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1 Introduction

We consider computing a few eigenpairs ( $\lambda$, x) of an n\times n matrix A
, i.e., the

standard eigenvalue problem

Ax= $\lambda$ x (x\neq 0) . (1)

The Jacobi‐Davidson (JD) method [6, 2, 1] is an iterative method for the

problem and has attracted much attention [3]. Suppose a subspace is gen‐

erated, and an approximate eigenpair is given by using the subspace. Then,
the JD method searches for a correction vector which corrects the approx‐

imate eigenvector to expand the subspace. If the subspace is expanded by
the exact correction vector, then an eigenvector will be in the expanded sub‐

space. Hence, what is important in practical computation is how to compute
an approximate correction vector, by which the subspace is expanded.

The correction vector is a solution of an equation which contains a wanted

eigenvalue [6]. Usually [6, 2], the eigenvalue in the equation is replaced by its

approximation, e.g., the approximate eigenvalue generated by using the sub‐

space. As a result, a linear equation is derived, which is called a correction

equation. In this way, the correction equation is determined by the approx‐

imate eigenvalue. If the correction equation contains a well approximated
eigenvalue, then its solution can be suitable to expand the subspace [2]. Fi‐

nally, the correction equation is approximately solved by, e.g., a few steps
of GMRES [5], and then an approximate solution is used to expand the

subspace.
In this report, we consider another approach to the correction vector by

utilizing an invariance of Krylov subspaces. The invariance enables us to use

one Krylov subspace for two aims. The first aim is to compute approximate
eigenvalues that determine correction equations. The second aim is to solve

the equations approximately. By the choice of a correction equation and its

approximate solution, we propose a new version of the JD method.

The rest of this report is organized as follows. In §2, we introduce the JD

method. In §3, we consider utilizing an invariance of Krylov subspaces, and
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derive a new version of the JD method. To show the convergence behavior

of the methods, we report some numerical experiments in §4. Finally, we

summarize the report in §5.
Throughout the paper, the n\times n identity matrix is denoted by I . The

transpose and conjugate transpose are denoted by the superscripts (\cdot)^{\mathrm{T}} and

(\cdot)^{*} , respectively. The m dimensional Krylov subspace with respect to A and

a vector v, \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{v, Av, . . . , A^{m-1}v\} ,
is denoted by \mathcal{K}_{m}(A, v) . The 2‐norm

is denoted by \Vert \Vert . For subspaces  S_{1} and S_{2} ,
the direct sum of S_{1} and S_{2},

\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{s_{1}+s_{2}|s_{i}\in S_{i}, i=1, 2\} ,
is denoted by S_{1}\oplus S_{2} . In the case of S_{1}\perp S_{2},

S_{1}\oplus S_{2} is especially denoted by S_{1}S_{2} . The complementary projector of v

for \Vert v\Vert=1 is defined by I-vv^{*} and is denoted by P_{\perp v}.

2 The JD method

Suppose a subspace \mathcal{Q}_{k} is generated at the kth iteration in the JD method,
and an approximation ($\theta$^{(k)}, u^{(k)}) of a wanted eigenpair ( $\lambda$, x) is produced by
using \mathcal{Q}_{k} . Here, \Vert u^{(k)}\Vert=1 and $\theta$^{(k)} :=(u^{(k)})^{*}Au^{(k)} . The residual vector

is defined by r^{(k)} :=Au^{(k)}-$\theta$^{(k)}u^{(k)} . If the residual norm \Vert r^{(k)}\Vert is enough
small, the iteration is stopped. Otherwise, the subspace will be expanded for

a better approximated eigenpair. Here, we describe how to generate a next

basis vector to expand the subspace.
The JD method [6] is based on the Jacobi�s idea [4] that is to find a

correction vector  t :=x-u^{(k)} satisfying the orthogonality t\perp u^{(k)} . Since

the eigenvector x will be found in a subspace \mathcal{Q}_{k}\oplus \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{t\} ,
the JD method

searches for the correction vector t to expand the subspace \mathcal{Q}_{k} . By (1), t

satisfies

A(u^{(k)}+t)= $\lambda$(u^{(k)}+t) . (2)
From (2), it follows that (A- $\lambda$ I)t=-r^{(k)}+( $\lambda-\theta$^{(k)})u^{(k)} . Multiplying the

both sides in this equation by P_{\perp u^{(k)}} results in P_{\perp u^{(k)}}(A- $\lambda$ I)t=-r^{(k)} . Since

t\perp u^{(k)}
,

we have

P_{\perp u^{(k)}}(A- $\lambda$ I)P_{\perp u^{(k)}}t=-r^{(k)} . (3)
If the unknown eigenvalue  $\lambda$ in (3) is replaced by its approximation  $\theta$^{(k)}

,
while

keeping the orthogonality to u^{(k)}
,

then we reach a correction equation [6]:

P_{\perp u^{(k)}}(A-$\theta$^{(k)}I)P_{\perp u^{(k)}}t_{\mathrm{J}\mathrm{D}}=-r^{(k)} , (4)

where t_{\mathrm{J}\mathrm{D}}\perp u^{(k)} . If $\theta$^{(k)} is a good approximation of  $\lambda$
,

an approximate cor‐

rection vector will be produced by solving the linear equation (4).
To compute the correction vector, it was proposed in [6] that (4) is ap‐

proximately solved by an iterative method, e.g., a few steps of GMRES [5].
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Finally, an approximate solution of (4) is orthonormalized against the basis

of \mathcal{Q}_{k} ,
and then the resulting vector is the next basis vector to expand \mathcal{Q}_{k}.

3 New approach to the correction vector

We show a decomposition of a Krylov subspace with respect to A and a

vector v with \Vert v\Vert=1 for any  $\gamma$\in \mathbb{C} :

\mathcal{K}_{m}(A, v)=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{v\}\mathcal{K}_{m-1}(P_{\perp v}(A- $\gamma$ I)P_{\perp v}, P_{\perp v}Av) . (5)

We will utilize (5) to compute the correction vector approximately for alter‐

native expansion of the subspace \mathcal{Q}_{k}.
As supposed in §2, the approximate eigenpair ($\theta$^{(k)}, u^{(k)}) is given by using

the subspace \mathcal{Q}_{k} . For the correction vector, we consider solving a linear

equation
P_{\perp u^{(k)}}(A-$\gamma$^{(k)}I)P_{\perp u^{(k)}}t_{\star}=-r^{(k)} , (6)

where t_{\star}\perp u^{(k)} and $\gamma$^{(k)}\in \mathbb{C} is undetermined. As we have reviewed the

JD method in §2, it is appropriate to solve (6) after setting $\gamma$^{(k)} to a well

approximated eigenvalue. To this end, let us utilize (5) for  $\gamma$=$\gamma$^{(k)} and v=

u^{(k)} ; hence, P_{\perp v}Av=r^{(k)} . If we generate a Krylov subspace \mathcal{K}_{m}(A, u^{(k)}) ,

then we also have a Krylov subspace \mathcal{K}_{m-1}(P_{\perp u^{(k)}}(A-$\gamma$^{(k)}I)P_{\perp u^{(k)}}, r^{(k)}) . The

\mathcal{K}_{m}(A, u^{(k)}) can be used to compute an approximate eigenvalue for $\gamma$^{(k)} ,
while

\mathcal{K}_{m-1}(P_{\perp u^{(k)}}(A-$\gamma$^{(k)}I)P_{\perp u^{(k)}}, r^{(k)}) can be used to compute an approximate
solution t_{\star}^{(k)} of the linear equation (6) (initial guess is supposed to be 0).

From this observation, we consider an approach to the correction vector:

we generate the Krylov subspace \mathcal{K}_{m}(A, u^{(k)}) ;

not only to compute an approximate eigenvalue for $\gamma$^{(k)} in (6) by using
the Krylov subspace \mathcal{K}_{m}(A, u^{(k)}) ;

but also to compute an approximate solution t_{\star}^{(k)} of (6) by using the

Krylov subspace \mathcal{K}_{m-1}(P_{\perp u^{(k)}}(A-$\gamma$^{(k)}I)P_{\perp u^{(k)}}, r^{(k)}) .

In this way, we can use the two Krylov subspaces for the correction vector

by generating only one Krylov subspace. Finally, an approximate solution of

(6) is orthonormalized against the basis of \mathcal{Q}_{k} ,
and then the resulting vector

is the next basis vector to expand \mathcal{Q}_{k}.

4 Numerical experiments

Computational environment is MATLAB (version 7.10.0.499 (\mathrm{R}2010\mathrm{a})64\mathrm{b}\mathrm{i}\mathrm{t} )
run under Linux with Intel Core i7‐3770S (3.1 GHz). In all experiments, an

initial vector is u^{(1)}=[1 ,
. . .

,
1 ]^{\mathrm{T}}/\sqrt{n} , and iterations stop if \Vert r^{(k)}\Vert\leq 10^{-10}
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We consider the eigenvalue problem of an n\times n real nonsymmetric matrix

A=\left\{\begin{array}{lllll}
a_{1} & a_{3} &  &  & 0a_{3}\\
a_{2}0 & a_{1} & a_{3} & a_{2} & a_{1}
\end{array}\right\},
of which the eigenvalues are

$\lambda$_{\mathcal{J}}=a_{1}+2\displaystyle \sqrt{a_{2}a_{3}}\cos\frac{\dot{j} $\pi$}{n+1} (j=1, \ldots, n) .

The following methods are compared.

JD: The JD method using 10 steps of GMRES.

\mathrm{J}\mathrm{D}_{\star} : The new version of the JD method with m=11.

Note that these methods require 10 matrix‐vector multiplications to generate
a basis vector per iteration. The problems are determined as follows.

(a) The target is the largest eigenvalue $\lambda$_{n} for n=100, a_{1}=-2.0, a_{2}=1.0,
and a_{3}=1.6.

(b) The target is the eigenvalue closest to -2.1+0 . li for n=100, a_{1}=-2.0,
a_{2}=1.0 ,

and a_{3}=0.9 ,
which is the interior eigenvalue $\lambda$_{52}.

We show the convergence history of the residual norm \Vert r^{(k)}\Vert in Fig. 1.

From Fig. 1, we observe that \mathrm{J}\mathrm{D}_{\star} converges slightly faster than JD in the

both cases (a) and (b).

5 Concluding remarks

To generate a subspace, we have focused on approximate solving a linear

equation which is known as a correction equation. The equation is deter‐

mined by an approximation of a wanted eigenvalue, and a good approxima‐
tion is appropriate to find the eigenvector which corresponds to the wanted

eigenvalue in the subspace.
In this report, we have considered utilizing an invariance of Krylov sub‐

spaces to use one Krylov subspace for two aims. The first aim is to generate
approximate eigenvalues that determine correction equations. The second

aim is to solve the equations approximately. By the choice of a correction

equation and its approximate solution, we have proposed a new version of the
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(a) Computing the exterior eigenvalue. (b) Computing the interior eigenvalue.

Figure 1: The convergence history of the residual norm.

Jacobi‐Davidson method. In the new method, a better approximated eigen‐
value can be put into the correction equation, while keeping the number of

matrix‐vector multiplications per iteration the same as the Jacobi‐Davidson

method. Numerical experiments show that the new method has attrac‐

tive convergence behavior in comparison with the Jacobi‐Davidson method.

Therefore, we conclude that the new version of the Jacobi‐Davidson method

is promising for computing a few eigenpairs of a large sparse matrix.
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