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1. ENDO‐TRIVIAL MODULES

This is joint work with Caroline Lassueur (see [8], [7]). We assume that

k is a field with characteristic p>0 , and G is a finite group with p||G|.
A finitely generated right kG‐module M is called endo‐trivial if

\mathrm{E}\mathrm{n}\mathrm{d}_{k}(M)\cong k_{G}\oplus(projective)

as right kG‐modules where k_{G} is the trivial kG‐module. Then in the

stable module category stmod (kG) of finitely generated kG‐modules,
the set

T(G) := { [M]\in stmod (kG)|M is endo‐trivial}

has an abelian group structure by making use of the tensor product
over k . Namely, we define an addition + in T(G) by

[M]+[N]:=[M\otimes_{k}N]

(note that M\otimes_{k}N is again an endo‐trivial kG‐module if so are M and

N
,

and recall also that \mathrm{E}\mathrm{n}\mathrm{d}_{k}(M)\cong M^{*}\otimes_{k}M as kG‐modules where

M^{*} :=\mathrm{H}\mathrm{o}\mathrm{m}_{k}(M, k) . Remind also that for right kG‐modules M and

N, M\otimes_{k}N is considered as left kG‐module by the diagonal action,
namely (m\otimes n)g :=mg\otimes ng for g\in G, m\in M and n\in N ,

and

that M^{*} is again a left kG‐modlue via ( $\phi$ g)(m) := $\phi$(mg^{-1}) for g\in G,
m\in M and  $\phi$\in M^{*} Then it is easy to know that the zero element in

T(G) is [k_{G}] and the inverse element -[M] of [M] in T(G) is [M^{*}].
The endo‐trivial modules go back to Dade in 1978 [6]. Since then

endo‐trivial modules show up in many places in the modular representa‐
tion theory of finite groups and they do have played very important role
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in this area. Actually, Dade classifies all the endo‐trivial kG‐modules

for the case where G are finite abelian p‐groups (see [6]). Since then

the determination of the structure of T(G) has been done for the case

where G are finite p‐groups by Carlson and Thévenaz (see [13], [2]).
Then, we might be,interested in T(G) for artibrary finite groups G.

This problem is still open as far as the author knows. It is known that‐

T(G) is finitely generated by a result of [3] (depending on initiated

work of Puig). From now on. let TT(G) and TF(G) be the torsion

part and the torsion free part of T(G) respectively, and let P be a

Sylow  p\leftrightarrow‐subgroup of  G.

First, if P is cyclic, then T(G) is considered in [9]. This is of course

exactly the case where the group algebra kG is of finite‐representation
type as is well‐known since many years ago. Further, if p=2 and P

is generalized quaternion or semidihedral, then T(G) is treated by [4].
Recall that these cases cover almost of all the cases where the group

algebras kG are of finite‐representation type and of tame‐representation
type. Then, what�s missing? Yes, the case where P is dihedral

(possibly the Klein‐four group of order 4) is missing. This is actually
our motivaion for the work (see [7] and [8]).

Our main result is the folllowing:

Theorem 1.1. Suppose that G is a finite group with a dihedral Sylow
2‐subgroup P of order at least 8, and assume that T(G) is the abelian

group of endo‐trivial kG ‐modules over an algebraically closed field k of
characteristic 2. Set \overline{G} :=G/O_{2'}(G) . Then we have the following:

(i) If \overline{G}\not\cong \mathfrak{A}_{6} (here \mathfrak{A}_{6} is the alternating group on 6 letters), then

TT(G)=X(G) ,
where X(G) :=\{[M]\in T(G)|\dim_{k}(M)=

1\}.
(ii) If \overline{G}\cong \mathfrak{A}_{6} , then either

(a) TT(G)=X(G) ,
or

(b) TT(G)/X(G) is an elementary abelian 3‐group and each

indecomposable endo‐trivial kG ‐module M with [M] \in

 TT(G)\backslash X(G) is a 9‐dimensional simple module.

Proof. See [8, Theorem 1.2]. \square 

Remark 1.2. For the case where the Sylow 2‐subgroup P of G is the

Klein‐four group C_{2}\times C_{2} ,
see [8, Theorem 1.5] and also [7].
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Actually we do have a pretty much general result to compute T(G) .

It is stated as follows:

Theorem 1.3. Suppose that k is an algebraically closed field of charac‐

teristic p>0 ,
and that G is a finite group ofp‐rank at least 2, namely

G contains a subgroup C_{p}\times C_{p} where C_{p} is the cyclic group of order

p . Further assume that G has no strongly p‐embedded subgroups. Now_{f}
we suppose that H\triangleleft G with p\displaystyle \int|H| . Set \overline{G}:=G/H ,

and assume more

over that \mathrm{H}^{2}(\overline{G}, k^{\times})=1 . Then, we have

k(G)\cong X(G)+k(\overline{G})
where K(G) is the kernel of the restriction map

{\rm Res}_{P}^{G}:T(G)\rightarrow T(P) given by [1\mathrm{J}4i]\mapsto[M\downarrow_{P}^{G}],
and further

k(G) :=\{[M]\in T(G)|M=f^{-1}(L)
for a 1‐dimensional kN_{G}(P) ‐module L }

where f is the Green correspondence with respect to (G, P, N_{G}(P)) .

Proof. See [8, Theorem 1.1]. \square 

Remark 1.4. The point in Theorem 1.3 is the following. We actually
would like to compute TT(G) ,

and it is most likely the same as K(G) .

Precisely speaking, K(G)=TT(G) unless P is cyclic or generalized
quaternion. So at least for our purpose this is the case. So our final aim

is recuded from the computation of TT(G) to that of K(G) . Now, let

us look at the right hand side. Then, first of all, X(G) is computable (it
is nothing but the p ‐part of G/[G, G] where [G, G] is the commutator

subgroup of G . Then what about the second term K(\overline{G}) . Since we

can assume that H\neq 1 ,
we are able to use inductive argument. So, it

works!

2. OKUYAM \mathrm{A}^{} \mathrm{S} THEOREM

The author would like to introduce a theorem of Okuyama in 1981

with a proof, which showed up only in Japanese [12, Theorem 1], be‐

cause the author hopes/believes that Okuyama�s theorem may/should
be useful even for understanding endo‐trivial modules and also endo‐

permutation modules and so on. Who knows? Okuyama�s theorem

here makes Brandt�s result [1, Theorem \mathrm{B} ] more precise. For a finite
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dimentional k‐algebra A and I\subseteq A we denote by \mathrm{A}\mathrm{n}\mathrm{n}_{A}(I) the (right)
annihilator of I in A

, namelyì \mathrm{A}\mathrm{n}\mathrm{n}_{A}(I) :=\{a\in A|Ia=\{0\}\} ,
and we

denote by Z(A) the center of A.

Theorem 2.1 (Okuyama (1981) [12]). Let B be a block algebra of kG

of a finite group G over an algebraically closed field k of character‐

istic p>0 (actually, this theorem holds even for an arbitrary finite
dimensional symmetric k ‐algebra B). Further, let \ell(B) be the number

of non‐isomorphic simple right B ‐modules, and let S_{1}, \cdots

ì  S_{\ell(B)} be the

all non‐isomorphic simple right B ‐modules. Then, it holds

\displaystyle \dim_{k}[\mathrm{A}\mathrm{n}\mathrm{n}_{B}(J(B)^{2})\cap Z(B)]=\ell(B)+\sum_{i=1}^{\ell(B)}\dim_{k}[\mathrm{E}\mathrm{x}\mathrm{t}_{B}^{1}(S_{i}, Si)].
Proof. (Okuyama in [12, Theorem 1]). Set \ell :=\ell(B) , and let e_{1}, \cdots, e_{\ell}

be the set of all primitive idempotents of B such that P_{i} :=P(S_{i}) :=

e_{i}B is the projective cover of S_{i} for i=1, \cdots, \ell . Set  e :=e_{1}+\cdots+e_{\ell},
and A :=eBe

,
and hence A is the basic ring (algebra) of B

,
and A

is a finite dimensional symmetric k‐algebra (recall that A and B are

Morita equivalent). Further, set J :=J(B) the Jacobson radical of B.

Step 1. \dim_{k}[\mathrm{E}\mathrm{x}\mathrm{t}_{B}^{1}(S_{i}, S_{i})]=\dim_{k}(e_{i}Je_{i}/e_{i}J^{2}e_{i}) .

Step 2. If C is a finite dimensional k‐algebra such that C/J(C)\cong k,
then \mathrm{A}\mathrm{n}\mathrm{n}_{C}(J(C)^{2})\subseteq Z(C) .

Proof of Step 2. Follows by [10, Lines 7‐8 of the proof of Lemma 2],

Step 3. For any two‐sided ideal I of B
,

we have that

\dim_{k}[\mathrm{A}\mathrm{n}\mathrm{n}_{B}(I)\cap Z(B)]=\dim_{k}[\mathrm{A}\mathrm{n}\mathrm{n}_{A}(eJe)\cap Z(A)].
Proof of Step 3. Recall that B and A are Morita equivalent.

Step 4. If 0\neq f=f^{2}\in C for a finite‐dimensional symmetric k‐

algebra C ,
then fCf is again symmetric.

Proof of Step 4. Take a similar way to prove that a Morita equiva‐
lence preserves being symmetric, though fCf is not necessarily Morita

equivalent to C ,
of course.

Step 5. Set

T:=\displaystyle \sum_{i}e_{i}J^{2}e_{i}+\sum_{i\neq j}e_{i}Je_{j}.
Then T is a two‐sided ideal of A.

Step 6. \mathrm{A}\mathrm{n}\mathrm{n}_{A}(T)=\mathrm{A}\mathrm{n}\mathrm{n}_{A}[(e\cdot J(A)^{2}\cdot e)\cap Z(A)]. \square 
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