A remark on generic structures with the full amalgamation property

Koichiro Ikeda *

Faculty of Business Administration, Hosei University

Abstract

We prove that any generic structure with the full amalgamation property is stable.

1 Preliminaries

The reader is assumed to be familiar with the basics of generic structures. This paper was influenced by papers of Baldwin-Shi [1] and Wagner [5].

Let L be a finite relational language, where each relation $R \in L$ has arity $n \geq 2$ and satisfies the following:

- If $\models R(\bar{a})$ then the elements of \bar{a} are without repetition and,
- $\models R(\sigma(\bar{a}))$ for any permutation σ .

Thus, for any *L*-structure A and $R \in L$ with arity n, R^A can be thought of as a set of *n*-element subsets of A. For a finite *L*-structure A, a predimension of A is defined by

$$\delta_{lpha}(A) = |A| - \sum_{R \in L} \alpha_R |R^A|,$$

where $0 < \alpha_R \leq 1$ and $\alpha = (\alpha_R)_{R \in L}$. $\delta_{\alpha}(A)$ is usually abbreviated to $\delta(A)$. Let $\delta(B/A)$ denote $\delta(BA) - \delta(A)$. For $A \subset B$ and $n \in \omega$, A is said to be *n*-closed in B, denoted by $A \leq_n B$, if

^{*}The author is supported by Grants-in-Aid for Scientific Research (No. 26400191).

 $\delta(X/A \cap X) \ge 0$ for any finite $X \subset B$ with $|X \cap (B - A)| \le n$.

In addition, A is said to be closed in B, denoted by $A \leq B$, if

$$A \leq_n B$$
 for any $n \in \omega$.

The closure $cl_B(A)$ of A in B is defined by $\bigcap \{C : A \subset C \leq B\}$.

Let \mathbf{K}_{α} be the class of the finite L-structures A with $\delta(B) \geq 0$ for any $B \subset A$.

Definition 1.1 Let $\mathbf{K} \subset \mathbf{K}_{\alpha}$. Then a countable *L*-structure *M* is said to be (\mathbf{K}, \leq) -generic, if

- 1. any finite $A \subset M$ belongs to **K**;
- 2. whenever $A \leq B \in \mathbf{K}$ and $A \leq M$, then there is a $B \cong_A B'$ with $B \leq M$;
- 3. for any finite $A \subset M$, $|cl_M(A)|$ is finite.

2 The full amalgamation property

In what follows, M is a (\mathbf{K}, \leq) -generic structure for some $\mathbf{K} \subset \mathbf{K}_{\alpha}$, and \mathcal{M} is a big model of $\mathrm{Th}(M)$.

 $\operatorname{cl}_{\mathcal{M}}(A)$ is abbreviated to $\operatorname{cl}(A)$. For $A, B, C \subset \mathcal{M}$ with $B \cap C \subset A$, *B* and *C* are said to be free over *A*, denoted by $B \perp_A C$, if

$$R^{ABC} = R^{AB} \cup R^{AC}$$

for any $R \in L$. Moreover, $B \oplus_A C$ denotes an *L*-structure $(BCA, R^{AB} \cup R^{AC})_{R \in L}$.

Definition 2.1 Let A, B be finite with $A \leq B \subset \mathcal{M}$. Then B is said to be closed over A, if $cl(B) = B \cup cl(A)$ and $B \perp_A cl(A)$.

Lemma 2.2 Let A, B be finite with $A \leq B \subset \mathcal{M}$. Then the following are equivalent.

- 1. B is closed over A;
- 2. For any finite $D \subset \mathcal{M} B$ with $\operatorname{cl}_{BD}(B) = BD, B \perp_A D$.

Proof. $(1\rightarrow 2)$ If 2 does not hold, then there is a finite $D \subset \mathcal{M} - B$ with

Clearly $D \subset cl(B)$. Since B is closed over A, we have $B \perp_A cl(A)$. So $D \not\subset cl(A)$. Hence $cl(B) \neq B \cup cl(A)$. A contradiction. (2 \rightarrow 1) By 2, $B \perp_A cl(A)$. So it is enough to show that $cl(B) = B \cup cl(A)$. If not, then there is a $D \subset cl(B) - B \cup cl(A)$. We can assume that

On the other hand, by 2 again, we have $B \perp_A D$. A contradiction.

Definition 2.3 (\mathbf{K}, \leq) is said to have the full amalgamation property, if whenever $A \leq B \in \mathbf{K}, A \subset C \in \mathbf{K}$ and $B \perp_A C$ then $B \oplus_A C \in \mathbf{K}$.

Lemma 2.4 Suppose that (\mathbf{K}, \leq) has the full amalgamation property. Then, whenever $A \subset \mathcal{M}$ and $A \leq B \in \mathbf{K}$, then there is a $B' \subset \mathcal{M}$ such that B' is closed over A and $B' \cong_A B$.

Proof. Let D_0, D_1, \dots be an enumeration of the elements of **K** with

$$B \cap D_i = \emptyset$$
, $\operatorname{cl}_{BD_i}(B) = BD_i$ and $B \not\perp_A D_i$

for each $i \in \omega$.

Claim: For any $n \in \omega$ there is a $B' \subset \mathcal{M}$ such that

- 1. $B' \cong_A B;$
- 2. for each $i \leq n$ there is no $D'_i \subset \mathcal{M}$ with $B'D'_i \cong_A BD_i$.

Proof of Claim: It is enough to show that for each $n \in \omega$,

$$M \models \forall X (X \cong A \to \exists Y (XY \cong AB \land \bigwedge_{i \leq n} \neg \exists Z_i (XYZ_i \cong ABD_i)).$$

Take any $A^* \subset M$ with $A^* \cong A$. Then $C = cl_M(A^*)$ is finite. Take B^* with

 $B^*A^* \cong BA$ and $B^* \perp_{A^*}C$.

By the full amalgamation property,

 $E^* = B^* \oplus_{A^*} C \in \mathbf{K}.$

By genericity, we can assume that $E^* \leq M$. Then B^* is closed over A^* . By Lemma 2.2, we have $M \models \bigwedge_{i \leq n} \neg \exists Z_i (A^*B^*Z_i \cong ABD_i))$. (End of Proof of Claim)

By the above claim,

$$\Sigma(Y) = \{Y \cong_A B\} \cup \{\neg \exists Z_i (YZ_i \cong_A BD_i) : i \in \omega\}$$

is consistent. Take a realization B' of $\Sigma(Y)$. By Lemma 2.2 again, B' is closed over A.

Definition 2.5 Th(M) is said to be ultra-homogeneous over closed sets, if whenever $A, A' \subset \mathcal{M}$ are isomorphic then $\operatorname{tp}(A) = \operatorname{tp}(A')$.

Note 2.6 It can be seen that $\operatorname{Th}(M)$ is ultra-homogeneous over closed sets if and only if whenever $A, A' \subset \mathcal{M}$ are isomorphic and finitely generated then $\operatorname{tp}(A) = \operatorname{tp}(A')$.

Proposition 2.7 Let M be (\mathbf{K}, \leq) -generic. Suppose that (\mathbf{K}, \leq) has the full amalgamation property. Then $\operatorname{Th}(M)$ is ultra-homogeneous over closed sets.

Proof. Let \mathcal{M} be a big model. Take any $A, A' \leq \mathcal{M}$ with $A \cong A'$. We want to prove that

$$\operatorname{tp}(A) = \operatorname{tp}(A').$$

By Note 2.6, we can assume that A, A' are finitely generated. So take a finite $A_0 \subset A$ with $cl(A_0) = A$, and let A'_0 be such that $A'_0A' \cong A_0A$. Take any $b \in \mathcal{M} - A$ and let B = cl(bA). To show that tp(A) = tp(A'), it is enough to prove that

there is a
$$B' \leq \mathcal{M}$$
 with $B'A' \cong BA$.

Note that B is countable since B is also finitely generated. Let B_1, B_2, \ldots be a tower of finite subsets of B such that

- each B_i is *i*-closed:
- $\bigcup_i B_i = B;$
- $A_0 \subset B_1$.

For each $i \in \omega$ let $A_i = B_i \cap A$ and take A'_i with $A'_i A'_0 A' \cong A_i A_0 A$. Fix any $i \in \omega$. Since $B_i \leq_i \mathcal{M}$ and $A \leq \mathcal{M}$, we have $A_i \leq_i \mathcal{M}$, and hence $A'_i \leq_i \mathcal{M}$. On the other hand, by Lemma 2.4, there is a $B'_i \subset \mathcal{M}$ such that

 $B'_i A'_i \cong B_i A_i$ and B'_i is closed over A'_i .

Claim: $B'_i \leq_i \mathcal{M}$.

Proof of Claim: Take any $X \subset \mathcal{M} - B'_i$ with $|X| \leq i$. Let $X_0 = X \cap A'$ and $X_1 = X \cap (\mathcal{M} - A')$. Since B'_i is closed over A'_i , we have

$$B'_i A' \leq \mathcal{M} \text{ and } B'_i \perp_{A'_i} A'.$$

Then

$$\delta(X/B'_i) = \delta(X_1/B'_iX_0) + \delta(X_0/B'_i)$$

$$\geq \delta(X_0/B'_i) \qquad (by B'_iA' \leq \mathcal{M})$$

$$= \delta(X_0/A'_i) \qquad (by B'_i \perp_{A'_i}A')$$

$$\geq 0 \qquad (by A'_i \leq_i \mathcal{M})$$

Hence $B'_i \leq_i \mathcal{M}$. (End of Proof of Claim)

For each $i \in \omega$ let

$$\Sigma_i(X_i) = \{X_i A'_i \cong B_i A_i\} \cup \{X_i \text{ is } i\text{-closed }\}.$$

By the above claim, each $\Sigma_i(X_i)$ is consistent. Therefore $\bigcup_i \Sigma_i(X_i)$ is also consistent. Hence we can take a realization B' of $\bigcup_i \Sigma_i(X_i)$, and then we have $B' \leq \mathcal{M}$ and $B'A' \cong BA$.

3 Theorem

For a finite $B \subset \mathcal{M}$, a dimension of B is defined by

$$d(B) = \inf\{\delta(C) : B \subset_{\omega} C \subset \mathcal{M}\}.$$

For a tuple $e \in \mathcal{M}$ and a finite $A \subset \mathcal{M}$, d(e/A) denotes d(eA) - d(A). In case that A is infinite, d(e/A) is defined by $\inf\{d(e/A_0) : A_0 \subset_{\omega} A\}$. The following fact can be found in [1] and [5]. **Fact 3.1** Let $A \leq B \leq \mathcal{M}$ and $e \in \mathcal{M} - B$ with $\operatorname{cl}(eA) \cap B = A$. Then d(e/B) = d(e/A) if and only if $\operatorname{cl}(eA) \perp_A B$ and $\operatorname{cl}(eA) \cup B \leq \mathcal{M}$.

Theorem 3.2 Let M be (\mathbf{K}, \leq) -generic. Suppose that (\mathbf{K}, \leq) has the full amalgamation property. Then $\operatorname{Th}(M)$ is stable.

Proof. Let \mathcal{M} be a big model. Take any κ with $\kappa^{\omega} = \kappa$. Take any $N \prec \mathcal{M}$ with $|N| = \kappa$. Take any $e \in \mathcal{M} - N$. Then there is a countable $A \subset N$ with d(e/N) = d(e/A) and $cl(eA) \cap N = A$.

Claim: tp(e/A) determines tp(e/N).

Proof of Claim: Take any $e' \models \operatorname{tp}(e/A)$ with d(e'/N) = d(e'/A)and $\operatorname{cl}(e'A) \cap N = A$. Let $E = \operatorname{cl}(eA)$ and $E' = \operatorname{cl}(e'A)$. Since $\operatorname{tp}(e/A) = \operatorname{tp}(e'/A)$, we have $E \cong_A E'$. By Fact 3.1, we have

 $E \cong_N E'$ and $EN, E'N \leq \mathcal{M}$.

By Proposition 2.7, $\operatorname{tp}(E/N) = \operatorname{tp}(E'/N)$, and hence $\operatorname{tp}(e/N) = \operatorname{tp}(e'/N)$. (End of Proof of Claim)

By the above claim, $|S(N)| \leq \kappa^{\omega} \cdot |S(A)| = \kappa^{\omega} = \kappa$. Hence the theory is stable.

Remark 3.3 Take any irrational α with $0 < \alpha < 1$. Then the $(\mathbf{K}_{\alpha}, \leq)$ -generic structure is called the Shelah-Spencer random graph. (For instance, see [2].) In [1], it was proved that the theory is stable. Since $(\mathbf{K}_{\alpha}, \leq)$ has the full amalgamation property, by Theorem 3.2, it can be also checked that Th(M) is stable.

References

- John T. Baldwin and Niandong Shi, Stable generic structures, Annals of Pure and Applied Logic 79 (1996) 1–35
- [2] John T. Baldwin and Saharon Shelah, Randomness and semigenericity. Trans. Am. Math. Soc. 349 (1997) 1359-1376
- [3] E. Hrushovski, A new strongly minimal set, Annals of Pure and Applied Logic 62 (1993) 147-166
- [4] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane, preprint, 1988

[5] F. Wagner, Relational structures and dimensions, In Automorphisms of first-order structures, Clarendon Press, Oxford (1994) 153-181