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ABSTRACT. We give the classification of all (minimal) Cayley bipartite or per‐

fect finite groups as well as finite graphs  $\Gamma$ for which there are only finitely
many (minimal) Cayley  $\Gamma$‐free groups.

1. INTRODUCTION

Let  G be a non‐trivial group and S be an inversed‐closed subset of G, is,
S\subseteq G\backslash \{1\} and S^{-1}=\{s^{-1} : s\in S\}\subseteq S . The Cayley graph of G corresponding
to S , denoted by \mathrm{C}\mathrm{a}\mathrm{y}(G_{\backslash ,\prime}S) , is a graph with G as the vertex set such that two

\mathrm{v}\mathrm{e}\mathrm{l}\cdottices x and  y are adjacent if yx^{-1}\in S . The Cayley graph \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is called

minimal if S=X\cup X^{-1} for some minimal generating subset X of G . Cayley graphs
was introduced by Arthur Cayley in 1978 as a geometric description of groups and

play a central role in geometric group theory. Being a source and a simple way of

constructing symmetric graphs, Cayley graphs has became the subject of extensive

research in algebraic graph theory as well as computer science from various points
of views.

A group in which all its associated (minimal) Cayley graphs admit a given prop‐

erty \mathcal{P} is called \mathrm{a} (minimal) Cayley \mathcal{P}‐group. Accordingly, a Cayley integral group
is that whose all Cayley graphs are integral, that is, they all have integral spectrum.
Studying integral graphs was initiated by Harary and Schwenk [8], As an attempt
to describe integral Cayley graphs, among other works, Abdollahi and Jazaeri [1]
and simultaneously Ahmady, Bell and Mohar [2] in 2014, complete the classification

of all Cayley integral finite groups. Motivated by these works, we are interested

in studying the existence of particular subgraphs (mainly odd cycles) in Cayley
graphs associated with a finite group. More precisely, we shall give a classification

of those finite groups whose all (minimal) Cayley graphs are bipartite or perfect.
Since our main results relies on particular forbidden structures in (minimal) Cayley
graphs, we review the results on the problem that which graphs are isomorphic to

an induced subgraph of \mathrm{a} (minimal) Cayley graphs and determine which graphs can

be embedded as induced subgraph into infinitely many (minimal) Cayley graphs.
The paper is organized as follows: In section 2, we show that there are only

finitely many finite Cayley  $\Gamma$‐free groups for any finite graph  $\Gamma$ while the same

result for minimal Cayley  $\Gamma$‐free groups holds if and only if  $\Gamma$ is a union of some

paths. We note that a  $\Gamma$‐free graph is one having no induced subgraph isomorphic
to  $\Gamma$ . Section 3 gives a description of all (minimal) Cayley bipartite groups, that is,
finite groups whose all (minimal) Cayley graphs have no odd cycles as subgraphs.
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Finally, in section 3, we shall restrict our attention to induced odd cycles and

determine all (minimal) Cayley perfect finite groups by using the knowledge of

their forbidden induced odd cycles. Recall that a graph is perfect if the chromatic

and clique number of its induced subgraphs coincides. A celebrated theorem of

Chudnovsky, Robertson, Seymour and Thomas [5], known as the strong perfect
graph theorem, states that a graph  $\Gamma$ is perfect if and only if neither  $\Gamma$ nor its

complement has induced odd cycles other that triangles.
Throughout this paper, we adopt the following notations: Given a group  G,

the minimum size of generating set of G is denoted by d(G) . An arbitrary Sylow
p‐subgroup of G will be denoted by S_{p}(G) . Also, E_{p} stands for the extra‐special
p‐group of order p^{3} and exponent p . The unexplained notions are standard and can

be found in any standard book. Recall that the Frattini subgroup  $\Phi$(G) of G is the

intersection of all maximal subgroups of G . It is known that  $\Phi$(G) is the set of all

non‐generators of G , the fact that will be used without further references.

2. (MINIMAL) CAYLEY  $\Gamma$‐FREE GROUPS

Every graph can be simply embedded as induced subgraph into some Cayley
graph of sufficiently large order, namely using an elementary abelian 2‐group gen‐
erated freely by the vertices of the graph. As an attempt to decrease the exponential
order of the corresponding Cayley graphs, Babai and Sos in [4], using the analysis
of Sidon sets, gave a cubic lower bound  9.5| $\Gamma$|^{3} for the order of a group G

,
which

assures the existence of a Cayley graph on G having  $\Gamma$ as an induced subgraph.
This lower bound is further improved to (2+\sqrt{3})| $\Gamma$|^{3} by Godsil and Imrich in [7].
Hence, we have the following.

Theorem 2.1. For every finite graph  $\Gamma$
, the order of a Cayley  $\Gamma$ ‐free group is

bounded above by (2+\sqrt{3})| $\Gamma$|^{3}.
While every graph is an induced subgraph of a Cayley graph, it is still unknown

which graphs can be embedded as (induced) subgraph into some minimal Cayley
graphs. The only known results are due to Babai and Spencer. Indeed, Babai [3]
shows that there is no minimal Cayley graphs having K_{4}\backslash e or K_{3,5} as subgraph,
in which K_{4}\backslash e is the diamond graph. Spencer [11], using the ideas of Babai

and utilizing probabilistic arguments, proves the existence of graphs of bounded

degree and arbitrary girth which cannot be embedded into minimal Cayley graphs
as induced subgraphs. In contrast to the above theorem, the situation for minimal

Cayley  $\Gamma$‐free groups is completely different as follows.

Theorem 2.2. Let  $\Gamma$ be a finite graph. Then there are only finitely many minimal

Cayley  $\Gamma$ ‐free groups if and only if  $\Gamma$ is a union of paths. Moreoveri |G|<| $\Gamma$|^{| $\Gamma$|} for
any minimal Cayley  $\Gamma$ ‐free group  G when  $\Gamma$ is a union of paths.

Proof. Suppose  $\Gamma$ is a graph for which there are just finitely many minimal Cayley
 $\Gamma$‐free groups. Since all minimal Cayley graphs of  C_{2^{n}} are isomorphic to the 2^{n_{-}}

cyclic graph, it follows that  $\Gamma$ is an induced subgraph of  2^{n}‐cycles for sufficiently
large n . Hence,  $\Gamma$ is a union of paths. Conversely, suppose  $\Gamma$ is a union of paths.
Let  G be a minimal Cayley  $\Gamma$‐free group and  $\Gamma$`=\mathrm{C}\mathrm{a}\mathrm{y}(G, S) be a minimal Cayley
graph of G in which S=X\cup X^{-1} and X=\{x_{1}, . . . , x_{n}\} is a minimal generating
set of G . Also, let N_{i} denote the ith neighbor of the identity element in  $\Gamma$ �, that is,
 N_{i}=\{g\in G : d_{$\Gamma$'}(1, g)=i\} for all i\geq 0 . Clearly, |N_{0}|=1 and |N_{i}|\leq r(r-1)^{i-1}
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for all i\geq 1 in which r=|S| is the degree of  $\Gamma$ �. If  d=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}($\Gamma$') , then  N_{d}\neq\emptyset and

 N_{d+1}=\emptyset , which imply that

|G|=|N_{0}|+|N_{1}|+\cdots+|N_{d}|

\displaystyle \leq 1+r+r(r-1)+\cdots+r(r-1)^{d-1}=1+r\cdot\frac{(r-1)^{d}-1}{r-2}.
Since, every path connecting 1 to any element of N_{d} is an induced path of length d

in  $\Gamma$ �, it follows that  d<| $\Gamma$|-1 . On the other hand,

x_{1}\sim x_{2}x_{1}\sim\cdots\sim x_{n}\cdots x_{1}\sim x_{1}x_{n}\cdots x_{1}\sim\cdots\sim x_{n-1}\cdots x_{1}x_{n}\cdots x_{1}

is an induced path in $\Gamma$'
, which implies that 2n-1\leq d . Since r\leq 2n , we observe

that |G| is bounded above by | $\Gamma$|^{| $\Gamma$|} ,
as required. \square 

3. ( MINIMAL ) CAYLEY BIPARTITE GROUPS

It is well‐known that bipartite graphs are perfect. Hence, in order to classify
(minimal) Cayley perfect groups, we need to know the structure of (minimal) Cayley
bipartite groups. As we shall see in the next section, almost all (minimal) Cayley
perfect groups are (minimal) Cayley bipartite groups.

Since the only bipartite complete graphs are those with at most 2 vertices, the

only Cayley bipartite groups are simply groups with at most 2 elements. Hence,
in what follows, we just consider minimal Cayley bipartite groups. To end this, we

use the following characterization of finite bipartite Cayley \mathrm{g}_{1}\cdot aphs.

Lemma 3.1. Let  G be a finite group. A Cayley graph \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is bipartite if and

only if [G:\langle S^{2}\rangle]=2 and S\subseteq G\backslash \{S^{2}\}.

Proof. Suppose \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is bipartite with a bipartition (X, Y) . Let H=\{S^{2}\rangle.
Since, sX\subseteq Y and sY\subseteq X for all s\in S ,

it follows that |X|=|Y|=|G|/2 . In

addition, s_{1}s_{2}X=X and s_{1}s_{2}Y=Y for all s_{1}, s_{2}\in S ,
which imply that HX=X

and HY=Y . Since H contains all products of even number of elements of S,
we must have s_{1}H=s_{2}H for all s_{1}, s_{2}\in S whence [G:H]=2 and S\subseteq G\backslash H.
Moreover, X and Y are right cosets of H . The converse is obvious. \square 

Theorem 3.2. A finite group G is a minimal Cayley bipartite group if and only if
it is a 2‐group.

Proof. First assume that G is a minimal Cayley bipartite group. Let K be the

intersection of all subgroups of G of index 2. If \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is a minimal Cayley
graph of G , then S\subseteq G\backslash H for some subgroup H of G of index 2 by Lemma 3.1.

Since K\subseteq H ,
we have  K\cap S=\emptyset ,

from which it follows that  K\subseteq $\Phi$(G) ,
the

Frattini subgroup of G . Thus, G/ $\Phi$(G) is a 2‐group so that G is a 2‐group too.

Conversely, assume G is a 2‐group. If \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is a minimal Cayley graph of G,
then S=X\cup X^{-1}

,
where X=\{x_{1}, . . . jx_{n}\} is a minimal generating set of G . Let

H=\{ $\Phi$(G), x_{1}x_{2}, . . . , x_{1}x_{n}\} . Then H is a maximal subgroup of G and S\subseteq G\backslash H.
Hence, by Lemma 3.1, \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is bipartite. Therefore, G is a minimal Cayley
bipartite group. \square 

4. (MINIMAL) CAYLEY PERFECT GROUPS

In this section, we shall give a classification of those finite groups all of whose

minimal Cayley graphs are perfect. As a result we show that there are only few

Cayley perfect groups. The following simple lemma will be used frequently.
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Lemma 4.1. Let G=\langle g ) be a cyclic group. Then

(1) \mathrm{C}\mathrm{a}\mathrm{y}(G, \{g^{\pm 2_{j}}g^{\pm 3}\}) has an induced 5‐cycle 1\sim g^{2}\sim g^{4}\sim g^{6}\sim g^{3}\sim 1 for
|g|\geq 10 ; and

(2) \mathrm{C}\mathrm{a}\mathrm{y}(G, \{g^{\pm 1}, g^{\pm 4}\}) has an induced 5‐cycle 1\sim g\sim g^{2}\sim g^{3}\sim g^{4}\sim 1 for
|g|\geq 8.

The proof of our theorems rely also on the following result of the first author.

In what follows, -:G\rightarrow G/ $\Phi$(G) denotes the natural epimorphism, in which G is

a given fixed \mathrm{g}_{1}\cdot \mathrm{o}\mathrm{u}\mathrm{p}.

Theorem 4.2 ([6]). Let G be a finite solvable group and P be a Sylow p‐subgroup
of G. If either \overline{P}\underline{\triangleleft}G or \overline{P} is cyclic, then d(P)=d(\overline{P}) .

Now, we can state and prove our main results.

Theorem 4.3. A finite group G is a minimal Cayley perfect group if and only if
either G is a 2‐group. or it is isomorphic to one of the groups C_{3}, C_{6_{i}}S_{3}, C_{3}\times C_{3_{4}}
A_{4} or E_{3}.

Proof. From Theorem 3.2, we know that every 2‐group is a minimal Cayley perfect
group. Also, a simple verification shows that the other six groups are also minimal

Cayley perfect groups.

To prove the converse assume that G is a minimal Cayley perfect group and

that G is not a 2‐group. Hence G\backslash  $\Phi$(G) contains an element g of odd order.

Let X be a minimal generating set of G containing g and S=X\cup X^{-1} Then

the subgraph induced by \{g\} in \mathrm{C}\mathrm{a}\mathrm{y}(G, S) is an odd cycle, which implies that

|g|=3 . Hence, G is a {2, 3}‐group. Let Q be a Sylow 3‐subgroup of G . If

\exp(Q)\neq 3 ,
then S_{3}( $\Phi$(G))=H_{3}(Q) is a maximal \mathrm{s}\mathrm{u}\mathrm{b}\mathrm{g}_{1}\cdot \mathrm{o}\mathrm{u}\mathrm{p} of Q by [12], in

which H3 (Q)=\{x\in Q :  x^{3}\neq 1\rangle . From the solvability of  G in conjunction with

Theorem 4.2, we observe that Q is cyclic and hence Q\cong C_{3} , a contradiction. Thus

\exp(Q)=3 . First assume that G=Q is a 3‐group. If d(G)\geq 3 and a, b, c are

elements of a minimal generating set X of G
, then we observe that

 1\sim c\sim bc\sim abc\sim cabc\sim bcabc\sim abcabc \sim cabcabc \sim bcabcabc \sim l

is an induced 9‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) arose from the relation (abc)3 =1
,
which

is a contradiction. Thus d(G)\leq 2 . By [10, 12.3.5], G is a group of nilpotent class

2 so that |G|\leq 27 . As a group of exponent 3, G\cong C_{3} , C3 \times C_{3} or E_{3}.
Finally, assume that G is neither a 2‐group nor a 3‐group. Let C be the class

of all groups isomorphic to C_{6} , S3 or A_{4} . A simple computation shows that, in a

group of order 6 or 12, a minimal generating set involving an element of order 3

gives rise to a perfect Cayley graph only if the group belongs to C . We show that

G\in C too. Assume G is a minimal counter example. Let l_{f} be the number of

non‐Frattini factors in a chief series of G . First assume that l_{f}=2 . One can easily
see that \overline{G}\cong C_{6} , S3 or A_{4} . We have three cases:

Case 1. \overline{G}\cong C_{6} . Then G is cyclic. If |G|>6 , then G has a minimal Cayley
graph with an induced 5‐cycle as illustrated in Lemma 4.1(1), a contradiction. Thus

G\cong C_{6} ,
a contradiction.

Case 2. \mathrm{G}\cong S_{3} . From [6] we know that G=\langle x, y : x^{3}=y^{2^{k}}=1, x^{y}=x^{-1} }
for some k\geq 1 . For k\geq 2 , the relation y^{2^{k}-2}xyx^{-1}yx=1 defines an induced odd

cycle of length 2^{k}+3 in \mathrm{C}\mathrm{a}\mathrm{y}(G, \{x^{\pm 1}, y^{\pm 1} Hence, we must have k=1 so that

G\cong S_{3} , a contradiction.
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Case 3. \overline{G}\cong A_{4} . Then \overline{G}=\langle\overline{x}, \overline{y}:\overline{x}^{2}=\overline{y}^{3}=(\overline{xy})^{3}=\overline{1}}. Let P and Q be

the Sylow 2‐subgroup and a Sylow 3‐subgroup of G
, respectively. By Theorem 4.2,

P=\{x, x^{y}) is a maximal subgroup of G and Q\cong C_{3} . We may assume Q=\{y\rangle.
If Q^{x}\subseteq $\Phi$(P)Q ,

then x^{-y}x=[y, x]\in $\Phi$(P) ,
which is impossible as x^{-y}x is a

generator of P . Thus y^{X}=x'y for some x\in P\backslash  $\Phi$(P) . Hence, replacing x by x' if

necessary, we may assume that (xy)3 =1
,

from which it follows that x^{y^{-1}}x^{y}x=1.
Clearly, |x|=2^{m}>2 for G\not\cong A_{4} . Since the group \langle a, b : a^{2^{r $\iota$}\prime}=b^{2^{7r $\iota$}}=(ab)^{2^{r $\iota$}\prime}=1 }
is infinite, there must exists a relation w=1 in x, x^{y} independent of the relations

x^{2^{\prime r $\iota$}}=1, (x^{y})^{2^{\prime n}}= and (x^{y}x)^{2^{rr $\iota$}}=1 . Assume w has minimum length among
all such relations. Clearly, |w|\geq 7 in which |w| denotes the length of |w| as a

word in x, y . After a suitable cyclic shift and inverse if required, we may assume

that w=x^{a_{1}y}x^{b_{1}}\cdots x^{a_{k}y}x^{b_{k}} in which a_{i}, b_{i}\neq 0 for i=1
,

. . .

, k, a_{1}>0 and

(a_{1}, b_{1})\neq(1,1) . Let us call a word in x, x^{y} is good if it has even length as a word

in x_{\dot{1}}x^{y} . Since \mathrm{C}\mathrm{a}\mathrm{y}(P, \{x^{\pm 1_{i}}x^{\pm y}\}) is bipartite by Theorem 3.2 and y\not\in P , one can

easily see that a subword u of a good word u^{*} equals an element g\in\{1, x^{\pm 1}, y^{\pm 1}\}
only if either g^{-1}u or ug^{-1} is a good subword of u^{*} . Having this in mind, w=1

gives rise to an induced odd cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, \{x^{\pm 1}, y^{\pm 1}\}) when |w| is odd, which is

a contradiction. Thus |w| is even. From w=1 we may construct a new relation

w'=1
, where w' is defined as

w'=x^{-y^{-1}}x^{-1}x^{(a_{1}-1)y}x^{b_{1}}x^{a_{2}y}x^{b_{2}}\cdots x^{a_{k}y_{X}b_{k}}.

Suppose w' has a proper subword w'' which is equal to an element g\in\{1, x^{\pm 1}, y^{\pm 1}\}
and that neither g^{-1}w'' nor w�g‐l is a subword of w' otherwise we may replace
w'' by g^{-1}w^{Jl} or w^{;}g^{-1} and g by 1. If w'' is a subword of x^{y^{-1}}w' then, by the

argument above, either g^{-1}w' or w�g‐l is a good subword of x^{y^{-1}}w' and we may

assume w=1 . Moreover, w'=x^{-1}x^{-y}w should be an initial subword of x^{y^{-1}}w'
in which w^{;/} is a good initial subword of w . But then, it follows that w=x^{y}x

contradicting the assumption on a_{1}, b_{1} and the length of w . Hence w'' should

contain some letters of the initial term x^{-y^{-1}} of w' . If w
� is not an initial subword

of w�, then since  g^{-1}w''\equiv w��g‐1 \equiv 1(\mathrm{m}\mathrm{o}\mathrm{d} P) ,
we must have a relation of the

form yw'' y=1 in which either yw�ly is an initial subword of x^{y^{-1}}w' or w' ends

at x^{$\alpha$_{i}'y} with |a_{i}|<|a_{i}| as a subword of x^{a_{i}y}=x^{a_{i}'y}x^{(a_{i}-a_{i}')y} . Since the former

case was ruled out by the above discussions, (ywy)^{-1}w'=1 is a relation in which

(yw''y)^{-1}w �
is a proper subword of w contradicting the assumption on w . Thus

w''=x^{-y^{-1}}x^{-1}w^{J} is an initial subword of w' possessing the initial term x^{-y^{-1}}x^{-1}.
But then x^{y}w =g where x^{y}w^{;}g^{-1} or g^{-1}x^{y}w is a proper subword of w after

possibly a cyclic shift contradicting the assumption on w . Now, the relation w'=1

determines an induced odd cycle of length |w'|=|w|+1 in \mathrm{C}\mathrm{a}\mathrm{y}(G, \{x^{\pm 1}, y^{\pm 1} the

final contradiction.

In the sequel, we assume that l_{f}\geq 3 . Let

 $\Phi$(G)=G_{0}\underline{\triangleleft}G_{1}\underline{\triangleleft}\ldots\underline{\triangleleft}G_{l-1}\underline{\triangleleft}G_{l}=G,

be the inverse image of a chief series of G/ $\Phi$(G) and assume M=G_{l-1} . From

[9, Theorem 2], we know that G has a minimal generating set X=\{x_{1}, . . . , x_{l_{f}}\}
in which x_{i}\in G_{n_{i}}\backslash G_{n_{i}-1}(i=1, \ldots, l_{f}) is an element of prime power order,
n_{1}=1, n_{f}=l and G_{n_{i}}/G_{n_{i}-1} are the non‐Frattini factors of the chief series, for

i=1
,

. . .

, l_{f} . Replacing the elements of X by suitable conjugates, we can also

assume that x_{i}, x_{j} belong to the same Sylow p‐subgroup whenever x_{i}, x are both
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p‐elements for some p=2 , 3. Let Y_{i}=X\backslash \{x_{i}\} for i=1
,

. . .

, l_{f} . First observe the

every x_{i} belongs to some Y_{j} having elements of odd and even orders. Hence, by
assumption on G and perfectness of \mathrm{C}\mathrm{a}\mathrm{y}(\langle Y_{j}\rangle, Y_{j}\cup Y_{j}^{-1}) ,

it follows that \langle Y_{i} } \in C

so that x_{i} has prime order. Furthermore, l_{f}=3.
We claim that l=l_{f} , that is, there are no Frattini factors. Clearly, Y_{i} contains

elements of order 2 and 3 for some i\in\{1 ,
2 \} . Then  G=G_{n_{2}}\langle Y_{i}\rangle implies  G/G_{n_{2}}\cong

\{Y_{i}\}/(G_{n_{2}}\cap\{Y_{i}))\cong C_{2} or C_{3} . Hence, n_{2}=n_{3}-1=l-1 . Therefore,  $\Phi$(G/G_{1})=
G_{l-2}/G_{1} . On the other hand, we have G/G_{1}=\{G_{1}x_{2}, G_{1}x_{3}\} . In case \{|x_{2}|, |x_{3}|\}=
\{2 ,

3 \} , we have \{x_{2}, x3\}\in C showing that l=3 . If |x_{2}|=|x_{3}|=2 ,
then G/G_{1}

is a dihedral 2‐group. Clearly, \{x_{1}, x_{2}x_{3}, x3\} is a minimal generating set of G

forcing (x_{2}x_{3})^{2}=1 . Hence, G_{l-2}=\{G_{1}, (x_{2}x_{3})^{2}\}=G_{1} and again l=3 . Finally,
assume that |x_{2}|=|x_{3}|=3 . Being a 2‐generated 3‐group of exponent 3, G/G_{1}
is isomorphic to C3 \times C_{3} or E_{3} . Assume G/G_{1} is non‐aUelian. If x_{2} , X3 commute

with x_{1} ,
then G=\langle x_{1} } \times\langle x_{2} , x3} so that [x_{2}, x3]\in $\Phi$(G) , a contradiction. Hence,

we may assume that [x_{1}, x3]\neq 1 . If [x_{1}, x_{2}x_{3}]\neq 1 , then since \{x_{1}, x_{2}x_{3\backslash \prime} X3\} is a

minimal generating subset of G, \{x_{1}, x_{2}x_{3}\}\cong A_{4} by assumption on G . Accordingly,
(x_{1}x_{2}x_{3})^{3}=1 giving rise to an induced 9‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) , a contradiction.

Thus, by replacing x_{2} by x_{2}x_{3} if required, we may assume that x_{1} and x_{2} commute.

Since [x_{1}, x_{2}x_{3}^{-1}]\neq 1 and \{x_{1}, x_{2}, x_{2}x_{3}^{-1}\} is a minimal generating subset of G
, we

observe that

x_{1}x_{1}^{x_{3}^{-1}x_{2}^{-1}}=(x_{1}x_{1}^{x_{3}^{-1}})^{x_{2}^{-1}}=x_{1}^{x_{3}x_{2}^{-1}}=x_{1}^{(x_{2}x_{3}^{-1})^{-1}}=x_{1}x_{1}^{x_{2}x_{3}^{-1}}=x_{1}x_{1}^{x_{2}^{-1}x_{3}^{-1}}
which implies that [x_{2}, x3] commutes with x_{1} . Hence, G=\langle x_{1}, x_{1}^{x_{3}} }  $\lambda$\{x_{2}, x3\}
and one can verify that [x_{2}, x3]\in $\Phi$(G) , which is a contradiction. Thus G/G_{1} is

abelian and consequently l=3
,

as required. In addition, we have shown that when

|x_{2}|=|x_{3}|=p , either \langle x_{2}, x_{3} } \cong C_{p}\times C_{p} or G\cong E_{3} with [x_{2}, x3]\in $\Phi$(G) .

Further we show that every involution x_{u}\in X acts by inversion on  $\Phi$(G) and

that  $\Phi$(G) is elementary abelian when \{x_{u}, x_{v}\}\cong A_{4} for some x_{v}\in X . To end this,
let g\in $\Phi$(G) . Since x_{u} can be replaced with gx_{u} in X

, we deduce that (gxu)2 =1,
that is, g^{x_{u}}=g^{-1} . Replacing x_{u} by x_{u}^{x_{v}^{\pm 1}} in X results in a new minimal generating

subset, from which it follows that g^{x_{u}^{x_{v}}}\pm 1=g^{-1} . Hence, g^{-1}=g^{x_{u^{-1}}^{x_{v}}}=g^{x_{\mathrm{Y}1}x_{\mathrm{u}}^{x_{V}}}=g,
as claimed.

Now, put  H=\langle Y_{3}\rangle . Since \mathrm{C}\mathrm{a}\mathrm{y}(H, Y_{3}\cup Y_{3}^{-1}) is an induced subgraph of \mathrm{C}\mathrm{a}\mathrm{y}(G,  X\cup

 X^{-1}) ,
it is perfect. We distinguish three cases:

Case 1�. H is a 2‐group. Then [G:M]=3 and M is the Sylow 2‐subgroup
of G by Theorem 4.2 and the fact that the Sylow 3‐subgroups of G have exponent
three. Moreover, since  $\Phi$(G)= $\Phi$(M) , it follows that \overline{M} is elementary abelian.

As \mathrm{C}\mathrm{a}\mathrm{y}(\{Y_{i}\}, Y_{i}\cup Y_{i}^{-1}) is perfect for i=1
, 2, the minimality of G shows that

\{Y_{i}\}\in C and subsequently \{Y_{i}\}\cong C_{6} or A_{4} . Hence, |\overline{M}|\leq 16 . First suppose that

\langle x_{1} , x3 \}\cong\langle x_{2} , x3 \}\cong C_{6} . Then M=H, G/ $\Phi$(G)\cong C_{6}\times C_{2} and G is nilpotent. If

M\backslash  $\Phi$(M) contains an element x of order \geq 4 , then Lemma 4.1(1) shows that the

Cayley graph corresponding to every minimal generating subset of G containing x

and x3 contains an induced 5‐cycle, a contradiction. Thus M\backslash  $\Phi$(M) contains only
involutions, which yields M\cong C_{2}\times C_{2} . Hence, G\cong C_{6}\mathrm{x}C_{2} contradicting the

choice of G . Thus, \langle x_{i}, x3 ) \cong A_{4} for some i=1
,
2. We show that \langle x_{j}, x_{3}\rangle\cong C_{6} for

j\in\{1, 2\}\backslash \{i\} . Indeed, if \{x_{2}, x_{3}\rangle\cong A_{4} ,
then \{x_{1}, x_{2}, x_{2}x_{3}\} is a minimal generating

subset of G and |x_{2}x_{3}|=3 ,
from which it follows that \{x_{1}, x_{2}x_{3}\}\cong C_{6} . Otherwise

(x_{1}x_{2}x_{3})^{3}=1 and hence we obtain an induced 9‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) . Thus,
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by replacing X3 by x_{2}x_{3} if necessary, we may assume that x_{1} and X3 commute, as

required. Hence,  $\Phi$(G) is elementary abelian as shown before. For g\in $\Phi$(G) ,
we

-1

observe that (gx_{i})^{x_{3}} =(gx_{i})(gx_{i})^{x_{3}} and (gx_{j})^{x_{3}}= (gxj) for x_{i} can be replaced

by gx_{i} in X . Thus g^{x_{3}^{-1}}=gg^{x_{3}}=1 , which yields g=1 . Therefore,  $\Phi$(G)=1.
Now, it is obvious that G\cong A_{4}\times C_{2} . Putting a:=x_{3}^{x_{i}} and b:=x_{j}x_{3)} we

observe that G=\langle a,  b\rangle and \mathrm{C}\mathrm{a}\mathrm{y}(G, \{a^{\pm 1}, b^{\pm 1}\}) has an induced 7‐cycle determined

by b^{-1}abab^{2}a^{-1}=1
, which is impossible.

Case 2�. H is a 3‐group. Then [G : M]=2 and M is the Sylow 3‐subgroup of G

by Theorem 4.2. As in case 1
,
for i=1

, 2, we have \langle Y_{i}\rangle\in C showing that \{Y_{i}\rangle\cong C_{6}
or S_{3} . Hence, x_{i}^{x_{3}}=x_{i}^{$\epsilon$_{i}} with $\epsilon$_{i}=\pm 1 for i=1

,
2. Moreover, M=H is a group

of order 9 or 27. Let w=x_{2}x_{1}^{-1}x_{2}^{-1}x_{1} . Then \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) has an induced

7‐cycle or 11‐cycle determined by the relation x_{3}x_{2}^{$\epsilon$_{2}}x_{1}^{-$\epsilon$_{1}}x_{3}x_{2}x_{1}wx_{2}=1 according
as w=1 or not, respectively, which is a contradiction.

Case 3. H is neither a 2‐group nor a 3‐group. By assumption, H\in C so that

H\cong C_{6} , S3 or A_{4} . Assume |x_{i}|=2 and |x_{j}|=3 for \{i, j\}=\{1 ,
2 Let k\in\{1 ,

2 \}
be such that |x_{k}|\neq|x_{3}| . As {x_{k}, x_{3}\rangle\in C ,

we also have \langle x_{k}, x_{3} } \cong C_{6} , S3 or A_{4}.
First assume that |x_{2}|=|x_{3}|=p . If p=2 then [x_{2}, x3]=1 and x_{1}^{x_{2}}, x_{1}^{x_{3}}\in\{x_{1}\rangle,

from which it follows that G\cong C_{6}\times C_{2} or S3 \times C_{2} contradicting the assumption
on G . Thus p=3 . As in case 1�, we may assume that x_{1} commutes with X3 and

consequently x_{1} commutes with [x_{2}, x3] as shown before. Hence, G=\{x_{1}\}\times\{x_{2} , x3)
if [x_{1}, x_{2}]=1 and G=\{x_{1}, x_{1}^{x_{2}}\rangle\rangle\triangleleft\{x_{2}, X3\} if [x_{1}, x_{2}]\neq 1 . In the former case,

x_{1}x_{2}x_{3}x_{2}^{-1}x_{1}x_{2}^{-1}x_{3}x_{2}x_{3}=1 determines an induced 9‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) , \mathrm{a}

contradiction. Also, in the latter case, the relation (x_{1}x_{2}x_{3})^{2}wx_{1}x_{3}x_{2}=1 in which

w=1 or x_{2}^{-1}x_{3}^{-1}x_{2}x_{3} according as [x_{2}, x3]=1 or not, determines an induced

9‐cycle or 13‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) , respectively, which is a contradiction.

Thus, we have left with the case |x_{2}|\neq|x_{3}| . If x_{2} and X3 commute, then

we can interchanging x_{2} and x3 after which H will be a 2‐group or a 3‐group.
Hence, without loss of generality, we assume that [x_{2}, x3]\neq 1 . In the case x_{1}

and x_{2} commute, \{x_{2}, x_{2}^{x_{3}}, x_{2}^{x_{3}^{-1}}\} is an elementary abelian normal subgroup of G

otherwise [x_{1}, x3] does not commutes with x_{2} so that \{x_{2}, x3 ) \cong A_{4} and (x_{1}^{x_{3}})^{x_{2}}=
(x_{1}^{x_{3}})^{-1} . Then [x_{1}, x_{3}]^{x_{2}}=x_{1}[x_{3}, x_{1}] , which implies that \{[x_{1}, x_{3}], x_{2}, x3\} is a

minimal generating subset of G . But then, we must have \{[x_{1}, x_{3}], x_{2} ) \cong C_{6} or S_{3},
which is impossible. It means we can also interchange x_{1} and x_{2} after which we are

in the situation that |x_{2}|=|x_{3}| as discussed above. Thus, we may further assume

that [x_{1}, x_{2}]\neq 1 . As a result, \{x_{1},  x_{2}\rangle and \{x_{k}, x3\} are isomorphic to S3 and A_{4} in

some order, which implies that  $\Phi$(G) is an elementary abelian subgroup of G . Now,
we have only two possibilities. If (|x_{1}|, |x_{2}|, |x_{3}|)=(2,3,2) ,

then \langle x_{1}, x_{2}\rangle\cong A_{4}
and \langle x_{2} , x3 \}\cong S_{3} . Clearly, \{x_{1} , x3) is a dihedral 2‐group. If |x_{1}x_{3}|=2^{m} ,

then we

observe that \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) contains an induced (2^{m+1}+5) ‐cycle determined

by (x_{1}x_{2})^{2}(x_{3}x_{1})^{2^{m}-1}x_{2}x_{3}x_{2}^{-1}=1 ,
which is a contradiction. Thus, we should have

(|x_{1}|, |x_{2}|, |x_{3}|)=(3,2,3) . Then \{x_{1}, x_{2} ) \cong S_{3} and \langle x_{2}, x_{3}\rangle\cong A_{4} , hence |x_{2}x_{3}|=3.
Let Q be a Sylow 3‐subgroup of G containing x_{2}x_{3} . Let y\in $\Phi$(G)\{x_{2}, x_{2}^{x_{3}}\rangle, \mathrm{a}

Sylow 2‐subgroup of G
, be such that x_{1}^{y}\in Q . Replacing x_{1} by x_{1}^{y} in X

, one can

assume that x_{1}\in Q . Being elements of Q ,
it follows that (x_{1}x_{2}x_{3})^{3}=1 giving rise

to an induced 9‐cycle in \mathrm{C}\mathrm{a}\mathrm{y}(G, X\cup X^{-1}) , the final contradiction. The proof is

complete. \square 
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Utilizing the above theorem, it is now easy to obtain the classification of all

Cayley perfect finite groups.

Theorem 4.4. Let G be a nontrivial finite group. Then G is a Cayley perfect group

if and only if G is isomorphic to one of the groups C_{2}. C_{3}, C_{4}. C_{2}\times C_{2}. S_{3}. C_{6}.
C_{2}\times C_{2}\times C_{2}. C_{2}\times C_{4}. D_{8}. Q_{8:} C3 \times C_{3}.

Proof. Assume G is a Cayley perfect group. By Theorem 4.3, either G is a 2‐group
or G is isomorphic to one of the \mathrm{g}\mathrm{l}\cdotoups C , C_{6}, S_{3} , C3 \mathrm{x}C_{3}, A_{4} or E_{3} . From rows

(g) and (10) of Table I, it follows that G\not\cong A_{4} and E_{3} . Furthermore, if G is a

2 group, by Lemma 4.1(2) and rows (1) -(8) of Table I, we observe that |G|\leq 8.
Hence, G\cong C_{2}, C_{4}, C_{2}\times C_{2}, C_{4}\times C_{2}, C_{2}\times C_{2}\times C_{2}, D_{8} or Q_{8} and the result

follows. The converse is straightforward. \square 
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