$ has no edges, and $G$ is a minimal 0 -extension of $G \mid F$ with respect to $\delta_{m / d}$. This means that $\delta_{m / d}(G / F)=0$ and whenever $F \subsetneq X \subsetneq G$ then $\delta_{m / d}(X / F)>0$. This $G$ is called a twig for $m / d$ in [10]. $F$ will be called $a$ base of $G$ and $G$ will be called $a$ body part of $G$.
Proposition 2.3. Suppose $\alpha$ is an irrational number such that $0<\alpha<1$. Let $n_{0} \geq 2$ be an arbitrary natural number and $m$, $d$ integers such that $m-$ $d \alpha$ is a smallest number among the positive numbers of the form $m^{\prime}-d^{\prime} \alpha$ with $d^{\prime} \leq n_{0}$. Then any twig for $m / d$ is a minimal strong extension over its base. The body part of $G$ has a size $m$. We call $G$ a minimal strong extender.

Proof. First of all, $m$ and $d$ are relatively prime because the value of $m-d \alpha$ can be reduced in a positive value if $m$ and $d$ have a common divisor. Also, we have $\alpha<m / d$.

Let $G$ be a twig for $m / d$. Let $F$ be the base of $G$. For any proper substructure $U$ of $G$ with $U \backslash F \neq \emptyset, \delta_{m / d}(U / U \cap F)>0$. Since $\delta_{m / d}(U / U \cap F)=$ $m^{\prime}-d^{\prime}(m / d)>0$ with $d^{\prime} \leq n_{0}$ and $\alpha<m / d$, we have $\delta_{\alpha}(U / U \cap F)=m^{\prime}-$ $d^{\prime} \alpha>0$. Also, since $m-d(m / d)=0$, we have $\delta_{\alpha}(G / F)=m-d \alpha>0$. Therefore, $G$ is a strong extension of $G \mid F$. By the choice of $m$ and $d, G$ is minimal strong extension over $G \mid F$.

Proposition 2.4. Suppose $\alpha$ is an irrational number such that $0<\alpha<1$. Let $n_{0} \geq 2$ be an arbitrary natural number and $m$, $d$ integers such that $m / d$ is a largest number among the rational numbers of the form $m^{\prime} / d^{\prime}$ with $m^{\prime} / d^{\prime}<\alpha$ and $d^{\prime} \leq n_{0}$. Then any twig for $m / d$ is a minimal intrinsic extension over its base. We call such twig a minimal intrinsic extender.
Proof. Let $G$ be a twig for $m / d$. We can assume that $m$ and $d$ are relatively prime. Since $m-d(m / d)=0$ and $m / d<\alpha$, we have $\delta_{\alpha}(G)=m-d \alpha<$ 0 . Suppose $U$ is a proper substructure of $G$ such that $U \backslash F \neq \emptyset$. Then $\delta_{m / d}(U / U \cap F)=m^{\prime}-d^{\prime}(m / d)>0$ with $d^{\prime} \leq d \leq n_{0}$. We have $m^{\prime} / d^{\prime}>$ $m / d$. If $\delta_{\alpha}(U / U \cap F)<0$ then $m^{\prime}-d^{\prime} \alpha=\delta_{\alpha}(U / U \cap F)<0$. This implies
that $m^{\prime} / d^{\prime}<\alpha$. This contradicts the choice of $m / d$. Therefore, $\delta_{\alpha}(U / U \cap$ $F)>0$.

Proposition 2.5. Any tree belongs to $\mathbf{K}_{f}$ (under Assumption 1.10). In particular, twigs in Propositions 2.3 and 2.4 belong to $\mathbf{K}_{f}$.

Proof. A graph with 2 points and 1 edge belongs to $\mathbf{K}_{f}$. By induction, we can see that the $\delta_{\alpha}$-value of any tree is greater than 1 . Hence, any point is closed in a tree. By induction, any tree belongs to $\mathbf{K}_{f}$ by the free amalgamation property.

By Assumption 1.10 and Proposition 2.5, we have the following.
Proposition 2.6. Suppose $A \in \mathbf{K}_{f}$.

- If $G$ is a minimal strong extender with $|G| \leq|A|$ then $A \rtimes_{F} G$ belongs to $\mathbf{K}_{f}$ where $F$ is a base of $G$.
- If $G$ is a minimal intrinsic extender with $|G| \leq|A|$ then any proper substructure of $A \rtimes_{F} G$ belongs to $\mathbf{K}_{f}$ where $F$ is a base of $G$.


## ACKNOWLEDGMENT

The author is supported by JSPS KAKENHI Grant Number 25400203.

## REFERENCES

[1] J.T. Baldwin and K. Holland, Constructing $\omega$-stable structures: model completeness, Ann. Pure Appl. Log. 125, 159-172 (2004)
[2] J.T. Baldwin and S. Shelah, Randomness and semigenericity, Trans. Am. Math. Soc. 349, 1359-1376 (1997)
[3] J.T. Baldwin and N. Shi, Stable generic structures, Ann. Pure Appl. Log. 79, 1-35 (1996)
[4] R. Diestel, Graph Theory, Springer, New York (2000)
[5] K. Holland, Model completeness of the new strongly minimal sets, J. Symb. Log. 64, 946-962 (1999)
[6] E. Hrushovski, A stable $\aleph_{0}$-categorical pseudoplane, preprint (1988)
[7] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Log. 62, 147-166 (1993)
[8] K. Ikeda, H. Kikyo, Model complete generic structures, in the Proceedings of the 13th Asian Logic Conference, World Scientific, 114-123 (2015)
[9] H. Kikyo, Model complete generic graphs I, RIMS Kokyuroku 1938, 15-25 (2015)
[10] H. Kikyo, Model completeness of generic graphs in rational cases, submitted.
[11] F.O. Wagner, Relational structures and dimensions, in Automorphisms of first-order structures, Clarendon Press, Oxford, 153-181 (1994)
[12] F.O. Wagner, Simple Theories, Kluwer, Dordrecht (2000)

