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Abstract

In this paper, we propose an algorithm for simultaneously reducing two dense

symmetric matrices to band form with the same bandwidth by congruent
transformations. The simultaneous band reduction can be considered as an

extension of the simultaneous tridiagonalization of two dense symmetric ma‐

trices. In contrast to algorithms of simultaneous tridiagonalization that are

based on Leve1‐2 BLAS (Basic Linear Algebra Subroutine) operations, our

band reduction algorithm is devised to take full advantage of Leve1‐3 BLAS

operations for better performance. Numerical results are presented to illus‐

trate the effectiveness of our algorithm.

1 Introduction

Given two real n‐by‐n dense symmetric matrices A, B
,

we consider the simultaneous band

reduction of A and B via congruent transformations with respect to a matrix Q\in \mathbb{R}^{n\times n}
as follows

K=Q^{T}AQ, M=Q^{T}BQ , (1)
where K and M are band matrices with the same odd‐numbered bandwidth s.

It is well known that the band reduction of a single dense symmetric matrix, as a

pre‐processing step, is widely applied to compute the spectral decomposition, which can

be also used to solve shifted linear systems for example. Please refer to [3, 17] and

references therein for more details.

For a pair of nonsymmetric matrices A and B
, algorithms for different condensed

forms have also been proposed, for example algorithms for the Hessenberg‐triangular
form [1, 4, 7, 12].

Considering the symmetry, algorithms for the tridiagonal‐diagonal form have been

proposed in [2, 11, 16]. Recently, methods for the tridiagonal‐tridiagonal form, simul‐

taneous tridiagonalization, have been proposed in [6, 15] by congruent transformations.

Compared with other condensed forms, the tridiagonal‐tridiagonal can be obtained under

a weak condition that the matrix pencil (A, B) is regular. The complexity of simultane‐

ous tridiagonalization is \mathcal{O}(n^{3}) FLOPs. In addition, the computations are based on the

Leve1‐2 BLAS operations.
In this paper, we propose an algorithm for simultaneously reducing two dense sym‐

metric matrices to band form with the same bandwidth by congruent transformations.

In contrast to the algorithms of simultaneous tridiagonalization that are based on Level‐

2 BLAS operations, our band reduction algorithm is devised to take full advantage of
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Leve1‐3 BLAS operations and able to achieve better performance. The band reduction

can be also used as a pre‐processing step for solving problems such as the generalized
eigenvalue problem Ax= $\lambda$ Bx and the generalized shifted linear systems (A+$\sigma$_{i}B)x=b
etc. Please refer to [5, 8, 9, 10, 13] for algorithms of solving the band (tridiagonal) gen‐
eralized eigenvalue problems.

The paper is organized as follows. In the Section 2, we briefly study the existing meth‐

ods for simultaneous tridiagonalization. In Section 3, we empoly the tridiagonalization
ideas and propose an algorithm for the simultaneous band reduction. Implementation
details will be discussed. In Section 4, we give some numerical results to illustrate the

effectiveness of our algorithm. Finally, we make some concluding remarks and point our

future work in Section 5.

Throughout this paper the following notation is used. If the size of a matrix or

a vector is apparent from the context without confusion, we will drop the index, e.g.,

denote an m‐by‐n matrix A_{m\times n} by A and an n‐dimensional vector x_{n} by x. I will always
represent the identify matrix, A^{T} denotes the transpose of A . The Matlab colon notation

is used. For example, the entry of A at the ith row and jth column is A(i, j) ,
the kth

column of A is A k) and A i : j ) =[A(:, i), A i+1 ) ,
. . . , A j )] is a sub‐matrix

with j-i+1 columns.

2 A brief review of the simultaneous tridiagonaliza‐
tion

The simultaneous tridiagonalization of two symmetric matrices is firstly discussed by
Garvey et al in [6]. Then Sidje [15] gave more details on simultaneous tridiagonalization
under a unified framework. In this section, we briefly study their methods.

For simplicity, we let n=8 and assume that two iteration steps of tridiagonalization
of A and B have been complete, which gives A^{(2)} and B^{(2)} as follows,

A^{(2)}=(/\backslash and B^{(2)}=(**
***

******* ****** ****** ****** ****** ******) ,

where * denotes the nonzero entries.

The third iteration step for A^{(3)} and B^{(3)} can be described by the following two‐stage
computations.

Stage 1: if A^{(2)}(4 : 8, 3)\neq $\alpha$ B^{(2)}(4 : 8, 3 ) for the given scalar  $\alpha$
,

then construct a

matrix L3 and compute \overline{A}^{(2)}=L_{3}^{T}A^{(2)}L_{3}, \overline{B}^{(2)}=L_{3}^{T}B^{(2)}L_{3} to make \overline{A}^{(2)}( 4 : 8, 3)=
 $\alpha$\overline{B}^{(2)} (4 : 8, 3).
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Stage 2: construct a matrix H3 and let A^{(3)}=H_{3}^{T}\overline{A}^{(2)}H_{3}, B^{(3)}=H_{3}^{T}\overline{B}^{(2)}H_{3} to

eliminate nonzero entires of \overline{A}^{(2)} (5 : 8, 3) and \overline{B}^{(2)}(5 : 8, 3 ) .

Meanwhile, there should be no fill‐in for all the zero entries (i, j) ,
when |i-j|>1,

during both stages. In the following subsections, we briefly describe how to construct L3
and H_{3} . Please refer to [6, 15] for more details.

2.1 Stage 1: construct matrix L3

It is easy to check that L3 with the following pattern can always avoid fill‐in for the

computations \overline{A}^{(2)}=L_{3}^{T}A^{(2)}L_{3} and \overline{B}^{(2)}=L_{3}^{T}B^{(2)}L_{3},

Theoretically, all nonsingular matrices could be chosen for the sub‐block L_{3}(4:8,4 :

8). In practice, various rank‐one updates have been given in [6, 15], where L_{3}(3 : 8, 3 :

8)=I_{6}+[0, x^{T}]^{T}[1, y^{T}] . In order to make \overline{A}^{(2)}(4 : 8, 3 ) and \overline{B}^{(2)}(4 : 8, 3 ) be collinear

(the corresponding \otimes entires i.e., \overline{A}^{(2)}(4:8,3)= $\alpha$\overline{B}^{(2)}(4:8,3) ,

\displaystyle \bigotimes_{\otimes}^{*}\otimes\otimes\otimes* \displaystyle \bigotimes_{*}**** \displaystyle \bigotimes_{*}**** \displaystyle \bigotimes_{*}**** \displaystyle \bigotimes_{*}**** \displaystyle \bigotimes_{*}****)
the unknown vector x can be efficiently determined as follows

[1, x^{T}]^{T}=\displaystyle \frac{(A^{(2)}(3:8,3:8)- $\alpha$ B^{(2)}(3:8,3:8))^{-1}e_{1}}{e_{1}^{ $\tau$}(A(2)(3:8,3:8)- $\alpha$ B(2)(3:8,3:8))^{-1}e_{1}} . (2)

Moreover the solution is also unique. To avoid solving the linear system for x per

iteration and reduce the total computation cost, a practical approach is given in [6].
Only the LDL^{} decomposition of A- $\alpha$ B or its inverse needs to be computed in \mathcal{O}(n^{3})
operations. In the follow‐up steps, x can be efficiently computed by using the LDL^{} or

its inverse in \mathcal{O}(n^{2}) operations.
Although x is determined uniquely, there are different choices for y . Here we recall

some results in [6, 15],
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(i) y=0 corresponding to L_{3}(4 : 8, 4: 8)=I ;

(ii) Determine y by letting \overline{A}^{(2)}(4:8,3)= $\sigma$ e_{1} ;

(iii) y=-(1+\sqrt{1+\Vert x\Vert_{2}^{2}})x/\Vert x\Vert_{2}^{2} by minimizing the condition number of L3;

(iv) y=-2x/\Vert x\Vert_{2}^{2} ;

Remark 2.1. For the case (ii), the computation of stage 2 will not be needed for tridiag‐
onalization.

2.2 Stage 2: construct matrix H3

When the stage 1 is complete, it is easy to simultaneously eliminate the nonzero entires

of \overline{A}^{(2)} (5 : 8, 3) and \overline{B}^{(2)}(5 : 8, 3 ) . For example, a Householder transformation H3 as

follows can be applied to both \overline{A}^{(2)} and \overline{B}^{(2)}.

H_{3}=\left(1 & 1 & 1 & I & -2uu^{T}\right),
where u is an unit vector and is determined by \overline{A}^{(2)} (4 : 8, 3). Then we can obtain

A^{(3)}=H_{3}^{T}\overline{A}^{(2)}H_{3} and B^{(3)}=H_{3}^{T}\overline{B}^{(2)}H_{3} as follows,

A^{(3)}=(/\backslash and B^{(3)}=(**
*** ***

****** ***** ***** ***** *****)
We can continue the two‐stage computations recursively until two tridiagonal matri‐

ces are obtained. For the general case, we describe the simultaneous tridiagonalization
procedure in Algorithm 1.

Remark 2.2. In steps 5, 7 and 8, matrix updates like M=(I+uv^{T})^{T}M(I+uv^{T})
are needed, where M is a matrix, u and v are vectors. Leve1‐2 BLAS such as DSYR,
DSYR2, DSYMV can be used for updating M.

From discussions above, we see the algorithm of simultaneous tridiagonalization has

the following disadvantages.

Complexity of the algorithm is order of n^{3} flops ;

Implementations of the algorithm are mainly based on Leve1‐2 BLAS operations.
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\overline{\frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}1\mathrm{P}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}1\mathrm{t}\mathrm{a}\mathrm{n}\mathrm{e}\mathrm{o}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}\mathrm{o}\mathrm{n}\mathrm{a}1\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}{1:\mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{w}\mathrm{o}n-\mathrm{b}\mathrm{y}-n\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}A,B,\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}\mathrm{c}\mathrm{a}1\mathrm{a}\mathrm{r} $\alpha$;1\mathrm{e}\mathrm{t}Q=I;}}
2: Compute the LDL^{} of A- $\alpha$ B or inverse N :=(A- $\alpha$ B)^{-1} ;

3: for k=1 : n-2 do

4: Compute x and y for L_{k} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

5: Compute \overline{A}^{(k-1)} and \overline{B}^{(k-1)} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

6: Compute u for H_{k} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

7: Compute A^{(k)} and B^{(k)} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

8: Update N and Q=QL_{k}H_{k} ; (if necessary) \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

9: end for

We know that almost all modern computers have the structure of memory hierarchy.
Computation time of an algorithm mainly depends on the arithmetic operations (FLOPs)
and data movement (memory access). A basic rule for devising fast algorithms is to

reduce memory access as more as possible. The ratios of FLOPs to memory access

corresponding to different level operations are given in Table 1.

Table 1: Ratios of arithmetic operations to memory access. Denote  $\alpha$,  $\beta$\in \mathbb{R}, x, y\in \mathbb{R}^{n}
and A, B, C\in \mathbb{R}^{n\times n}.

\displaystyle \frac{\mathrm{F}\mathrm{L}\mathrm{O}\mathrm{P}\mathrm{s}\mathrm{m}\mathrm{e}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{y}\mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{s}\mathrm{s}\mathrm{R}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}}{y= $\alpha$ x+y(\mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}1-1)2n3n2/3}
y= $\alpha$ Ax+ $\beta$ y (Leve1‐2) 2n^{2} n^{2} 2

C= $\alpha$ AB+ $\beta$ C (Leve1‐3) 2n^{3} 4n^{2} n/2

From Table 1, we see that an algorithm that is able to implemented by higher level

BLAS operations maybe show better performance, which inspires us to extend the tridi‐

agonalization algorithm and devise a new algorithm that can take advantage of the

Leve1‐3 BLAS operations.

3 An algorithm for simultaneous band reduction

In this section, we extend the ideas in Section 2 and propose an algorithm for simulta‐

neous band reduction. Similar to the simultaneous tridiagonalization, the computations
of band reduction will be also divided two stages. We first process t(t :=(s-1)/2
hereafter) steps like the stage 1 of Algorithm 1 to make t pairs of vectors collinear. Then

we continue to do t steps like the stage 2 of Algorithm 1 to eliminate the off‐diagonal
nonzero entries for all |i-j|>t.

As there are different variants for simultaneous tridiagonalization, in what follows,
our strategy of band reduction is mainly based on the first variant that y= O. For

simplicity, we take t=2 and discuss the two stages of simultaneous band reduction as

follows.
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Assuming that two steps of band reduction of A and B have been complete. Matrices

A^{(1)} and B^{(1)} obtained are as follows,

3.1 Stage 1: construct matrix L_{2}

The aim of this stage is to construct a matrix L_{2} which makes t pairs of vectors corre‐

sponding to \overline{A}^{(1)} :=L_{2}^{T}A^{(1)}L_{2} and \overline{B}^{(1)} :=L_{2}^{T}B^{(1)}L_{2} are collinear. When t=2
,

we can

construct L_{2} as follows,

The unknown entries of L_{2}^{(1)} and L_{2}^{(2)} are determined by the similar strategy in section

2.1. We note that the unknown entries of L_{2}^{(2)} will be determined after that of L_{2}^{(1)}.
Applying L_{2}^{(1)} and L_{2}^{(2)} to A^{(1)} successively, we could obtain the following two matrices

with the same pattern, respectively. The nonzero entries denoted \mathrm{b}\mathrm{y}\otimes are what we care

about.

\displaystyle \overline{A}^{(1)}=L_{2}^{(1)T}A^{(1)}L_{2}^{(1)}= (*** **** \otimes\otimes\otimes\bigotimes_{\otimes}^{*}** \bigotimes_{*}^{*}**** \bigotimes_{*}**** \bigotimes_{*}**** \bigotimes_{*}**** \bigotimes_{*}****) ,
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and

\displaystyle \overline{A}^{(1)}=L_{2}^{(2)T}\overline{A}^{(1)}L_{2}^{(2)}=(*** **** \otimes\otimes\bigotimes_{\otimes}^{\otimes***} \otimes\otimes\bigotimes_{\otimes}^{\bigotimes_{*}^{*}} \bigotimes_{*}^{\otimes}*** \bigotimes_{*}^{\otimes}*** \bigotimes_{*}^{\otimes}*** \bigotimes_{*}^{\otimes}***)
Similar to \overline{A}^{(1)}

,
we can also obtain \overline{B}^{(1)} . Congruent transformations by L_{2}^{(1)} make \overline{A}^{(1)}(4 :

8, 3) and \overline{B}^{(1)}(4:8, 3) be collinear. Congruent transformations by L_{2}^{(2)} make \overline{A}^{(1)}(5:8, 4)
and B^{(1)}(5:8,4)- be collinear and keep the collinearity of \overline{A}^{(1)}(4:8,3) and \overline{B}^{(1)}(4:8,3) .

3.2 Stage 2: construct matrix H_{2}

In this stage, we eliminate nonzero entries of \overline{A}^{(1)} and \overline{B}^{(1)} in columns 3 and 4 for

the band form. We construct the matrix H_{2} as follows, a product of two Householder

matrices H_{2}^{(1)} and H_{2}^{(2)},

where u_{4} and u_{3} can be determined by \overline{A}^{(1)} (5 : 8, 3 : 4). Then we can obtain A^{(2)}=

H_{2}^{T}\overline{A}^{(1)}H_{2} and B^{(2)}=H_{2}^{T}\overline{B}^{(1)}H_{2}.
As the product of H_{2}^{(1)} and H_{2}^{(2)} can be represented as follows by the compact WY

representation [14],

H_{2}=\left(1 & 1 & 1 & 1 & I-VTV^{T}\right),
where V is a 4 \mathrm{x}2 matrix, and T denotes a 2\times 2 upper triangular matrix. In practice,
sub‐matrices A^{(2)} (5 : 8, 5 : 8) and B^{(2)}(5 : 8, 5 : 8 ) can be effectively computed by this

representation, Leve1‐3 BLAS such as \mathrm{D}\mathrm{S}\mathrm{Y}\mathrm{R}2\mathrm{K}
, DSYMM can be employed.

We summarize discussion above and give the pseudocode of band reduction in Algo‐
rithm 2.

Remark 3.1. If s=3
, Algorithm 2 is consistent with the Algorithm 1 corresponding to

variant (i). We note that the strategy discussed in this section can be also applied to

variants (iii) and (iv) of tridiagonalization.
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\displaystyle \frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}2\mathrm{P}\mathrm{s}\mathrm{e}\mathrm{u}\mathrm{d}\mathrm{o}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{o}\mathrm{f}\mathrm{b}\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}{1:\mathrm{G}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}\mathrm{e}\mathrm{s}A,B,Q=I\mathrm{a}\mathrm{n}\mathrm{d}\mathrm{s}\mathrm{c}\mathrm{a}\mathrm{l}\mathrm{a}\mathrm{r} $\alpha$;}
2: Given bandwidth s

,
let t=(s-1)/2 ;

3: Compute the LDL^{} of A- $\alpha$ B or inverse N :=(A- $\alpha$ B)^{-1} ; \triangleright Inverse

4: for  k=1:\displaystyle \mathrm{L}\frac{n-t}{t}\rfloor do

5: for  i=(k-1)t+1 : kt do

6: Compute x_{n-i} for L_{k}^{(i-(k-1)t)} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

7: Compute \overline{A}^{(k)}(:, i) and \overline{B}^{(k)}(:, i) ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

8: Update N and Q=QL_{k}^{(i-(k-1)t)} ; (if necessary) \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

9: end for

10: Compute the QR decomposition of \overline{A}(kt+1 : n, (k-1)t+1 : kt)
and compact WY‐representation of H_{k} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-2 BLAS

11: Compute A^{(k)}=H_{k}^{T}A^{(k-1)}H_{k} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-3 BLAS

12: Compute B^{(k)}=H_{k}^{T}B^{(k-1)}H_{k} ; \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-3 BLAS

13: Update N and Q=QH_{k} ; (if necessary) \triangleright \mathrm{L}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}-3 BLAS

14: end for

4 Numerical experiments
In this section, we give some numerical results to show the performance of the proposed
algorithm. We also apply the algorithm for solving generalized shifted linear systems.
Test matrices were initialized by random values and two different sizes (n=1000, 3000) .

The computer specifications are Red Hat Linux, AMD Opteron(tm) processor, 2. 5\mathrm{G}\mathrm{H}\mathrm{z}

(1 core) with 32\mathrm{G}\mathrm{B} of RAM. The algorithm was implemented in the Fortran 90 language
and compiled with ifort (ver. 13.1.1) using the Intel MKL for LAPACK and BLAS. In

the implementation, we did not compute the Q explicitly, but the inverse of A- $\alpha$ B.

In Figure 1, we compare the computation time of band reduction corresponding to

Algorithm 2 with different bandwidth. We see that the total computation time is reduced

with greater bandwidth. Compared with s=3
,

the algorithm took less than half time

when s=17 . In Figure 2, symmetric band linear systems Kx=b were solved by calling
the Lapack function DGBSV. The computation time almost increased linearly with the

increasing of bandwidth. We also computed the solution of generalized shifted linear

systems (A+$\sigma$_{i}B)x=b for i=1
, 2, . . .

,
L by using band reduction and DGBSV. The

total computation time is denoted by T_{total} :=T_{bandreduction}+L\cdot T_{DGBSV} . In Figure 3,
we show the average computation time for one linear system, i.e., T_{total}/L . Compared
to DSYSV, band reduction shows its advantages when the bandwidth s and number of

shifted linear systems L are greater.

5 Conclusions and future work

In this paper, we proposed an algorithm for simultaneous band reduction of two dense

symmetric matrices. Although our discussions are based on real‐valued matrices, the

algorithm can be easily extended to complex‐valued Hermitian matrices. We also gave
some numerical results to show the performance of band reduction with different band‐
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(a) n=1000. (b) n=3000.

Figure 1: Computation time of band reduction (in seconds) versus matrix bandwidth.

(a) n=1000 . ( \mathrm{b} ) n=3000.

Figure 2: Computation time of band linear systems (in seconds) versus matrix band‐

width.

(a) n=1000 . ( \mathrm{b} ) n=3000.

Figure 3: Average computation time per linear system (in seconds) versus the number

of generalized shifted linear systems.
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width and an application of solving generalized shifted linear systems.
The topics, such as

other algorithms for band reduction,

simultaneously reduce band form to tridiagonal form,

accelerate the computing using GPU etc.,

will be considered as our future work.
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