On handlebody-links and Milnor's link-homotopy invariants

Yuka Kotorii

Graduate School of Mathematical Science, The University of Tokyo

1 Introduction

This is a survey of the joint work [13] with Atsuhiko Mizusawa.

A handlebody-link [11, 27] is a disjoint union of embeddings of handlebodies in the 3-sphere S^3 (Figure 1). Two handlebody-links are *equivalent* if there is an ambient iso-

FIGURE 1. A handlebody-link.

topy which transforms one to the other. An *HL-homotopy* is an equivalence relation on handlebody-links, which is analogous to link-homotopy of links. Here, *link-homotopy* is generated by ambient isotopies and self-crossing changes. In [22], Mizusawa and Nikkuni showed that the HL-homotopy classes of 2-component handlebody-links were classified completely by the linking numbers for handlebody-links, which was defined by Mizusawa in [21]. In [13], we construct HL-homotopy invariants for handlebody-links by using Milnor's $\overline{\mu}$ -invariants for links. We then give a necessary and sufficient condition of that a handlebody-link is HL-homotopic to a separable one by the extended Milnor's $\overline{\mu}$ -invariants. Here, a handlebody-link is *separable* if there exists a disjoint union of 3balls such that each component of the handlebody-link is contained in a distinct 3-ball. Moreover, we give a bijection between the set of HL-homotopy classes of *n*-component handlebody-links with some assumption and a quotient of a tensor product of \mathbb{Z} -modules by the action of the general linear group.

2 Preliminaries

J. Milnor defined a family of invariants for an ordered oriented link in S^3 as a generalization of the linking numbers, in [19, 20]. These invariants are called *Milnor's* $\overline{\mu}$ *invariants*. For an ordered oriented *n*-component link *L*, Milnor's $\overline{\mu}$ -invariant is specified by a sequence *I* of indices in $\{1, 2, ..., n\}$ and denoted by $\overline{\mu}_L(I)$. If the sequence is with distinct indices, then this invariant is also link-homotopy invariant and called *Milnor's link-homotopy invariant*.

We introduce the definition of Milnor's link-homotopy invariants, and to give invariants for handlebody-links, we show that these are additive under a bund sum for components.

Let $L = L_1 \cup \cdots \cup L_n$ be an ordered oriented *n*-component link in S^3 . Consider the link group $\pi = \pi_1(S^3 \setminus L_1 \cup \cdots \cup L_{n-1})$ of $L_1 \cup \cdots \cup L_{n-1}$ and denote the *i*-th meridian by m_i for $i \ (1 \le i \le n-1)$.

Given a finitely generated group G, the reduced group \overline{G} is defined to the quotient of G by its normal subgroup generated by $[g, hgh^{-1}]$ for any $g, h \in G$, where [a, b] means the commutator of a and b. Then $\overline{\pi}$ is generated by the meridians $m_1, m_2, \ldots, m_{n-1}$.

Let $\mathbb{Z}[[X_1, \ldots, X_{n-1}]]$ be the non-commutative formal power series ring generated by X_1, \ldots, X_{n-1} . Denote by \hat{Z} its quotient ring by the two-side ideal generated by all monomials in which at least one of the generators appear at least twice. The *Magnus expansion* φ is a homomorphism from the free group $F(m_1, \ldots, m_{n-1})$ generated by m_1, \ldots, m_{n-1} into $\mathbb{Z}[[X_1, \ldots, X_{n-1}]]$, defined by sending m_i to $1 + X_i$ and m_i^{-1} to $1 - X_i + X_i^2 - \cdots$. It induces a homomorphism from $\overline{F(m_1, \ldots, m_{n-1})}$ into \hat{Z} . Let $w_n \in F(m_1, \ldots, m_{n-1})$ be a word representing L_n in $\overline{\pi}$. We then define $\mu_L(i_1i_2 \ldots i_rn)$ for distinct indices i_1, i_2, \ldots, i_r, n as the coefficient of the Magnus expansion of w_n in \hat{Z} :

$$\varphi(w_n) = 1 + \sum \mu_L(i_1 i_2 \dots i_r n) X_{i_1} X_{i_2} \dots X_{i_r},$$

where the summation is over all sequences $i_1i_2...i_r$ with distinct indices between 1 and n-1. Similarly, we define $\mu_L(i_1i_2...i_s)$ for any distinct indices between 1 and n. We define $\overline{\mu}_L(i_1i_2...i_rn)$ as the residue class of $\mu_L(i_1i_2...i_rn)$ modulo the indeterminacy $\Delta_L(i_1i_2...i_rn)$ which is the greatest common divisor of $\mu_L(j_1j_2...j_s)$'s, where $j_1j_2...j_s$ ranges over all sequences obtained by deleting at least one of the indices $i_1, i_2, ..., i_r, n$ and permuting the remaining ones cyclicly. Moreover we define $\Delta_L(i_1n) = 0$. Similar to this, for any *n*-component link *L*, we can define $\overline{\mu}_L(I)$ for any sequence *I* of distinct indices in $\{1, 2, ..., n\}$

Theorem 2.1 ([19, 20]). If L and L' are link-homotopic, then $\overline{\mu}_L(I) = \overline{\mu}_{L'}(I)$ for any sequence I with distinct indices.

Lemma 2.2 ([20]). Let L be an ordered oriented link. Then the following relations hold. (1) $\overline{\mu}_L(i_1i_2...i_m) = \overline{\mu}_L(i_2...i_mi_1)$

(2) If the orientation of the k-th component of L is reversed, then $\overline{\mu}_L(i_1i_2...i_m)$ is multiplied by +1 or -1 according as the sequence $i_1i_2...i_m$ contains k an even or odd number of times.

The following lemma is used for Proposition 3.4. This lemma is showed by using the definition of Milnor's link-homotopy invariants.

Lemma 2.3. Let $L = L_1 \cup L_2 \cup \cdots \cup L_{n-1}$ be an (n-1)-component link in S^3 . Let K and K' be disjoint knots in $S^3 \setminus L$. Let I be a sequence with distinct indices in $\{1, 2, \ldots, n\}$. If I contains the index n,

 $\mu_{L\cup(K\sharp_bK')}(I) \equiv \mu_{L\cup K}(I) + \mu_{L\cup K'}(I) \mod \gcd(\Delta_{L\cup K}(I), \Delta_{L\cup K'}(I)),$

where $K \sharp_b K'$ is a band sum of K and K' with respect to any band, and $L \cup (K \sharp_b K')$, $L \cup K$ and $L \cup K'$ are n-component links whose n-th components are $K \sharp_b K'$, K and K', respectively.

Remark 2.4. By a property of the $\bar{\mu}$ -invariant, we can obtain the same result for a band sum of the *i*-th component instead of the *n*-th component.

Remark 2.5. In [14], V. S. Krushkal showed Milnor's $\overline{\mu}$ -invariants are additive under connected sum for links which are separated by a 2-sphere.

3 Milnor's $\overline{\mu}$ -invariants for handlebody-links

In this section, we define the HL-homotopy, which is an equivalence relation on handlebodylinks and construct HL-homotopy invariants for handlebody-links by using Milnor's $\overline{\mu}$ invariants.

Definition 3.1 (HL-homotopy). Let H_0 be n handlebodies and H_i (i = 1, 2) two ncomponent handlebody-links obtained by embedding H_0 to S^3 by f_i . Two handlebodylinks H_1 and H_2 are called *HL-homotopic* if there is homotopy h_t from f_1 to f_2 where the
components of $h_t(H_0)$ are mutually disjoint at any $0 \le t \le 1$.

Remark 3.2. In [22], the notation of *neighborhood homotopy* of spatial graphs was introduced. A spatial graph is an embedding of graph in S^3 . We can represent the HL-homotopy of handlebody-links by the neighborhood homotopy of spatial graphs.

Let $H = L_1 \cup \cdots \cup L_n$ be an *n*-component handlebody-link with genus g_i for each *i*. Let $\{e_1^i, \ldots, e_{q_i}^i\}$ be a basis of $H_1(L_i; \mathbb{Z})$ and $\mathcal{B} = \{e_1^1, \ldots, e_{q_1}^1, \ldots, e_1^n, \ldots, e_{q_n}^n\}$. We can regard an element of \mathcal{B} as an embedded closed oriented circle in S^3 . So the disjoint union $e_{k_1}^1 \cup e_{k_2}^2 \cup \cdots \cup e_{k_n}^n$ can be regarded as an ordered oriented link for each k_i $(1 \leq k_i \leq g_i)$. Let I be a sequence of length m $(m \leq n)$ with distinct indices in $\{1, 2, \ldots, n\}$. For each I, we define an element $M_{H,\mathcal{B}}(I)$ of tensor product space $(\mathbb{Z}/\Delta_I\mathbb{Z})^{g_1} \otimes \cdots \otimes (\mathbb{Z}/\Delta_I\mathbb{Z})^{g_n}$ as $\mathbb{Z}/\Delta_I\mathbb{Z}$ -module defined by

$$M_{H,\mathcal{B}}(I) := \sum_{k_1,\ldots,k_n=1}^{g_1,\ldots,g_n} \overline{\mu}_{e_{k_1}^1 \cup \cdots \cup e_{k_n}^n}(I) \ \boldsymbol{e}_{k_1}^1 \otimes \cdots \otimes \boldsymbol{e}_{k_n}^n,$$

where $\overline{\mu}_{e_{k_1}^1 \cup \cdots \cup e_{k_n}^n}(I)$ is in $\mathbb{Z}/\Delta_I \mathbb{Z}$, Δ_I is the greatest common divisor of all $\Delta_{e_{k_1}^1 \cup \cdots \cup e_{k_n}^n}(I)$ for all k_1, \ldots, k_n , where $\Delta_{e_{k_1}^1 \cup \cdots \cup e_{k_n}^n}(I)$ is indeterminacy of the original Milnor's invariant

for the link $e_{k_1}^1 \cup e_{k_2}^2 \cup \cdots \cup e_{k_n}^n$ and $e_{k_i}^i$ is the canonical basis $(0, \ldots, 0, \check{1}, 0, \ldots, 0)$ of $(\mathbb{Z}/\Delta_I \mathbb{Z})^{g_i}$ as $\mathbb{Z}/\Delta_I \mathbb{Z}$ -module.

Remark 3.3. If the first homology group of each component of H is \mathbb{Z} , the $M_{H,\mathcal{B}}(I)$ is identified with the original Milnor's link-homotopy invariant for a link, essentially.

We consider a natural action of $GL(g_1, \mathbb{Z}) \times \cdots \times GL(g_n, \mathbb{Z})$ on $(\mathbb{Z}/\Delta_I \mathbb{Z})^{g_1} \otimes \cdots \otimes (\mathbb{Z}/\Delta_I \mathbb{Z})^{g_n}$ and denote by $M_H(I)$ the residue class of $M_{H,\mathcal{B}}(I)$ by the action for $(\mathbb{Z}/\Delta_I \mathbb{Z})^{g_1} \otimes \cdots \otimes (\mathbb{Z}/\Delta_I \mathbb{Z})^{g_n}$.

Proposition 3.4. Let H be an n-component handlebody-link. Then $M_H(I)$ is independent of a basis \mathcal{B} of $H_1(H, \mathbb{Z})$ and an HL-homotopy invariant.

Proof. The proof is by induction on the length m of sequence I. We can show it by using properties of $\overline{\mu}$ -invariants for links (Lemma 2.2 and 2.3). See [13] for details.

Example 3.5. Let H be a handlebody-link which are the regular neighborhood of graph illustrated in Figure 2. Let I = 123. Then, $\Delta_{e_1^1 \cup e_1^2 \cup e_1^3}(I) = \Delta_{e_1^1 \cup e_1^2 \cup e_2^3}(I) = 2$ and $\Delta_{e_{k_1}^1 \cup e_{k_2}^2 \cup e_{k_2}^3}(I) = 0$ in other cases. So $\Delta_I = 2$ and

$$M_{H}(I) = 1 \ e_{1}^{1} \otimes e_{1}^{2} \otimes e_{1}^{3} + 1 \ e_{2}^{1} \otimes e_{2}^{2} \otimes e_{2}^{3} \in (\mathbb{Z}_{2})^{2} \otimes (\mathbb{Z}_{2})^{2} \otimes (\mathbb{Z}_{2})^{2}.$$

We can show the following corollary by using clasper theory introduced by Habiro [8].

Corollary 3.6. An n-component handlebody-link H is HL-homotopic to a separable handlebodylink if and only if $M_H(I) = 0$ for any I.

Remark 3.7. T. Fleming defined a numerical invariant $\lambda_{\Phi}(H)$ of a pair of a spatial graph Φ and its subgraph H under component homotopy in [3]. Now, we define Φ as a handlebody-link instead of a spatial graph and H as its component instead of a subgraph. We then can naturally extend this invariant to a pair of a handlebody-link and its component under HL-homotopy. Then, the value of $\lambda_{\Phi}(H)$ is the length of first non-vanishing for $M_{\Phi}(I)$ such that I contains the component number of H.

FIGURE 2. Handlebody-link H.

4 Main Theorem

Let $\mathbb{H}[g_1, g_2, \dots, g_n]$ be the set of *n*-component handlebody-links with genus g_i for each $1 \leq i \leq n$ such that its any (n-1)-component subhandlebody-link is HL-homotopic to a separable handlebody-link. By Corollary 3.6, this condition is equivalent to that its any M(I)'s of length less than n vanishes.

Let S be a permutation group on $\{2, 3, \ldots, n-1\}$. For any element σ in S, we define I_{σ} as a sequence $1\sigma(23\cdots n-1)n$.

Theorem 4.1. For any element σ in S, the map

$$\varphi: \mathbb{H}[g_1, \cdots, g_n] \to \bigoplus_{\sigma \in S} (\mathbb{Z}^{g_1} \otimes \cdots \otimes \mathbb{Z}^{g_n})$$
$$H \mapsto (M_H(I_\sigma))_{\sigma \in S}$$

induces a bijection between the set of HL-homotopy classes of $\mathbb{H}[g_1, g_2, \cdots, g_n]$ and the residue class of $\bigoplus_{\sigma \in S} (\mathbb{Z}^{g_1} \otimes \cdots \otimes \mathbb{Z}^{g_n})$ by diagonal action of general linear group.

We give two examples.

Example 4.2. Let I = 123. Let H_1 and H_2 be two handlebody-links which are the regular neighborhood of graphs depicted in Figure 3. Then, $\Delta_I = 0$ and

$$\begin{split} M_{H_1}(I) = & 1 \ e_1^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_2^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_3^2 \otimes e_1^3 \\ & + 2 \ e_1^1 \otimes e_1^2 \otimes e_2^3 + 2 \ e_1^1 \otimes e_2^2 \otimes e_2^3 + 2 \ e_1^1 \otimes e_3^2 \otimes e_2^3 \\ & \in \mathbb{Z}^2 \otimes \mathbb{Z}^3 \otimes \mathbb{Z}^2. \end{split}$$
$$M_{H_2}(I) = & 1 \ e_1^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_2^2 \otimes e_1^3 + 1 \ e_2^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_2^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_2^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_2^1 \otimes e_2^2 \otimes e_2^3 \\ & 1 \ e_1^1 \otimes e_1^2 \otimes e_2^3 + 1 \ e_1^1 \otimes e_2^2 \otimes e_2^3 + 1 \ e_2^1 \otimes e_1^2 \otimes e_2^3 + 1 \ e_2^1 \otimes e_2^2 \otimes e_2^3 \\ & \in \mathbb{Z}^2 \otimes \mathbb{Z}^3 \otimes \mathbb{Z}^2. \end{split}$$

We have that $M_{H_1}(I)$ is transformed to $M_{H_2}(I)$ by the diagonal action of general linear group. Therefore H_1 and H_2 are HL-homotopic.

FIGURE 3. Handlebody-links H_1 and H_2 .

Example 4.3. Let I = 123. Let H_3 and H_4 be two handlebody-links which are the regular neighborhood of graphs depicted in Figure 4. Then, $\Delta_I = 0$ and

$$\begin{split} M_{H_3}(I) = &1 \ e_1^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_2^2 \otimes e_1^3 + 1 \ e_2^1 \otimes e_1^2 \otimes e_1^3 \\ &+ 1 \ e_2^1 \otimes e_2^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_3^2 \otimes e_2^3 + 1 \ e_2^1 \otimes e_3^2 \otimes e_2^3 \\ \in &\mathbb{Z}^2 \otimes \mathbb{Z}^3 \otimes \mathbb{Z}^2. \end{split}$$
$$M_{H_4}(I) = &2 \ e_1^1 \otimes e_1^2 \otimes e_1^3 + 2 \ e_2^1 \otimes e_1^2 \otimes e_1^3 + 1 \ e_1^1 \otimes e_2^2 \otimes e_2^3 + 1 \ e_2^1 \otimes e_2^2 \otimes e_2^3 \\ \in &\mathbb{Z}^2 \otimes \mathbb{Z}^3 \otimes \mathbb{Z}^2. \end{split}$$

We can show that H_1 is not HL-homotopic to H_2 by using some invariants for the action of general linear group on the tensor product space. See [13] for details.

FIGURE 4. Handlebody-links H_3 and H_4 .

Acknowledgements

The author would like to thank Professor Tomotada Ohtsuki for inviting me the workshop "Intelligence of Low-dimensional Topology 2016". She would also like to thank Professor Sadayoshi Kojima and Professor Mitsuhiko Takasawa for your advice.

References

- A. Cayley. On the theory of linear transformations. Cambridge Math. J., 4: 193– 209,1854.
- [2] A. Cayley. On the theory of determinants. Trans. Cambridge Philos. Soc., 8, no. 7: 75–88, 1849.
- [3] T. Fleming. Milnor invariants for spatial graphs. Topology Appl. 155 (2008), no. 12, 1297–1305.
- [4] T. Fleming, A. Yasuhara, Milnor's invariants and self C_k-equivalence, Proc. Amer. Math. Soc. 137 (2009) 761–770.
- [5] M.N. Gusarov, Variations of knotted graphs. The geometric technique of nequivalence. (Russian), Algebra i Analiz 12 (2000), no. 4, 79–125; translation in St. Petersburg Math. J. 12 (2001), no. 4, 569–604.
- [6] N. Habegger and X.-S. Lin, The classification of links up to link-homotopy, J. Amer. Math. Soc. 3:2 (1990), 389–419.
- [7] K. Habiro, Clasp-pass moves on knots, unpublished, 1993.
- [8] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83.
- [9] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys., 6(1): 164–189, 1927.
- [10] F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or tensor.
 J. Math. Phys., 7(1): 39–79, 1927.
- [11] A. Ishii, Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8 (2008), 1403–1418.
- [12] K. Johannson, Topology and combinatorics of 3-manifolds, Lecture Notes in Mathematics 1599, (1995) Springer-Verlag, Berlin.
- [13] Y. Kotorii and A. Mizusawa, HL-homotopy of handlebody-links and Milnor's invariants, arXiv:math /1603.09067.

- [14] V. S. Krushkal, Additivity properties of Milnor's μ-invariants, J. Knot Theory Ramifications 7 (1998), no. 5, 625–637.
- [15] K. Makino and S. Suzuki, Notes on neighborhood congruence of spatial graphs, Gakujyutu Kenkyu, School of Education, Waseda Univ., Ser. Math., 43 (1995), 15–20.
- [16] S. V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres (Russian), Mat. Zametki 42 (1987), 268–278, 345.
- [17] J-B. Mailhan, Invariants de type fini des cylindres d'homologie et des string links, Thèse de Doctorat (2003), Université de Nantes.
- [18] J-B. Meilhan, Y. Yasuhara, On C_n-moves for links. Pacific J. Math. 238 (2008), no. 1, 119–143.
- [19] J. Milnor, *Link groups*, Annals of Mathematics (2), **59** (1954), p177–195.
- [20] J. Milnor, *Isotopy of links*, Algebraic geometry and topology, A symposium in honor of S. Lefschetz, pp. 280–306, Princeton University Press, Princeton, N. J., 1957.
- [21] A. Mizusawa, Linking numbers for handlebody-links, Proc. Japan Acad. Ser. A Math. Sci. 89 (2013), 60–62.
- [22] A. Mizusawa and R. Nikkuni A homotopy classification of two-component spatial graphs up to neighborhood equivalence, Topology Appl. 196 (2015), part B, 710–718.
- [23] T. Motohashi and K. Taniyama, Delta unknotting operation and vertex homotopy of graphs in R³, KNOTS '96 (Tokyo), 185–200, World Sci. Publ., River Edge, NJ, 1997.
- [24] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75–89.
- [25] T. Soma, H. Sugai and A. Yasuhara, Disk/band surfaces of spatial graphs. Tokyo J. Math. 20 (1997), 1–11.
- [26] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34–38.
- [27] S. Suzuki, On linear graphs in 3-sphere, Osaka J. Math. 7 (1970), 375–396.
- [28] S. Suzuki, On surfaces in 3-sphere: prime decompositions, Hokkaido Math. J. 4 (1975), 179–195.
- [29] K. Taniyama and A. Yasuhara, Clasp-pass moves on knots, links and spatial graphs, Topology Appl. 122 (2002), 501–529.

[30] A. Yasuhara, Self Delta-equivalence for Links Whose Milnor's Isotopy Invariants Vanish, Trans. Amer. Math. Soc. 361 (2009), 4721–4749.

Graduate School of Mathematical Science The University of Tokyo Tokyo 153-8914 JAPAN E-mail address: kotorii@ms.u-tokyo.ac.jp

東京大学大学院数理科学研究科 小鳥居 祐香