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1. INTRODUCTION

In the middle of 1980' \mathrm{s} , Gromov introduced pseudo‐holomorphic curves in sym‐

plectic manifolds and derived many significant results [7]. For example, (1) (non‐)
squeezing theoreml, (2) non‐existence of embedded exact Lagrangian submanifolds

in a symplectic vector space, (3) description of closed symplectic four‐manifolds con‐

taining a symplectically embedded sphere of non‐negative self intersection number

(McDuff developed the theory after Gromov�s seminal work), (4) homotopy type of

the symplectic diffeomorphism group of (S^{2},  $\omega$)\times(S^{2},  $\omega$) and the fact that the fun‐

damental group of that of (S^{2},  $\omega$)\mathrm{x}(S^{2}, c $\omega$) , c>1
,

contains an element of infinite

order. Around the same time, Conley and Zehnder proved Arnold�s conjecture for

fixed points of Hamiltonian diffeomoprhisms on tori [2]. Fixed points of a Hamil‐

tonian diffeomorphism correspond to 1‐periodic solutions of the corresponding time‐

dependent Hamiltonian system, which can be captured as critical points of a certain

functional on the loop space (the least action principle). Conley and Zehnder used

finite dimensional approximation of the functional, hence reduced the problem in a

finite dimensional setting. A formal computation leads that the gradient flow lines

of the functional can be thought of solutions of Cauchy‐Riemann equation perturbed
by Hamiltonian term. Shortly after these works, combining the holomorphic curve

technique and the variational approach, Floer initiated \displaystyle \frac{\infty}{2} dimensional� analog of

Morse‐Novikov theory, which is nowadays called Floer theory [3]. The original mo‐

tivation is Arnold�s conjecture for fixed points of Hamiltonian diffeomorphisms. It

related to a question on Lagrangian intersection closely. Since then, Floer theory
has been developed in various direction including Heegaard Floer theory presented
in Tange�s article in this proceedings. In this note, we would like to present a glimpse
of the method of holomorphic curves without going into details following the lecture

in the workshop.

1Gromov called this theorem as squeezing theorem. However, it states. somehow, the ball cannot

be �squeezed� to a symplectic cyclinder of smaller width. So it is now often called non‐squeezing
theorem.
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2. A LITTLE PRELIMINARY

In this section, we collect several notion, definitions in symplectic geometry. \mathrm{A}

symplectic structure on a manifold X is to equip X with a closed non‐degenerate 2‐

form  $\omega$ (symplectic form). Namely,  d $\omega$=0 and  $\omega$ induces the following isomorphism
of vector bundles:

 v\in TX\mapsto i(v) $\omega$\in T^{*}X.
Thus  $\omega$ also induces the one‐to‐one correspondence between vector fields and 1‐forms.

The most basic example of symplectic manifolds is the symplectic vector space. Let

(  x_{1} , yl, . . .

, x_{n}, y_{n} ) be linear coordiinates on \mathbb{R}^{2n} . Write $\omega$_{0}=\displaystyle \sum_{i=1}^{n}dx_{i}\wedge dy_{i} . Clearly
$\omega$_{0} is a symplectic form on \mathbb{R}^{2n} . Darboux�s theorem guarantees that any symplectic
manifold is locally diffeomorphic to a symplectic vector space. In other words, at

any point on (X,  $\omega$) ,
we can take local coordinates ( x_{1} , yl, . . .

, x_{n}, y_{n} ), in which  $\omega$ is

written as  $\omega$_{0}.

Other examples include oriented surfaces equipped with area form, cotangent bun‐

dle (with a standard symplectic form (dp\wedge dq'') ,
Kähler manifolds, in particular,

complex projective spaces.

For a smooth function h on X
, we define the Hamiltonian vector field X_{h} associated

with h by i(X_{h}) $\omega$=dh . On the symplectic vector space, the Hamiltonian vector

field associated with h is given by

X_{h}=\displaystyle \sum_{i=1}^{n}(\frac{\partial h}{\partial y_{i}}\frac{\partial}{\partial x_{i}}-\frac{\partial h}{\partial x_{i}}\frac{\partial}{\partial y_{i}}) .

By Cartan�s formula, X_{h} satisfies \mathcal{L}_{X_{h}} $\omega$=0.
A diffeomorphism  $\psi$ of  X is called a symplectic diffeomorphism (symplectomor‐

phism), if  $\psi$^{*} $\omega$= $\omega$ . There is a specific class of symplectic diffeomorphism called

Hamiltonian diffeomorphisms. Let  H be a smooth function on [0, 1]\times X , (with com‐

pact support). We set h_{t}=H(t, ) . Integrating \{X_{h_{t}}\} ,
we obtain an isotopy $\varphi$_{H}^{t}

with $\varphi$_{H}^{0}=id_{X} . A diffeomorphism  $\psi$ of  X is called a Hamiltonian diffeomorphism, if

there exists H such that  $\psi$=$\varphi$_{H}^{1} . A diffeomorphism on an m‐dimensional manifold

is locally expressed by m functions of m‐variables. A Hamiltonian diffeomorphism
 $\psi$ on a  2n‐dimensional symplectic manifold is, in a sense, described by a function

on 2n‐variables. (For example, if  $\psi$ is close to the identity, it is locally described

by a so‐called generating function. Then the fixed points are critical points of the

generating function.)
A submanifold  S in (X,  $\omega$) is called symplectic, if the restriction of  $\omega$ to  S is a

symplectic form on S. S is called isotropic, if the restriction of  $\omega$ to  S vanishes

everywhere on S ,
in other words, TS\subset(TS)^{\perp_{ $\omega$}} Here

(T_{p}S)^{\perp_{ $\omega$}}=\{v\in T_{p}X| $\omega$(v, w)=0, \forall w\in T_{p}S\}.
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S is called coisotropic, if (TS)^{1_{ $\omega$}}\subset TS . For an isotropic (resp. coisotropic) sub‐

manifold, we have \dim S\leq (resp. \geq ) \displaystyle \frac{1}{2}\dim X . A particularly important class of

submanifolds is that of Lagrangian submanifolds, which are isotropic and coisotropic.
Typical examples of Lagrangian submanifolds are the graph of closed 1‐forms in the

cotangent bundle of a smooth manifold M
,

the conormal bundle of a submanifold

of M in the cotangent bundle of M
,

the real part of non‐singular algebraic variety
definied over \mathbb{R}

,
the graph of a symplectic diffeomorphism of (X,  $\omega$) considered as a

submanifold in (X\times X, - $\omega$\oplus $\omega$) .

Since the group of linear symplectic transformations (linear isomorphism on a

symplectic vector space preserving the symplectic structure) contains the unitary
group as a maximal compact subgroup, the structure group of the tangent bun‐

dle of a symplectic manifold can be reduced to the unitary group. In other words,
there exists an almost complex strcutre J (an endomrophism of the tangent bundle

with J^{2}=-id) such that g_{J}(, ) := $\omega$ (, Je) is a Riemannian metric on  X (almost
complex structure compatible with  $\omega$ ). Moreover, the space of almost complex struc‐

tures compatible with  $\omega$ is contractible. A map  f between almost complex manifolds

( $\Sigma$, j) and (X, J) is called J‐holomorphic (or simply holomorphic), if the differen‐

tial df is complex linear with respect to j and J , i.e., Jodf=df oj. In contrast

to the fact that J‐holomorphic functions are rare, there are at least locally plenty
of holomorphic curves. Non‐integrability of J , measured by Nijenhuis tensor, gives
restrictions for J‐holomorphic submanifolds. In the case of real two‐dimension (com‐
plex one‐dimension), Nijenhuis tensor vanishes, hence no restriction. In particular,
we call (the image of) a holomorphic map from the Riemann sphere a holomorphic
sphere. Moreover, the deformation theory of holomorphic maps from closed Riemann

surfaces (resp. compact Riemann surface with Lagrangian boundary condition) is

controlled by two‐step elliptic complex (elliptic operator). The compactness of the

moduli space is also estabilished in works starting with [7].

3. HOLOMORPHIC CURVES

In this section, we discuss a couple of results in [7] and try to give rough ideas of

proofs.

3.1. Non‐squeezing theorem. Non‐squeezing theorem is a manifestation of sym‐

plectic rigidity. We briefly present its statement and implication followed by a flavor

of the proof. Define the ball of radius R and a cylinder of width R by

B^{2n}(R)=\displaystyle \{(x_{i}, y_{i})\in \mathbb{R}^{2n}|\sum_{i=1}^{n}(x_{i}^{2}+y_{i}^{2})<R\},
Z^{2n}(R)=\{(x_{i}, y_{i})\in \mathbb{R}^{2n}|x_{1}^{2}+y_{1}^{2}<R\}=B^{2}(R)\times \mathbb{R}^{2n-2}

49



Theorem.(non‐squeezing theorem) Let  $\psi$ :  B^{2n}(R)\rightarrow Z^{2n}(R') be a symplectic
embedding, i.e., an embedding such that $\psi$^{*}$\omega$_{0}|_{Z^{2n}(R')}=$\omega$_{0}|_{B^{2n}(R)} . Then R\leq R'.

Remark. If we replace the condition that  $\psi$ preserves the symplectic structure

by that  $\psi$ preserves the volume form, or if we replace  Z^{2n}(R') by another kind of

cylinder defined by x_{1}^{2}+x_{2}^{2}<R ,
the conclusion does not hold. As a corollary of

non‐squeezing theorem, the following result holds.

Theorem. ( C^{0}‐rigidity of symplectic diffeomorphisms) Let $\psi$_{n} be a sequence of

symplectic diffeomorphisms of (\mathbb{R}^{2n}, $\omega$_{0}) . If $\psi$_{n} converges to a diffeomorphism�  $\psi$ of

\mathbb{R}^{2n} in C^{0}‐topology,  $\psi$ is a symplectic diffeomorphism.

A very rough sketch of the proof of non‐squeezing theorem goes as follows. Firstly,
we take a sufficiently large  L such that, after translation in 3‐rd, . . .

,
2n‐th coordi‐

nates,  $\psi$(B^{2n}(R)) is contained in B^{2}(R)\mathrm{x}((L/4,3L/4))^{2n-2} . Embed B^{2}(R') to

S^{2}(A) ,
the sphere of area  A= $\pi$ R^{2}\prime . Then  B^{2n}(R) is symplectically embedded in

S^{2}(A)\times \mathbb{R}^{2n-2}/L\mathbb{Z}^{2n-2} . Denote by  $\omega$ the product symplectic structure. Let  J_{0} be

the standard complex structure on \mathbb{R}^{2n} such that J_{0}\displaystyle \frac{\partial}{\partial x_{i}}=\frac{\partial}{\partial y_{i}}, J_{0}\displaystyle \frac{\partial}{\partial y_{i}}=-\frac{\partial}{\partial x_{i}} . Pick an

almost complex structure J compatible with  $\omega$ which is an extension of  $\psi$_{*}(J_{0}) and

coincides with J_{0} outside S^{2}(A)\times[L/4, 3L/4]^{2n-2} . (Here we regard [L/4,3L/4]^{2n-2}
as a subset of \mathbb{R}^{2n-2}/L\mathbb{Z}^{2n-2} . Then we can find J‐holomorphic sphere S^{2}(A)\times\{p\}
with p\not\in[L/4, 3L/4]^{2n-2} . Using the deformation theory and compactness theorem

for holomorphic curves, we can show that there is a family of holomorphic spheres in

the same homology class sweep the whole space S^{2}(A)\times \mathbb{R}^{2n-2}/L\mathbb{Z}^{2n-2} . In particu‐
lar, there is a holomorphic sphere S passing through  $\psi$(O) ,

where O is the origin of

B^{2n}(R) . The monotoniciy formula for the area of holomorphic curves, the symplectic
area of S

,
which is A

,
is at least  $\pi$ R^{2} . Hence  $\pi$ R^{2}\leq A . Since  $\epsilon$>0 can be arbitrary

small, we obtain R\leq R'.

3.2. Non‐existence of exact Lagrangian submanifold in (\mathbb{R}^{2n}, $\omega$_{0}) . A symplec‐
tic manifold (X,  $\omega$) is called exact, if  $\omega$ is an exact 2‐form, i.e.,  $\omega$=d $\lambda$ for some 1‐form

 $\lambda$ . A typical example is (\mathbb{R}^{2n}, $\omega$_{0}) ,
where $\omega$_{0}=d(\displaystyle \sum_{i=1}^{n}x_{i}dy_{i}) ,

for example. Cotan‐

gent bundles with the standard symplectic structure, Liouville domains, which are

generalization of convex domains in (\mathbb{R}^{2n}, $\omega$_{0}) are also exact symplectic manifolds. \mathrm{A}

Lagrangian submanifold L in (X,  $\omega$=d $\lambda$) is called exact, if the restriction of  $\lambda$ is an

exact 1‐form on  L . Note that the Lagrangian condition implies that the restriction

of  $\lambda$ to  L is a closed 1‐form. The following result is also due to Gromov [7].

Theorem. (non‐existence of exact Lagrangian submanifolds) Let L be a closed

embedded Lagrangian submanifold in (\mathbb{R}^{2n}, $\omega$_{0}) . Then L is not exact.
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In particular, this theorem implies that a closed embedded Lagrangian submanifold

in (\mathbb{R}^{2n}, $\omega$_{0}) has non‐zero first Betti number. For example, the sphere S^{n} cannot be

embedded in (\mathbb{R}^{2n}, $\omega$_{0}) as a Lagrangian submanifold for n>1 . It contrast to the fact

that S^{3} can be embedded in \mathbb{C}^{3} as a totally real submanifold [1], [8] page 193.

Here is a rough sketch of the proof. In order to show that  $\lambda$|_{L} is not exact,
we will find a loop  $\gamma$ in  L such that \displaystyle \int_{ $\gamma$} $\lambda$\neq O. It suffices to find a non‐constant

holomorphic disc  u in (\mathbb{R}^{2n}, J_{0}) with boundary on L , since \displaystyle \int_{\partial D^{2}} $\lambda$=\int_{D^{2}}u^{*}$\omega$_{0}>0,
where the first equality is due to Stokes� formula and the second inequality follows

from compatibility of J_{0} and $\omega$_{0} as well as non‐constancy of u . The main body of

the proof is to find such a holomorphic disc.

Pick and fix a \in \mathbb{C}^{n} with \Vert a 1 and  p_{0}\in L . Consider the pair of u :

(D^{2}, \partial D^{2})\rightarrow(\mathbb{C}^{n}, L) and s\in \mathbb{R} satisfying u(1)=p_{0}, u_{*}[D^{2}, \partial D^{2}]=0 in H_{2}(\mathbb{C}^{n}, L;\mathbb{Z})
and

(1) \displaystyle \frac{\partial u}{\partial\overline{z}}:=\frac{1}{2}(\frac{\partial u}{\partial x}+J_{0}\frac{\partial u}{\partial y})=s\cdot \mathrm{a}.
When s=0, u must be the constant map to p_{0} . This is because a holomorphic

map u with \displaystyle \int_{D^{2}}$\omega$_{0}=0 must be a constant map. When s is sufficiently large, there

are no solutions u for (1). The reason is the following. If u is a solution of (1), u is

harmonic, i.e., \triangle u=0 . Hence \displaystyle \frac{\partial u}{\partial\overline{z}} is also harmonic. By the mean value theorem for

harmonic functions and Stokes� formula, we find that

\displaystyle \frac{\partial u}{\partial\overline{z}}(0)=\frac{1}{\int_{D^{2}}dxdy}\int_{D^{2}}\frac{\partial u}{\partial\overline{z}}dxdy=\frac{-\sqrt{-1}}{\int_{D^{2}}dxdy}\int_{\partial D^{2}} udz.

Let  D=\displaystyle \max  p\Vert|p\in L\} . Then the norm of the right hand side is bounded

by 2D
,

while the left hand side is s\cdot \mathrm{a} . Hence, if s>2D ,
the equation (1) has no

solution.

The energy of a map u is defined by E(u)=\displaystyle \frac{1}{2}\int_{D^{2}}\Vert du\Vert^{2}dxdy . By a simple
computation, we find that

E(u)=\displaystyle \int_{D^{2}}u^{*}$\omega$_{0}+\int_{D^{2}}\Vert\frac{\partial u}{\partial\overline{z}}\Vert^{2}dxdy.
Since the first term on the right hand side vanishes and the second term is bounded

by 4D^{2} from the above, E(u) is uniformly bounded. Now the compactness argument
(Gromov�s compactness, removal of singularities, etc.) yields the following. When

the energy is uniformly bounded and s_{n} converges to s_{\infty} , the sequence u_{n} of solutions

for (1) with s=s_{n} converges to a solution u_{\infty} of (1) with s=s_{\infty} away from a finite

number of points. Rescaling u_{n} suitably around these finitely many points, the

new sequence converges to a non‐constant holomorphic map from either a Riemann

sphere or a disc with Lagrangian boundary condition. In our setting, there are no
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compact holomorphic curves in \mathbb{C}^{n}
,

hence the only possibility is a holomorphic disc.

By the deformation theory and bubbling‐off argument of holomorphic curves, if no

bubble appear during 0\leq s\leq 2D ,
the space of solutions (s, u) of (1) is a one‐

dimensional manifold and the constant solution to p_{0} at s=0 is deformed to a

solution at s=2D
, which is a contradiction. Therefore a non‐constant holomorphic

disc v : (D^{2}, \partial D^{2})\rightarrow(\mathbb{C}^{n}, L) must appear as a bubble between s=0 and s=4D^{2}.

Remark. Combining the argument above with (figure‐eight trick�, Gromov derived

the following result on Lagrangian intersection. The condition for tameness of a

symplectic manifold gurantees good control of holomorphic curves at the end of the

symplectic manifold. For example, (\mathbb{R}^{2n}, $\omega$_{0}) , cotangent bundles equipped with the

standard symplectic structure, Liouville domains are tame symplectic manifolds.

Theorem. (persistence of Lagrangian intersection) Let (X,  $\omega$) be an exact sym‐

plectic manifold. Let L be a closed embedded exact Lagrangian submanifold and  $\psi$
a Hamiltonian diffeomorphism of (X,  $\omega$) . Then we have L\cap $\psi$(L)\neq\emptyset.

4. NAIVE IDEA OF LAGRANGIAN FLOER THEORY

In this section, we explain Floer�s idea very briefly. Let L, L be closed embedded

Lagrangian submanifolds in a closed symplectic manifold (X,  $\omega$) such that L and L'

intersects transversally. In good situations, we can define a complex (CF^{\cdot}(L, L),  $\delta$) ,

where CF^{\cdot}(L', L) is generated by intersection points of L and L
,

such that the

resulting cohomology is invariant under Hamiltonian deformations of L'.

Let us consider the space of paths from L to L�:

\mathcal{P}(L, L)=\{ $\gamma$ : [0, 1]\rightarrow X| $\gamma$(0)\in L,  $\gamma$(1)\in L\}.
Define a �1‐form�  $\alpha$ on \mathcal{P}(L, L) by

$\alpha$_{ $\gamma$}( $\xi$):=\displaystyle \int_{0}^{1} $\omega$( $\xi$(t),\dot{ $\gamma$}(t))dt,
where \dot{ $\gamma$} is the velocity vector of  $\gamma$ and  $\xi$ is a tangent vector of \mathcal{P}(L, L') at  $\gamma$ , in other

words,  $\xi$ is a section of  $\gamma$^{*}TX such that  $\xi$(0) (resp.  $\xi$(1) ) tangents to L (resp. L

We can see that  $\alpha$ is an �exact 1‐form� as follows. Fix  $\gamma$_{0}\in \mathcal{P}(L, L') and consider

 $\gamma$ close to  $\gamma$_{0} . Then there is a map w : [0 ,
1 ] \mathrm{x}[0, 1]\rightarrow X such that w(0, t)=$\gamma$_{0}(t) ,

w(1, t)= $\gamma$(t) , w(s, 0)\in L and w(s, 1)\in L . For  $\gamma$ sufficiently close to  $\gamma$_{0} ,
we can

find such w with the image close to $\gamma$_{0} . Such w is unique up to homotopy respecting
the boundary condition above. Then we set

\displaystyle \mathcal{A}^{loc}( $\gamma$):=\int_{[0,1]\times[0,1]}w^{*} $\omega$.
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A direct computation shows that  d\mathcal{A}^{loc}= $\alpha$ on a neighborhood of  $\gamma$_{0} . Thus  $\alpha$

has a local primitive function around any  $\gamma$_{0} ,
hence  $\alpha$ is \mathrm{a} (closed 1‐form� The

function \mathcal{A}^{loc} may not be extended to a globally well‐defined function on \mathcal{P}\underline{(}L, L ).
However, we have a well‐defined function \mathcal{A} on a suitalble covering space \mathcal{P}(L, L')
of \mathcal{P}(L, L (For any closed 1‐form  $\eta$ ,

there exists a covering space on which the

pull‐back of  $\eta$ becomes exact.) We mimick Morse complex (or Novikov complex of

a closed 1‐form), although we cannot follow the construction in finite dimension by
the following reasons. (1) the gradient flow lines (see below) may not exist passing
through a given point (no gradient flow), (2) the Hessian of the function has infinitely
many positive and negative subspaces (Morse index must be replaced by something
else). For each intersection point  p\in L\cap L ,

we take a path  $\Lambda$(t) in the space of

Lagrangian subspaces joining T_{p}L to T_{p}L
� and can assign Maslov‐ViterUo index. (It

depends on the path  $\Lambda$(t) . Sometimes, we can take these paths at each intersection

points in a coherent way.) We use Maslov‐Viterbo index in place of Morse index in

finite dimensional case.

Using the Riemannian metric g_{J} ,
we can define an inner product on the tangent

space T_{ $\gamma$}\mathcal{P}(L, L') by

\displaystyle \{$\xi$_{1}, $\xi$_{2}\}:=\int_{0}^{1}g_{J}($\xi$_{1}(t), $\xi$_{2}(t))dt.
With respect to this inner product, a formal computation yields that the �(gradient
vector field�� of \mathcal{A} is given by

\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathcal{A}( $\gamma$)=-J\dot{ $\gamma$}.
We can interpret gradient flow trajectories as solutions of the Cauchy‐Riemann equa‐
tion for u:\mathbb{R}\times[0, 1]\rightarrow X with u(\mathbb{R}\times\{0\})\subset L and u(\mathbb{R}\times\{1\})\subset L'

(2) \displaystyle \frac{\partial u}{\partial $\tau$}( $\tau$, t)+J(u)\frac{\partial u}{\partial t}( $\tau$, t)=0.
Note that the equation (2) may not have a solution for a given  $\gamma$ such that  u(0, t)=
 $\gamma$(t) . In other words, there may not exist \mathrm{a} (�gradient flow trajectory�� passing through
 $\gamma$ . A compactness argument for holomorphic curves implies that for a solution  u

of (2), the energy E(u) is finite if and only if \displaystyle \lim_{ $\tau$\rightarrow\pm\inf ty}\underline{u(} $\tau$, t ) =p^{\pm} for some

p^{\pm}\in L\cap L' . We call such u a Floer trajectory. We denote by M(p^{-},p^{+}) the space of

solutions of (2) such that \displaystyle \lim_{ $\tau$\rightarrow\pm\infty}u( $\tau$, t)=p^{\pm} . Since (2) is invariant under the shift

in  $\tau$‐direction, \mathbb{R} acts on \overline{\mathcal{M}}(p^{-},p^{+}) . We write its quotient space by \mathcal{M}(p^{-},p^{+})=
\overline{\mathcal{M}}(p^{-},p^{+})/\mathbb{R} . Floer coboundary operator  $\delta$ :  CF^{\cdot}(L, L)\rightarrow CF^{+1}(L', L) is defined2

2\mathrm{I}\mathrm{n} order to define  $\delta$ , it is necessary to make sense of the cardinality of \mathcal{M}^{\dim=0} using perturbation
of J (some cases) and/or abstract pertrubation. In general situation, p\in L\cap L' should be replaced
by the inverse images in the covering space, just as in Novikov theory for closed 1‐forms on a finite

dimensional case. We must also take Novikov completion in order to define CF^{\cdot}(L', L) ,
in general.
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by counting number of Floer trajectories joining p^{-} and p^{+}

 $\delta$ p^{-}=\displaystyle \sum\#_{2}\mathcal{M}^{\dim=0}(p^{-},p^{+})p^{+}.
Here \#_{2}\mathcal{M}^{\dim=0}(p^{-},p^{+}) is the cardinality modulo 2 of 0‐dimensional components of

\mathcal{M}(p^{-},p^{+}) . In general, \mathcal{M}(p^{-}, p^{+}) is not canonically oriented. In the case that L

and L �
are equipped with spin structures (or more generally (L, L') is a relatively

spin pair), then \mathcal{M}(p^{-},p^{+}) are oriented in a consistent way [5]. In order to show that

 $\delta$ 0 $\delta$=0 ,
we study the ends of 1‐dimensional components of \mathcal{M}(p^{-},p^{+}) . There are

the following possibilities of ends. The first type is splitting into several Floer trajec‐
tories. This is similar to limit behavor of gradient trajectories in finite dimensional

Morse theory. The second type is bubbling‐off of holomorphic discs at the boundary
of \mathbb{R}\times[0 ,

1 ] . There may also happen bubbling‐off of holomorphic spheres. However

it occurs in real codimension 2, while the second type occurs in real codimension 1.

Hence the last type can be excluded by pertubation of J (under certain assumption
of X and L, L ) or abstract perturbation technique. We can see the bubbling‐off of

holomorphic discs in the following simple local example. Let L=\mathbb{R} and L' the unit

circle around the origin in \mathbb{C} . Then consider Floer trajectories from -1 to itself. In

this case, \mathcal{M}(-1, -1) is an interval (-1,1) . The boundary point 1 corresponds to

splitting into two Floer trajectories (upper hemidisc as Floer trajectory from -1 to

1 and lower hemidisc as Floer trajectory from 1 to -1 ): The boundary point -1

corresponds to bubbling‐off of a holomorphic disc, i.e., a constant Floer trajectory at

-1 with the unit disc as a holomorphic disc bubble. In fact, we can see that  $\delta$ 0 $\delta$\neq 0
in this case.

If we can exclude the bubbling‐off of holomorphic discs, we can see  $\delta$\circ $\delta$=0 and

obtain Floer cochain complex (CF\cdot(L', L),  $\delta$) . The resulting cohomology denoted by
HF^{\cdot}(L', L) is called Floer cohomology of L, L . We can also show that  HF^{\cdot}(L, L)\cong
 HF^{\cdot}( $\psi$(L), L) for a Hamiltonian diffeomorphism  $\psi$ such that  L and  $\psi$(L') intersects

transversally. If we can compute Floer cohomology, we can give a lower bound of

the number of intersection points provided they intersect transversally.
Floer [3] realized these lines of ideas under the condition that $\pi$_{2}(X, L)=0 and

L'= $\psi$(L) for some Hamiltonian diffeomorphism  $\psi$ . We can also study Floer theory
for Hamiltonian diffeomorphisms. (By taking the graph of a Hamiltonian diffeomor‐

phism, it can be also put in Lagrangian intersection setting.) In [4], Floer succeeded

the construction for a Hamiltonian diffeomorphism on monotone symplectic mani‐

folds. Here monotonicity is that the first Chern class is positively proportional to

the de Rham cohomology class represented by the symplectic form. Yong‐Geun Oh

considered an analogous situation in Lagrangian intersection setting and performed

Since the right hand side of the definition of  $\delta$ may be an infinite sum. So we allow the infinite sum

as long as the value of the function \mathcal{A} grows to +\infty.
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the construction of Floer cohomology of (L, L') under the condition that L, L' are

monotone Lagrangian submanifolds3 with minimal Maslov number >2 . Later, he

obtained the construction for monotoen L and L'= $\psi$(L) with minimal Maslov

number 2.

As we mentioned before, we may not have  $\delta$ 0 $\delta$=0 . Such an obstruction is caused

by bubbling‐off of holomorphic discs. In order to understand obstructions, we have

to study all holomorphic discs in a systematic way. This is done by Fukaya, Oh, Ohta

and the author [5]. We formulate it in terms of filtered A_{\infty} ‐algebra associated with

Lagrangian submanifolds. (We cannot explain terminology here and would like to

invite interested readers to [5].) If the Maurer‐Cartan equation admits weak solutions

for L and L' with the same potential value, then we can rectify  $\delta$ to a differential

of  CF^{\cdot}(L, L) and define Floer cohomology depends on (weak) solutions of Maurer‐

Cartan equations. The resulting cohomology is also invariant under Hamiltonian

deformations of L' in a suitable sense.

Another way to deform Floer coboundary operator is bulk deformations. Namely,
we can deform all constructions such as filtered A_{\infty}‐algebras, filtered A_{\infty} ‐bimodules,
etc. using an cycle in X . These machinery may be considered as too abstract.

However, happily enough, we can see the efficiency of all these machinery in appli‐
cation to concrete examples such as Lagrangian torus fibers in compact Kähler toric

manifolds, see, e.g., a survey article [6].
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