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1. ENDO-TRIVIAL MODULES

This is joint work with Caroline Lassueur (see [8], [7]). We assume that
k is a field with characteristic p > 0, and G is a finite group with p‘ |G|.
A finitely generated right kG-module M is called endo-trivial if

Endy (M) = kg @ (projective)

as right kG-modules where k¢ is the trivial kG-module. Then in the
stable module category stmod(kG) of finitely generated kG-modules,
the set .

T(G) = {[M] € stmod(kG) | M is endo-trivial}

has an abelian group structure by making use of the tensor product
over k. Namely, we define an addition + in 7(G) by

[M] +[N] := [M ®; N]

(note that M ®;, N is again an endo-trivial kG-module if so are M and
N, and recall also that Endy(M) & M* ®; M as kG-modules where
M* := Homy(M, k). Remind also that for right kG-modules M and
N, M ®j N is considered as left kG-module by the diagonal action,
namely (m ® n)g := mg®ng for g € G, m € M and n € N, and
that M* is again a left kG-modlue via (¢g)(m) := ¢(mg™") for g € G,
m € M and ¢ € M*. Then it is easy to know that the zero element in
T(G) is [kg] and the inverse element —[M] of [M] in T(G) is [M*].
The endo-trivial modules go back to Dade in 1978 [6]. Since then
endo-trivial modules show up in many places in the modular representa-
tion theory of finite groups and they do have played very important role



in this area. Actually, Dade classifies all the endo-trivial kG-modules
for the case where G are finite abelian p-groups (see [6]). Since then
the determination of the structure of T'(G) has been done for the case
where G are finite p-groups by Carlson and Thévenaz (see [13], [2]).
Then, we might be,interested in T(G) for artibrary finite groups G.
This problem is still open as far as the author knows. It is known that.
T(G) is finitely generated by a result of [3] (depending on initiated
work of Puig). From now on, let TT(G) and TF(G) be the torsion
part and the torsion free part of T(G) respectively, and let P be a
Sylow p-subgroup of G.

First, if P is cyclic, then T(G) is considered in [9]. This is of course
exactly the case where the group algebra kG is of finite-representation
type as is well-known since many years ago. Further, if p = 2 and P
is generalized quaternion or semidihedral, then T'(G) is treated by [4].
Recall that these cases cover almost of all the cases where the group
algebras kG are of finite-representation type and of tame-representation
type. Then, what’s missing? Yes, the case where P is dihedral
(possibly the Klein-four group of order 4) is missing. This is actually
our motivaion for the work (see [7] and [8]).

Our main result is the folllowing:

Theorem 1.1. Suppose that G is a finite group with a dihedral Sylow
2-subgroup P of order at least 8, and assume that T(QG) is the abelian
group of endo-trivial kG-modules over an algebraically closed field k of
characteristic 2. Set G := G /Oy (G). Then we have the following:

(i) If G 2 Us (here g is the alternating group on 6 letters), then
TT(G) = X(G), where X(G) := {[M] € T(@)| dimp(M) =
1}. '

(ii) If G = e, then either

(a) TT(G) = X(G), or :

(b) TT(G)/X(G) is an elementary abelian 3-group and each
indecomposable endo-trivial kG-module M with [M] €
TT(G)\X(G) is a 9-dimensional simple module.

Proof. See [8, Theorem 1.2]. O

Remark 1.2. For the case where the Sylow 2-subgroup P of G is the
Klein-four group Cy x Cy, see [8, Theorem 1.5] and also [7].
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Actually we do have a pretty much general result to compute T'(G).
It is stated as follows:

Theorem 1.3. Suppose that k is an algebraically closed field of charac-
teristic p > 0, and that G is a finite group of p-rank at least 2, namely
G contains a subgroup C, x C, where C, is the cyclic group of order
p. Further assume that G has no strongly p-embedded subgroups. Now,

we suppose that H <1 G with p/lel. Set G := G/H, and assume more
over that H2(G, k*) = 1. ’Then, we have
k(G) =2 X(G)+k(G)
where K(G) is the kernel of the restriction map
Res$ : T(G) — T(P) given by [M]— [M|9],

and further

k(G) ={[M] e T(G) | M = f~(L)

for a 1-dimensional kNg(P)-module L}

where [ is the Green correspondence with respect to (G, P, NG(P))

Proof. See [8, Theorem 1.1]. : O

Remark 1.4. The point in Theorem 1.3 is the following. We actually
would like to compute TT(G), and it is most likely the same as K(G).
Precisely speaking, K(G) = TT(G) unless P is cyclic or generalized
quaternion. So at least for our purpose this is the case. So our final aim
is recuded from the computation of TT(G) to that of K(G). Now, let
us look at the right hand side. Then, first of all, X (&) is computable (it
is nothing but the p’-part of G/[G, G] where [G, G] is the commutator
subgroup of G. Then what about the second term K(G). Since we
can assume that H # 1, we are able to use inductive argument. So, it

works!

2. OKUYAMA’S THEOREM

The author would like to introduce a theorem of Okuyama in 1981
with a proof, which showed up only in Japanese [12, Theorem 1], be-
cause the author hopes/believes that Okuyama’s theorem may/should
be useful even for understanding endo-trivial modules and also endo-
permutation modules and so on. Who knows? Okuyama’s theorem
here makes Brandt’s result [1, Theorem B] more precise. For a finite
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dimentional k-algebra A and I C A we denote by Ann (1) the (right)
annihilator of I in A, namely, Annu(I) := {a € A|Ia = {0} }, and we
denote by Z(A) the center of A.

Theorem 2.1 (Okuyama (1981) [12]). Let B be a block algebra of kG
of a finite group G over an algebraically closed field k of character-
istic p > 0 (actually, this theorem holds even for an arbitrary finite
dimensional symmetric k-algebra B). Further, let £(B) be the number
of non-isomorphic simple right B-modules, and let S, -, Syp) be the
all non-isomorphic simple right B-modules. Then, it holds
«B)
dimg[Anng(J(B)*) N Z(B)] = €B) + Y _ dimg[Ext}(S;, S)].
i=1
- Proof. (Okuyama in [12, Theorem 1]). Set £ := £(B), and let €y, , €
be the set of all primitive idempotents of B such that P; := P(S;) :=
e; B is the projective cover of S; fort =1,--- ,£. Set e:=¢e; + -+ ey,
and A := eBe, and hence A is the basic ring (algebra) of B, and A
is a finite dimensional symmetric k-algebra (recall that A and B are
Morita equivalent). Further, set J := J(B) the Jacobson radical of B.

Step 1. dimy[Exty(S;, S;)] = dimg(e;Je; /esJ%e;).

Step 2. If C is a finite dimensional k-algebra such that C/J(C) = k,
then Anng(J(C)?) C Z(C).

Proof of Step 2. Follows by [10, Lines 7-8 of the proof of Lemma 2].

Step 3. For any two-sided ideal I of B, we have that
dimg[Anng (/) N Z(B)] = dimi[Anna(ee) N Z(A)).

Proof of Step 3. Recall that B and A are Morita equivalent.

Step 4. If 0 # f = f? € C for a finite-dimensional symmetric k-
algebra C', then fC'f is again symmetric.

Proof of Step 4. Take a similar way to prove that a Morita equiva-
lence preserves being symmetric, though fC'f is not necessarily Morita
equivalent to C, of course.

Step 5. Set
T:= Z e;J%e; + ZeiJej.
? 1#£]
Then T is a two-sided ideal of A.
Step 6. Anns(T) = Anngl(e-J(A4)2%-e) N Z(A)). 0
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