On annulus twists

Tetsuya Abe
 Osaka City University Advanced Mathematical Institute

ABSTRACT．We survey some results about annulus twists which are related to Dehn surgery on knots，knot concordance，and 4－manifold theory．

1．Introduction

Lickorish［15］and Wallace［22］proved that every closed con－ nected orientable 3－manifold can be obtained by Dehn surgery on some link in S^{3} ．In other words，every closed connected orientable 3 －manifold is described by a framed link in S^{3} ．Our interest is in uniqueness of framed link descriptions of a given 3－manifold．A natural question is the following．
Question 1．If two framed links \mathcal{L} and \mathcal{L}^{\prime} give the same 3－ manifold，then are \mathcal{L} and \mathcal{L}^{\prime} isotopic as framed links？

It is well－known that the answer of Question 1 is NO．Indeed， for a given framed link \mathcal{L} and a $1 / n$－framed unknot \mathcal{O} ，two framed links \mathcal{L} and $\mathcal{L} \sqcup \mathcal{O}$ give the same 3 －manifold．A modified question is the following．
Question 2．If two framed knots \mathcal{K} and \mathcal{K}^{\prime} give the same 3－ manifold，then are \mathcal{K} and \mathcal{K}^{\prime} isotopic as framed knots？

The answer of Question 2 is again NO［16］（see also［8，9，17， 20］）．The remaining questions are the following．
（1）Under what conditions，are framed knot descriptions of a 3－ manifold unique？
（2）To what extent，are framed knot descriptions of a 3－manifold far from unique？

For the question（1），for example，see $[12,13,14,18]$ ．We con－ centrate on the question（2）．More precisely，we consider Clark＇s problem in Kirby problem list［10］：

Problem 3.6(D). Fix an integer n. Is there a homology 3 -sphere (or any 3 -manifold) which can be obtained by n-surgery on an infinite number of distinct knots?

In [19], Osoinach solved Problem 3.6(D) for the case $n=0$ by constructing knots using the method of twisting along an annulus, which we call an annulus twist. After Teragaito's work [21] (see also [7, 11]), Jong, Luecke, Osoinach, and the author [3] solved Problem 3.6(D) affirmatively, where they generalized annulus twists.
In [4], a 4-dimensional extension of Problem 3.6(D) was proposed as follows:
Problem 1. Let n be an integer. Find infinitely many mutually distinct knots K_{1}, K_{2}, \cdots such that $X_{K_{i}}(n) \approx X_{K_{j}}(n)$ for each $i, j \in \mathbb{N}$.
Here $X_{K}(n)$ denotes the smooth 4-manifold obtained from the 4 -ball B^{4} by attaching a 2 -handle along K with framing n, and the symbol \approx stands for a diffeomorphism. Due to Akbulut [5, 6], there exists a pair of distinct knots K_{n} and K_{n}^{\prime} such that $X_{K_{n}}(n) \approx X_{K_{n}^{\prime}}(n)$ for each $n \in \mathbb{Z}$, which is a partial answer to Problem 1. In [4], Jong, Omae, Takeuch, and the author solved Problem 1 for the case $n=0, \pm 4$. In [3], Jong, Luecke, Osoinach, and the author also solved Problem 1 affirmatively.

2. Osoinach's Result

In this section, we recall Osoinach's result in [19]. Let K_{n} be the knots in Figure 1, which is isotopic to the knots in the page 731 in [19]. One of the main results in [19] is the following.

Theorem 2.1 (Osoinach [19]). We have the following.
(1) The 3-manifold obtained by 0-surgery of K_{0} is toroidal.
(2) The sequence $\left\{K_{n}\right\}$ contains infinitely many distinct hyperbolic knots.
(3) $S_{0}^{3}\left(K_{0}\right) \approx S_{0}^{3}\left(K_{1}\right) \approx S_{0}^{3}\left(K_{2}\right) \approx S_{0}^{3}\left(K_{3}\right) \approx \cdots$, where $S_{n}^{3}(K)$ denotes the 3-manifold obtained by n-surgery of a knot K in S^{3}.

Figure 1. The definition of the knots K_{n}.
Note that we can check that K_{n} and K_{-n} are isotopic, and Takioka proved that the knots $K_{n}(n \geq 0)$ are mutually distinct by calculating the Gamma polynomial which is a specialization of the HOMFLYPT polynomial.
Let V be the solid torus standardly embedded in S^{3} and V^{\prime} the 3 -manifold as in Figure 2. The main observation in [19] is the following.

Figure 2. The definitions of V and V^{\prime}.

Lemma 2.2 (cf. Theorem 2.1 in [19]). There exists a (natural) diffeomorphism

$$
\varphi_{n}: V^{\prime} \longrightarrow V
$$

such that $\left.\varphi_{n}\right|_{\partial V^{\prime}}=i d$.
Remark 2.3. Osoinach [19] considered the diffeomorphism φ_{n}^{-1}.

Figure 2 explains a proof of (3) in Theorem 2.1. Note that, by Lemma 2.2, the picture on the bottom-left is diffeomorphic to $S_{0}^{3}\left(K_{0}\right)$.

Figure 3. A proof of (3) in Theorem 2.1.

3. Dehn surgery and knot concordance

We recall a terminology in knot concordance. Two knots K and K^{\prime} are concordant if they cobound a properly embedded annulus in $S^{3} \times I$. In this paper, we do NOT consider orientations of a given knot.

Dehn surgery on knots and knot concordance are closely related. A motivating question is the following.

Question 3.1 (A.Levine [24]). If K is concordant to K^{\prime}, then for all $n, S_{n}^{3}(K)$ is homology cobordant to $S_{n}^{3}\left(K^{\prime}\right)$. Is the converse true?

The following conjecture is due to Akbulut and Kirby (see Problem 1.19 in the Kirby's problem list [10]).
Conjecture. If 0 -framed surgeries on two knots give the same 3 -manifold, then the knots are concordant.

Tagami and the author [2] proved that Akbulut-Kirby's conjecture is false if the slice-ribbon conjecture is true. Subsequently, Yasui [23] proved that Akbulut-Kirby's conjecture is false by constructing knots K and K^{\prime} satisfying
(1) $X_{K}(0)$ and $X_{K^{\prime}}(0)$ are exotic (i.e. homeomorphic but nondiffeomorphic).
(2) K and K^{\prime} are not concordant.

Note that $X_{K}(0)$ and $X_{K^{\prime}}(0)$ are related by a cork twist. For the details, see [23]. The remaining conjecture is the following.
Conjecture. Let K and K^{\prime} be knots. If $X_{K}(0)$ and $X_{K^{\prime}}(0)$ are diffeomorphic, then K and K^{\prime} are concordant.

Figure 4. The definition of K_{0} and K_{1}.
Remark: Let K_{0} and K_{1} be the knots in Figure 4. By the result in [4], the 4-manifolds $X_{K_{0}}(0)$ and $X_{K_{1}}(0)$ are diffeomorphic. Furthermore, if the slice-ribbon conjecture is true, K_{0} and K_{1} are not concordant (see [2]).

Acknowledgments. The author was supported by JSPS KAKENHI Grant Number 16K17597.

References

[1] T. Abe and M. Tange, A construction of slice knots via annulus twists, (2016), accepted by The Michigan Mathematical Journal.
[2] T. Abe and K. Tagami, Fibered knots with the same 0-surgery and the slice-ribbon conjecture, (2016), to appear in Math. Research Letters.
[3] T. Abe, I. Jong, J. Luecke and J. Osoinach, Infinitely many knots admitting the same integer surgery and a 4-dimensional extension, Int. Math. Res. Not. IMRN. (2015), doi: 10.1093/imrn/rnv008.
[4] T. Abe, I. Jong, Y. Omae and M. Takeuchi, Annulus twist and diffeomorphic 4manifolds, Math. Proc. Cambridge Philos. Soc. 155 (2013), 219-235.
[5] S. Akbulut, Knots and exotic smooth structures on 4-manifolds, J. Knot Theory Ramifications 2 (1993), no. 1, 1-10.
[6] S. Akbulut, On 2-dimensional homology classes of 4-manifolds. Math. Proc. Camb. Phil. Soc. 82 (1977), no. 1, 99-106.
[7] K. L. Baker, C. McA. Gordon, and J. Luecke, Bridge number and integral Dehn surgery, Algebraic \& Geometric Topology 16 (2016) 1-40.
[8] R. Brakes, Manifolds with multiple knot-surgery descriptions, Math. Proc. Camb. Phil. Soc. 87 (1980), no. 3, 443-448.
[9] A. Kawauchi, Mutative hyperbolic homology 3-spheres with the same Floer homology, Geom.Dedicata 61 (1996), no. 2, 205-217.
[10] R. Kirby, Problems in low-dimensional topology. AMS/IP Stud. Adv. Math. 2(2), Geometric topology (Athens, GA, 1993), (Amer. Math. Soc. 1997).
[11] R. Kouno, 3-manifolds with infinitely many knot surgery descriptions (in Japanese), Masters thesis, Nihon University (2002).
[12] D. Gabai, Foliations and the topology of 3-manifolds. III, J. Differential Geom. 26, No. 3 (1987), 479-536.
[13] P. Ghiggini Knot Floer Homology Detects Genus-One Fibred Knots, American Journal of Mathematics 130, No. 5 (2008), 1151-1169
[14] M. Lackenby, Dehn Surgery on Knots in 3-Manifolds, Journal of the American Mathematical Society, No. 4 (1997), 835-864.
[15] W. B. R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. of Math 76 (1962), 531-538.
[16] W. B. R. Lickorish, Surgery on knots, Proc. Amer. Math. Soc. 60 (1976), 296-298.
[17] C. Livingston, More 3-manifolds with multiple knot-surgery and branched-cover descriptions, Math. Proc. Camb. Phil. Soc. 91 (1982), no. 3, 473-475.
[18] Yi Ni and Zhongtao Wu, Cosmetic surgeries on knots in S^{3}, J. Reine Angew. Math., 706, (2015), 1-17.
[19] J. Osoinach, Manifolds obtained by surgery on an infinite number of knots in S^{3}, Topology 45 (2006), 725-733.
[20] M. Teragaito, Toroidal Dehn surgery on hyperbolic knots and hitting number, Topology Appl. 157 (2010), no. 1, 269-273.
[21] M. Teragaito, A Seifert fibered manifold with infinitely many knot-surgery descriptions, Int. Math. Res. Not. 2007, no. 9, Art. ID rnm028, 16 pp.
[22] A. Wallace, Modifications and cobounding manifolds, Can. J. Math. 12 (1960), 503-528.
[23] K. Yasui Corks, exotic 4-manifolds and knot concordance, arXiv:1505.02551v3 [math.GT].
［24］Problem list Banff 2016，＂Synchronisation of smooth and topological 4－manifolds＂， Banff International Research Station，February 2016.

Osaka City University Advanced Mathematical Institute 3－3－138 Sugimoto，Sumiyoshi－ku Osaka 558－8585 JAPAN E－mail address：tabe＠sci．osaka－cu．ac．jp
大阪市立大学•数学研究所 安部 哲哉

