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1 Introduction

A surface knot is a closed connected surface smoothly embedded in the 4‐dimensional

Euclidean space \mathbb{R}^{4} . For a surface knot F
, we consider a cabling F^{(m, $\nu$)} of F

,
i.e. \mathrm{a} (not

necessarily connected) surface link in a neighborhood of F
, which is an m‐fold covering of

F ; it is a kind of satellites (e.g. see [13]). A formula representing the value of an invariant

of a cabled knot by means of invariants of the original knot is called a cabling formula.
In some cases, \mathrm{e}.\mathrm{g} . in [11], a cabling formula has information which the original invariant

does not, and here is an interesting problem: find an invariant which describes a cabling
formula.

In this note, we give a solution to this problem on quandle cocycle invariants for surface

knots. Quandle cocycle invariants (3‐cocycle invariants) were defined in [1] and have

been effective tools to examine isotopy classes and other geometrical properties of surface

knots. In [9], the author showed that cabling formulae are generally described by what he

calls kink cocycle invariants there and that in specific cases these were decomposed into 3‐

cocycle invariants and 2‐cocycle invariants, which were defined in [4], and furthermore gave

explicit cabling formulae on some popular quandles. However, in general cases kink cocycle
invariants are not decomposed, and they are difficult to deal with; e.g. a kink cocycle is

not defined as a cocycle of some topological space (a kink cocycle consists of three maps

satisfying some conditions). Then, in this note, we define modified homotopy invariants,
which are different from those of [14], and then explain that 3‐cocycle invariants of cablings
are deduced from them. In this context, a kink cocycle is a cocycle on a principal U(1)-
bundle over a quandle space. Also, we show that modified homotopy invariants have

universality among 2‐cocycle invariants (original quandle homotopy invariants do not

have universality among 2‐cocycle invariants) as well as 3‐cocycle invariants.
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2 Preliminaries

2.1 Surface knots, diagrams, and cablings

Here we review basic definitions of surface links and diagrams. For details, see e.g. [3].
A surface link F is a closed surface smoothly embedded in the 4‐dimensional Euclidean

space \mathbb{R}^{4} as a submanifold. If F is connected, it is also called a surface knot. In this note

we assume that any surface link is oriented. If an ambient isotopy of \mathbb{R}^{4} takes one surface

link to another, with the orientation preserved, then they are said to be equivalent.
Let F\subset \mathbb{R}^{4} be a surface link. Let p:\mathbb{R}^{4}=\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}^{3} be the projection. Perturbing

F if necessary, we may assume that the image p(F)\subset \mathbb{R}^{3} is composed of non‐singular

points, double points, triple points, and branch points, as is shown in Figure 1. Then,
the image p(F) with the information of the orientation and the relative height is called

a diagram of a surface link F . We represent the relative height by eliminating lower

surfaces along the double point curves, as in Figure 1. Then each connected component

of a diagram D is called a sheet and we denote the set of the sheets of D by S(D) .

Next we review framing of surface links, following [12]. For a surface link L
, a nowhere‐

vanishing section of the normal bundle  $\nu$ F of F in \mathbb{R}^{4} is defined to be a framing of

F . It is known, see e.g. [3], that the normal Euler number on an oriented surface link

is zero, and then there exists a framing for any surface link. A pair \mathcal{F}=(F, s) of a

surface link and a framing of it is called a framed surface link. If the homomorphism

s_{*}:H_{1}(F)\rightarrow H_{1}(\mathbb{R}^{4}-F)\cong \mathbb{Z} induced by a framing s is the zero map, s is called a

zero‐framing, or a canonical framing. This is determined uniquely, up to equivalence.

Cabling of surface knots

Let F be a surface knot. We here define cabling of F.

We take a tubular neighborhood N of F in S^{4} and we identify \partial N with the normal sphere
bundle of F . We define a surface link \tilde{F} to be an m‐cabling of F if \tilde{F} is a submanifold of

\partial N and the composition \tilde{F}\mapsto\partial N\rightarrow^{\mathrm{P}\partial N}F , where p_{\partial N} : \partial N\rightarrow F is the projection of the

normal sphere bundle \partial N
,

is an m‐fold covering map preserving the orientation. We do

Figure 1: A non‐singular point, a double point, a triple point, a branch point
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not assume \tilde{F} to be connected, and even when it is connected, the genus of \tilde{F} does not

coincide with that of F
,

in general.
An m‐cabling \tilde{F} of F corresponds to a cohomology class  $\nu$\in H^{1}(F;\mathbb{Z}) , as follows. We

fix a canonical framing s:F\rightarrow\partial N so that s(P)\in\tilde{F} for a fixed point P\in F . Next, we

consider the trivial principal \mathbb{R}‐bundle \mathbb{R}\times F and a covering map  $\pi$ : \mathbb{R}\times F\rightarrow\partial N such

that,  p_{\partial N}\mathrm{o} $\pi$ equals the projection of the bundle \mathbb{R}\times F, $\pi$^{-1}(s(F))=m\mathbb{Z}\times F\subset \mathbb{R}\times F,
and $\pi$^{-1}(\tilde{F}\cap p_{\partial N}^{-1}(P))=\mathbb{Z}\mathrm{x}\{P\} . Then, as \mathbb{Z}\times F is a principal \mathbb{Z}‐bundle embedded

in \mathbb{R}\times F
,

we obtain a monodromy representation $\pi$_{1}(F, P)\rightarrow \mathbb{Z} . Let  $\nu$\in H^{1}(F;\mathbb{Z})\cong
\mathrm{H}\mathrm{o}\mathrm{m}($\pi$_{1}(F, P), \mathbb{Z}) be the obtained cohomology class. Then we define \tilde{F} to be an (m,  $\nu$)-
cabling of F . Conversely for any  $\nu$\in H^{1}(F;\mathbb{Z}) , we can easily construct an (m,  $\nu$) ‐cabling
F^{(m,l\text{ノ})} of F uniquely up to ambient isotopy in \partial N.

2.2 Quandles and cocycle invariants

Here we recall definitions of quandles and invariants induced by them. For details, see

\mathrm{e}.\mathrm{g} . [3] or [1].
Let X be a set and let * be a binary operator on X(X\times X\ni(x, y)\mapsto x*y\in X) . The

pair (X, *) is defined to be a quandle if the following three conditions hold:

(Q1) For any x\in X, x*x=x.

(Q2) For any y\in X , the map X\ni x\mapsto x*y\in X is a bijection.

(Q3) For any x, y, z\in X, (x*y)*z=(x*z)*(y*z) .

Sometimes we use a notation by Fenn‐Rourke [6]: we denote x*y by x^{y} . Also we presume

that x^{yz}=(x*y)*z.
Here are some examples of quandles:

For k\in \mathbb{N}, \mathbb{Z}/k\mathbb{Z} , with a binary operation * defined as x*y=2y-x ,
is a quandle.

This is called a dihedral quandle, denoted as R_{k}.

We put Q_{4}=\mathbb{Z}[t^{\pm 1}] and x*y=tx+(1-t)y for x, y\in Q_{4}. Q_{4} is a quandle of order

4 and is called the tetrahedral quandle.

Let M be a \mathbb{Z}[T^{\pm}] ‐module. M
, with a binary operation * defined as x*y=Tx+

(1-T)y , is a quandle and is called an Alexander quandle. The quandles of the two

examples above are Alexander quandles.

Next, review the definition of quandle cocycles. Let X be a quandle and let A be an

abelian group.
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A map  $\phi$ :  X\times X\rightarrow A is a quandle 2‐cocycle if  $\phi$(x, x)=0 and

 $\phi$(x, y)- $\phi$(x, z)- $\phi$(x*y, z)+ $\phi$(x*z, y*z)=0

for any x, y, z\in X.

A map  $\psi$ :  X\times X\times X\rightarrow A is a quandle 3‐cocycle if  $\psi$(x, x, y)= $\psi$(x, y, y)=0 and

 $\psi$(w, y, z)- $\psi$(w, x, z)+ $\psi$(w, x, y)- $\psi$(w*x, y, z)+ $\psi$(w*y, x*y, z)- $\psi$(w*z, x*z, y*z)=0

for any w, x, y, z\in X.

Quandle (co)homology groups H_{*}^{Q}(X, A)(H_{Q}^{*}(X;A)) are defined generally, though we

omit the definition here.

Quandle colorings and quandle 3‐cocycle invariants

Let X be a quandle. For a diagram D of a surface link F
,

an

X‐coloring of D is a map C : S(D)\rightarrow X such that we have

C(x_{1})*C(y)=C(x_{2}) along each double point curve, as shown in

the figure. We put \mathrm{C}\mathrm{o}1_{X}(D) to be the set of the X‐colorings of D.

It is known that for a finite quandle X the number of the X‐colorings
is an invariant for surface links and called the (X-) coloring number.

Quandle cocycle invariants defined below are refinements of coloring numbers.

Let X be a finite quandle and let  $\psi$ be a quandle 3‐cocycle valued on an abelian group

 A (here we adopt the multiplicative notation for the multiplication in A ). For a diagram
D of a surface link F and an X‐coloring C , we associate a weight W_{ $\psi$}(C,p) on each triple

point p as

Then we put

$\Psi$_{ $\psi$}(C)=\displaystyle \prod_{p}W_{ $\psi$}(C,p)\in A,
where p is taken over the triple points in D

,
and put

$\Psi$_{ $\psi$}(D)=\displaystyle \sum_{C\in \mathrm{C}\mathrm{o}1_{X}(D)}$\Psi$_{ $\psi$}(C)\in \mathbb{Z}[A].
It is known [1] that this is an invariant for surface links, called a quandle cocycle invariant

and denoted by $\Psi$_{ $\psi$}(F) .
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Quandle 2‐cocycle invariants for surface links

We recall surface‐knot (link) invariants using quandle 2‐cocycles, which are also refine‐

ments of coloring numbers. These are introduced in [4], though we adopt different notation

from that of [4].
Let X be a finite quandle and  $\varphi$ :  X\times X\rightarrow A be a quandle 2‐cocycle of X valued on

an abelian group A . Let F be a surface link and D be a diagram of it. For a moment

we fix a coloring C\in \mathrm{C}\mathrm{o}1_{X}(D) . For a generic loop  $\gamma$ smoothly immersed in  F
,

we define

weights as:

Then we put

$\Phi$_{ $\varphi$}(C)( $\gamma$)=\displaystyle \prod_{p}W_{ $\varphi$}(p)\in A,
where the product is taken over all of the crossing points p of  $\gamma$ and the lower decker curves.

It is shown in [4] that if cycles  $\gamma$ and  $\gamma$' are homologous, $\Phi$_{ $\varphi$}(C)( $\gamma$)=$\Phi$_{ $\varphi$}(C)($\gamma$') . Then

$\Phi$_{ $\varphi$}(D, C) defines a group homomorphism H_{1}(F)\rightarrow A . Thus, using the same notation,
we obtain $\Phi$_{ $\varphi$}(C)\in H^{1}(F;A) for each coloring C . We put

$\Phi$_{ $\varphi$}(D)=\displaystyle \sum_{C\in \mathrm{C}\mathrm{o}1_{X}(D)}$\Phi$_{ $\varphi$}(C)\in \mathbb{Z}[H^{1}(F;A
which is an invariant for surface links and is denoted by $\Phi$_{ $\varphi$}(F) .

3 Modified homotopy invariants for surface knots

3.1 Definition of modified homotopy invariants

In this section, we introduce a modified homotopy invariant $\Xi$_{X}'.
To begin with, we define a modified quandle space. Let X be a quandle and let B_{X}X

be the action rack space (see [7]) of the primitive X‐set. Roughly speaking, we add the

n‐cells bounding the (n-1) ‐cells labeled by (x_{1}, \cdots, x_{n}) (x_{i}=x_{i+1} for some i) to B_{X}X

and then we define the obtained CW‐complex to be the modified quandle space B'X.

More strictly, we now describe the 3‐skeleton:

The 0‐cells are \# X discrete points labeled by the elements of X.

The 1‐skeleton is obtained by attaching 1‐cells labeled by (x, y)\in X^{2} to the 0‐cells

x and x*y ,
as Figure 2 shows.
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(x*y,z)

x x*y
\hat{\mathrm{b}\aleph^{\backslash }} \hat{\check{\mathrm{c}}_{\star}:.\mathrm{x}\aleph\aleph}

(x,\mathrm{z})

(x,y) (xy,z) (x,yz,w)

Figure 2: Cells of B'X

The 2‐skeleton is obtained by attaching 2‐cells labeled by (x, y, z)\in X^{3} to the 1‐

skeleton as shown in Figure 2 and adding 2‐cells bounding the 1‐cells (x, x) .

To describe the 3‐skeleton, we first attach 3‐cells labeled by (x, y, z, w)\in X^{4} as shown

in Figure 2 and then adding ones bounding the 2‐cells (x, y, y) . For x, y\in X(x\neq y)
we further add a 3‐cell which bounds three 2‐cells: (x, x, y) and those bounding (x, x)
and (x*y, x*y) (this 3‐cell is like a cylinder). This is how we obtain the 3‐skeleton

of B'X.

We need only the 3‐skeleton to define the modified homotopy invariant.

We now define the modified homotopy invariant. Let F be a surface link and let D be

a diagram of F . For C\in \mathrm{C}\mathrm{o}1_{X}(D) , we construct a continuous map $\Xi$_{X}'(C) : F\rightarrow B'X as

follows. First, we remark the lower decker curves on F form a 1,4‐valent graph (the lower

graph) G on F
, where a monovalent vertex corresponds to a branch point and a 4‐valent

one to a triple point. The color C induces a shadow coloring on (F, G) . Here we regard G

as a generalized link diagram of [2] on F . We consider the dual decomposition of F as to

G and let $\Xi$_{X}'(C) map the 0‐cells of the dual decomposition to the 0‐cell of B'X labeled

by the corresponding shadow color x\in X . Further, we define the map $\Xi$_{X}'(C) : F\rightarrow B'X

so that the 1‐ and the 2‐cells of F are mapped to the corresponding 1‐ and 2‐cells of

---\vec{\prime x(C})
 F\supset \subset B^{/}X

 $\chi$  x\mathrm{O}( $\chi,\ \chi$)
Figure 3: Definition of ---\prime x(C)
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B'X , respectively; see Figure 3. For example, a branch point colored x is send to the

2‐cell bounding the 1‐cell (x, x) . Thus we obtain a continuous map $\Xi$_{X}'(C) . Of course

deformation of the diagram changes the map $\Xi$_{X}'(C) ,
but the homotopy class of $\Xi$_{X}'(C) is

unchanged. Precisely,

Proposition 3.1. Let D and D' be diagrams of surface links and suppose that there exists

a sequence of Roseman moves which takes D to D' . Let  $\varphi$ : \mathrm{C}\mathrm{o}1_{X}(D)\rightarrow \mathrm{C}\mathrm{o}1_{X}(D') be the

induced bijection between the X ‐colorings. Then, for C\in \mathrm{C}\mathrm{o}1_{X}(D) ) $\Xi$_{X}'(C) is equal to

$\Xi$_{X}'( $\varphi$(C)) up to homotopy.

Thus the multi‐set \{$\Xi$_{X}'(C)\in[F;B'X]|C\in \mathrm{C}\mathrm{o}1_{X}(D)\} is an invariant of surface links.

3.2 Basic properties of B'X

On the rack homology theory, the (co)homology groups of B_{X}X are isomorphic to the

rack (co)homology groups with a shift of degree (see [8]). Similarly, the (co)homology of

B'X is described by the quandle (co)homology:

Proposition 3.2. Let X be a quandle and let A be an abelian group. Then we have

H_{n}(B'X, A)\cong H_{n+1}^{Q}(X, A) , H^{n}(B'X;A)\cong H_{Q}^{n+1}(X;A) .

In deed, we can identify the cellular n-(\mathrm{c}\mathrm{o}) chains with the quandle (n+1)-(\mathrm{c}\mathrm{o}) chains.

Next, we assume that X is connected ( \Leftrightarrow B'X is connected).

Proposition 3.3. (1) $\pi$_{1}(B'X) is isomorphic to the �fundamental group� of X in the

sense of [5].
(2) $\pi$_{2}(B'X)\cong$\pi$_{2}^{Q}(X) ,

which is the second quandle homotopy group of X.

Corollary 3.4. If X is finite and connected, \#[F;B'X]<\infty.

Remark 3.5. Let X be a connected quandle and let \tilde{X} be the universal covering of X

in the sense of [5]. We find from Proposition 3.3 that $\pi$_{2}^{Q}(X)\cong H_{2}^{Q}(\overline{B'X}) , where \overline{B'X} is

the universal covering of B'X . Especially if X is finite, we can compute $\pi$_{2}^{Q}(X) from the

homology of a finite CW‐complex. Also, this implies that the quandle homotopy invariant

for 1‐links is equivalent to a shadow cocycle invariant on the X‐set \tilde{X}.

3.3 Universality among 2‐ and 3‐cocycle invariants

The original quandle homotopy invariants of [14] have the universality among the (gener‐
alized, shadow) 3‐cocycle invariants, but do not among 2‐cocycle invariants. On the other
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hand, the modified homotopy invariants have the universality among 2‐ and 3‐cocycle
invariants.

Let X be a quandle, and let  $\phi$ and  $\psi$ be quandle 2‐ and 3‐cocycles on an abelian group

 A
, respectively. As in the previous section, we regard  $\phi$( $\psi$) as a 1(2)‐cocycle of B'X . Here

we recall that the modified homotopy invariant $\Xi$_{X}' defines continuous maps F\rightarrow B'X

up to homotopy. Cocycle invariants are in fact pullbacks of the cocycle by the maps; --x-,
has universality among cocycle invariants. Precisely,

Proposition 3.6. For a coloring C\in \mathrm{C}\mathrm{o}1_{X}(D) of a diagram D of F
,

we have

(1)  $\Phi$_{ $\phi$}(C)=($\Xi$_{X}'(C))^{*} $\phi$ \in H^{1}(F;A) ,

(2) $\Psi$_{ $\psi$}(C)=\{($\Xi$_{X}'(C))^{*} $\psi$, [F]\rangle \in A,

where, in the right‐hand side of the last equation, \rangle is the Kronecker product and [F]
is the fundamental homology class of F.

Remark 3.7. There is a component‐wise version of a 3‐cocycle invariant; we sum the

weights over the triple points whose bottom sheets belong to a fixed component of F . We

can recover that version from --x-
,

by substituting the fundamental homology class of the

component for that of F in Proposition 3.6(2).

4 Quandle cocycle invariants of cabled surface knots

4.1 The main theorem

Let X be a quandle. To calculate quandle cocycle invariants of cablings, we regard an

X‐coloring on a cabling F^{(m, $\nu$)} as an X^{m}‐coloring on the original surface knot. Hence we

introduce a binary operation * on X^{m} as follows:

(x_{1}, \cdots, x_{m})*(y_{1}, \cdots, y_{m})=(x_{1}^{\overline{x_{m}}\cdots\overline{x_{1}}y_{1}\cdots y_{m}}, \cdots, x_{m}^{\overline{x_{m}}\cdots\overline{x_{1}}y_{1}\cdots y_{m}}) .

Then X^{m}=(X^{m}, *) is a quandle (see [9]). Further we define a map  $\tau$ :  X^{m}\rightarrow X^{m} as

 $\tau$(x_{1}, \cdots , x_{m})=(x_{m}, x_{1}*x_{m}, \cdots , x_{m-1}*x_{m}) .

Figure 4: The quandle X^{m} and the kink map  $\tau$
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 $\tau$ is a quandle automorphism on  X^{m} and we have x*( $\tau$ y)=x*y for any x, y\in X^{m} ; i.e.

 $\tau$ is a kink map on  X^{m} . In terms of a cabling, an X^{m}‐coloring corresponds to a coloring
on an m‐cabling without twist and  $\tau$ to a  1/m‐twist, as illustrated in Figure 4.

We put X_{ $\tau$}^{m} to be the quotient quandle of (X^{m},  $\tau$) . That is,

X_{ $\tau$}^{m}:=X^{m}/\sim, x\sim y\mathrm{i}\mathrm{f}\mathrm{f}y=$\tau$^{k}\mathrm{x}\mathrm{f}\mathrm{o}\mathrm{r} some k\in \mathbb{Z}.

We have the quandle operation on X_{ $\tau$}^{m} induced from that of X^{m} . The main theorem below

says that quandle cocycle invariants of cablings are deduced from the modified homotopy
invariant on X_{ $\tau$}^{m}.

Theorem 4.1. We assume X to be finite and let  $\psi$ :  X\times X\times X\rightarrow A be a quandle 3‐

cocycle valued on an abelian group A. For a surface knot F
, we denote the (m,  $\nu$) ‐cabling

of F by F^{(m, $\nu$)} . Then, there exists a map f_{ $\psi$}^{(m, $\nu$)} : [F;B'X_{ $\tau$}^{m}]\rightarrow \mathbb{Z}[A] such that

$\Psi$_{ $\psi$}(F^{(m, $\nu$)})=\displaystyle \sum_{c}f_{ $\psi$}^{(m, $\nu$)}($\Xi$_{X_{ $\tau$}^{m}}'(C))\in \mathbb{Z}[A],
where C is taken over the X_{ $\tau$}^{m} ‐colorings on (a diagram of) F.

4.2 Outline of the proof

In this section we give outline of the proof of Theorem 4.1. The proof consists of two

parts: one is to determine the colorings and the other is to compute the weights.

Colorings of the cabling

First of all, we remark that there exists an obvious map \mathrm{C}\mathrm{o}1_{X}(F^{(m, $\nu$)})\rightarrow \mathrm{C}\mathrm{o}1_{X_{ $\tau$}^{m}}(F)
induced by the projection X^{m}\rightarrow X_{ $\tau$}^{m} . Conversely, we here consider whether or not a

coloring C\in \mathrm{C}\mathrm{o}1_{X^{\mathrm{m}}}.(F) is lifted to a coloring of F^{(m, $\nu$)}.

To see it, we construct a covering B'X_{ $\tau$}^{m}\rightarrow B'X_{ $\tau$}^{m} . Although  $\tau$ acts on  B'X^{m} and the

action of  $\tau$ on  X^{m} is a deck transformation of the covering X^{m}\rightarrow X_{ $\tau$}^{m} in the sense of

[5], B'X^{m}\rightarrow B'X_{ $\tau$}^{m} is not a covering. Hence we reduce B'X^{m} (roughly speaking, we

identify a cell (x_{1}, x_{2}, \cdots, x_{n}) with cells in a form (x_{1}, $\tau$^{k_{2}}x_{2}, \cdots, $\tau$^{k_{n}}x_{n}) ) to B'X_{ $\tau$)}^{m} and

then we find  $\tau$ to act on  B'X_{ $\tau$}^{m} as a generator of the deck transformation group of a

cyclic covering B'X_{ $\tau$}^{m}\rightarrow B'X_{ $\tau$}^{m} . For each connected component Bí of B'X_{ $\tau$}^{m} ,
we obtain

the monodromy representation $\rho$_{i} : $\pi$_{1}(B_{i})\rightarrow \mathbb{Z}/N_{i}\mathbb{Z} . We think of $\rho$_{i} as a cohomology
class: $\rho$_{i}\in H^{1}(B_{i};\mathbb{Z}/N_{i}\mathbb{Z}) .

We take a coloring C\in \mathrm{C}\mathrm{o}1_{X_{ $\tau$}^{m}}(F) . We have a continuous map $\Xi$_{X_{ $\tau$}^{m}}'(C) : F\rightarrow B'X_{ $\tau$}^{m}
and we assume that the image is in B_{i} . As we (try to) lift $\Xi$_{X_{ $\tau$}^{m}}'(C) to B'X_{ $\tau$}^{m} ,

there are
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two obstruction: one is the monodromy $\rho$_{i} and the other is the �twist� by  $\nu$ . Summing

up them, we find that  C is lifted to \tilde{C}\in \mathrm{C}\mathrm{o}1_{X}(F^{(m, $\nu$)}) if and only if (---\prime X_{ $\tau$}^{m}(C))^{*}$\rho$_{i}+ $\nu$=
0\in H^{1}(F;\mathbb{Z}/N_{i}\mathbb{Z}) . This is a condition dependent only on -X_{ $\tau$}^{m}-;\in[F;B'X_{ $\tau$}^{m}] (we could

express this condition by means of a 2‐cocycle invariant on X_{ $\tau$}^{m} ).
If C lifts, there are N_{i} lifts, each of which is obtained by setting a color of a sheet. We

calculate the weights W\in A of them below (in fact the N_{i} lifts have the same weight)
and put f_{ $\psi$}^{(m, $\nu$)}(_{-X_{ $\tau$}^{m}}^{-\prime}-(C) ) =N_{i}\cdot W\in \mathbb{Z}[A] . If C does not lift, we put f_{ $\psi$}^{(m, $\nu$)}($\Xi$_{X_{ $\tau$}^{m}}'(C))=0.

Computing the weights

For the calculation, we put Y to be the mapping torus of (\overline{B'X_{ $\tau$}^{?n}},  $\tau$) . Since \overline{B'X_{ $\tau$}^{m}}\rightarrow B'X_{ $\tau$}^{m}
is a cyclic covering and  $\tau$ is a generator of the deck transformation group, we have the

projection  Y\rightarrow B'X_{ $\tau$}^{m} and it is a principal U(1)‐bundle.

We assume that a coloring C\in \mathrm{C}\mathrm{o}1_{X_{ $\tau$}^{m}}(F) is lifted to a coloring of the cabling F^{(m, $\nu$)}.

Then we construct a lift -\sim- $\nu$ of --\prime X_{ $\tau$}^{m}

Y

 $\theta$ \downarrow

\supset \overline{B'X_{ $\tau$}^{m}}
\swarrow

 F\overline{=}_{X_{ $\tau$}^{m}}^{\vec{\prime}}(C) B'X_{\ulcorner}^{m}
We lift --X_{ $\tau$}^{m} along \overline{B'X_{ $\tau$}^{m}} (this is like the holonomy representation of a flat connection),
and where the cable twists, we bend the surface as if it fills in the gap of  $\tau$ , as illustrated

in Figure 5. By assumption, we obtain a lift - $\nu$-\sim defined over the whole surface. The

homotopy class of -\sim $\nu$- is in fact determined by  $\nu$ and the homotopy class --X_{ $\tau$}^{m}-(C)\in
[F;B'X_{ $\tau$}^{m}] . Then, Theorem 4.1 follows from a claim:

) lift

\mapsto

Figure 5: The lift ---\sim $\nu$(C) of --\prime X_{ $\tau$}^{m}
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Claim. There exist an abelian group A' including A and a cohomology class \tilde{ $\psi$}\in H^{2}(Y;A')
such that

$\Psi$_{ $\psi$}(\tilde{C})=\{\sim--- $\nu$(C)^{*}\tilde{ $\psi$}, [F]\}\in A,
where \tilde{C}\in \mathrm{C}\mathrm{o}1_{X}(F^{(m, $\nu$)}) is a lifl of C.

We replace the coefficient group for a technical reason, which we do not explain in this

note.

The claim is shown by a method used in [9]; a kink cocycle consists of three maps, but

we can reduce the third map. Then the two maps represent the required cohomology
class. We recall here that the 2‐cells of Y are composed of the 2‐cells of B'X_{ $\tau$}^{m} and those

in a form of (a1‐cell of \overline{B'X_{ $\tau$}^{m}} ) \mathrm{x}[0 , 1 ] (we regard Y as a quotient of B'X_{ $\tau$}^{7n}\times[0,1
These are respectively mapped by the two reduced maps. Generally speaking, the former

cells correspond to the triple points in the cabling which are generated near the triple

points in the original surface knot, and the latter correspond to those appearing near the

intersection of the twist and the original double point curves. We define \tilde{ $\psi$} to map a 2‐cell

to the weight‐sum on the corresponding triple points.

Remark 4.2. Similarly, we can show that kink cocycle invariants are deduced from

modified homotopy invariants. Especially, a rack cocycle invariant is represented by the

modified homotopy invariant on the quotient quandle.
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