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(1) Triality Group

Let A be an algebra (do not need the associativity) over a field F of charachteristic

not 2 with a bi‐linear product denoted by juxtaposition xy for x, y\in A . Suppose that

a triple g=(g_{1}, g_{2}, g_{3})\in(EpiA)^{3} , where EpiA denote the set of epimorphisms of A

equipped with g_{j}(x+y)=g_{j}x+g_{\dot{}}y and g_{j}( $\alpha$ x)= $\alpha$ g_{j}(x) ,  $\alpha$\in F , satisfies a global triality
relation

g_{\mathrm{j}}(xy)=(g_{j+1}x)(g_{j+2}y) (1.1)
for any x, y\in A and for any j=1 , 2, 3, Here the index j is defined by modulo 3 so that

g_{j\pm 3}=g_{j} . (1.2)

For the second triple g^{J}=(g_{1}^{J}, g_{2}^{J}, g_{3}^{J})\in(Epi\mathcal{A})^{3} satisfying the same triality relation, we

introduce their product componetwise by

gg^{J}=(g_{1}g_{\acute{1}}, g_{2}g_{2}^{J}, g_{3}g_{3}^{J}) . (1.3)

Then, a set consisting of all such triples forms a group whicb we call the triality group of

A , and write

Trig (A)=\{g=(g_{1},g_{2},g_{3})\in(EpiA)^{3}|g_{j}(xy)=(g_{j+1}x)(g_{j+2}y), \forall x, y\in A, \forall j=1, 2, 3\}.
(1.4)
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Here we emphasize that this group is clearly a generalization of the automorphism group
defined by

Auto (A)=\{g\in EpiA|g(xy)=(gx)(gy), \forall x, y\in A\} . (1.5)
We then note that Trig (A) is invariant under actions of an alternative group A_{4} (or
equivalently the tetrahedral group) as follows. First, let  $\phi$\in End(\mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A)) by

 $\phi$:g_{1}\rightarrow g_{2}\rightarrow g_{3}\rightarrow g_{1} (1.6)

which satisfies $\phi$^{3}=id and leaves Eq.(l.l) invariant. Tus, Trig(A) is invariant under

actions of the cyclic group Z3 generated by  $\phi$ . We next introduce  $\tau$_{ $\mu$}\in End(TrigA) for

 $\mu$=1 , 2, 3 by
$\tau$_{1}:g_{1}\rightarrow g_{1}, g_{2}\rightarrow-g_{2}, g_{3}\rightarrow-g_{3}

$\tau$_{2}:g_{1}\rightarrow-g_{1}, g_{2}\rightarrow g_{2}, g_{3}\rightarrow-g_{3} (1.7)

$\tau$_{3}:g_{1}\rightarrow-g_{1}, g_{2}\rightarrow-g_{2}, g_{3}\rightarrow g_{3},

which leave Eq.(l.l) invariant again. Moreover, tbey satisfy

$\tau$_{ $\mu$}$\tau$_{ $\nu$}=$\tau$_{ $\nu$}$\tau$_{ $\mu$}, $\tau$_{ $\mu$}^{2}=id, $\tau$_{1}$\tau$_{2}$\tau$_{3}=id (1.8)

for  $\mu$, \mathrm{v}=1
, 2, 3, so that (id, $\tau$_{1}, $\tau$_{2}, $\tau$_{3}) is isomorphic to the Klein�s 4‐group K_{4}.

Further we note

 $\phi \tau$_{ $\mu$}$\phi$^{-1}=$\tau$_{ $\mu$+1} , (with $\tau$_{4}=$\tau$_{1} ). (1.9)
Since Z3 and K_{4} generate the alternative group A_{4} , this shows that A_{4} is an invariant

group of Trig(A) .

If A is invalntive with the involution map x\rightarrow\overline{x} satisfying

x==x, \overline{xy}=\overline{y}\overline{x} , (1.10)

we define \overline{Q}\in End(A) for any Q\in End(A) by

\overline{Qx}=\overline{Q}\overline{x} . (1.11)

then, taking the.involution of Eq.(1.10) and letting x\leftrightarrow\overline{y} , we find

\overline{g}_{j}(xy)=(\overline{g}_{j+2}x)(\overline{g}_{j+1}y) , (1.12)

so that  $\theta$\in End(\mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) defined by

 $\theta$ :  g_{1}\rightarrow\overline{g}_{2}, g_{2}\rightarrow\overline{g}_{1}, g_{3}\rightarrow\overline{g}_{3} (1.13)

yields also a invariant operation of Trig(A) . Moreover, we obtain

 $\phi \theta \phi$= $\theta,\ \theta$^{2}=id,  $\theta \tau$_{1}$\theta$^{-1}=$\tau$_{2},  $\theta \tau$_{2}$\theta$^{-1}=$\tau$_{1},  $\theta \tau$_{3}$\theta$^{-1}=$\tau$_{3} . (1.14)

Then, A_{4} togehter with  $\theta$ give the  S_{4}‐symmetry for Trig(A) with identification of

 $\phi$=(1,2,3) , $\tau$_{1}=(2,3)(1,4)$\tau$_{2}=(3.1)(2.4) , $\tau$_{3}=(1,2)(3,4) ,  $\theta$=(1,2) (1.15)

in terms of the transpositions of the S_{4}‐group.
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Before going into further discussion, we note that Txig(A) for any A always contains

a Klein�s 4‐group K_{4} Let Id\in Epi(A) be defined by (Id)x=x , for x\in A , and set

\tilde{ $\tau$}_{0}= (Id, Id, Id), \tilde{ $\tau$}_{1}= (Id.‐Id, −Id), \tilde{ $\tau$}_{2}=(-Id, Id, -Id) , \tilde{ $\tau$}_{3}= ( -Id , −Id, Id). (1.16)

Then, these 4 element of (Epi(A)^{3}) satisfy Eq.(1.8) in view of Eq.(1.3), so thàt they give
another Klein�s 4‐group. Moreover, they satisfy \mathrm{E}\mathrm{q}.(1.1) . Similarly, we have Trig(F)=
K_{4} , for the simplest case of A=F.

In contrast to the global triality relation \mathrm{E}\mathrm{q}.(1.1) , we may also consider the local

triality relation

/t_{j}(xy)=(t_{j+1}x)y+x(t_{j+2}y) (1.17)
for t_{j}\in End(A) with t_{j\pm 3}=t_{j} . Analogously to Eq.(1.4), we introduce

soLrt (A)=\{t=(t_{1}, t_{2}, t_{3})\in (End A)^{3}|t_{j}(xy)=(t_{j+1}x)y+x(t_{j+2}y), \forall x, y\in A, \forall i=1, 2, 3\}.
(1.18)

Then, it defines a Lie algebra now with component‐wise commutation relation (]K‐O,15]).
Here, so Lrt(A) stands for symmetric Lie‐related triple, which has been reformed to as

stri (A) in [0.05] instead. If we set

t_{\acute{j}}=\displaystyle \sum_{k=1}^{3}$\alpha$_{j-k}t_{k}, (j=1,2,3) (1.19)

for any $\alpha$_{j}\in F satisfying $\alpha$_{\dot{}\pm 3}=$\alpha$_{j} , then it is easy to verify that we have also

t'=(t_{1}', t_{2}', t_{3}')\in s\mathrm{o}Lrt(A) . (1.20)

If the exponential map t_{j}\rightarrow$\xi$_{j} is given by

$\xi$_{j}=\displaystyle \exp(t_{i})=\sum_{n=0}^{\infty}\frac{1}{n!}(t_{j})^{n} , (1.21)

is well defined, then we have shown in [K‐O.15J that the vality of

$\xi$_{j}(xy)=($\xi$_{j+1}x)($\xi$_{j+2}y) (1.22)

provided with respect to t=(t_{1}, t_{2}, t_{3})\in s\mathrm{o}Lrt(At and vice‐versa.

Note that the existence ot the exponantial map requires the underlying field F to be

at least of zero charachteristic.

We next introduce multiplication operators L(x) , R(x)\in End A by

L(x)y=xyR(x)y=yx (1.23)

as usual. Then, Eq.(1.17) yields

t_{j}L(x)=L(x)t_{j+2}+L(t_{\mathrm{j}+1}x) , (1.24a)

t_{j}R(y)=R(y)t_{j+1}+R(t_{j+2}y) (1.24b)
while Eq.(l.l) gives

g_{j}L(x)=L(g_{j+1}x)g_{;i+2}, (1.25a)
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g_{\dot{}}R(y)=R(g_{j+2}y)g_{j+1} (1.25b)

any g=(g_{1}, g_{2}, g_{3})\in \mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) .

From Eqs.(1.25), we find

g_{j}L(x)R(y)g_{j}^{-1}=L(g_{j+1}x)R(g_{j+1}y) (1.26a)

g_{j}R(y)L(x)g_{j}^{-1}=R(g_{j+2}y)L(g_{\mathrm{j}+2}x) . (1.26b)
We next introduce the notion of a regular triality algebra.

Def.1.1

Let d_{j}(x, y)\in End(A) for x, y\in A and for j=1 , 2, 3 be to satisfy
(i)

d_{1}(x, y)=R(y)L(x)-R(x)L(y) , (1.27a)

d_{2}(x, y)=L(y)R(x)-L(x)R(y) . (1.27b)

(ii) The explicit form for d_{3}(x, y) is unspecified except for

d_{3}(y, x)=-d_{3}(x, y) (1.27c)

(iii) (d_{[}(x, y), d_{2}(x, y), d_{3}(x, y))\in s\mathrm{o}Lrt(A) , i.e., they satisfy

d_{j}(x, y)(uv)=(d_{j+1}(x, y)u)v+u(d_{j+2}(x, y)v) (1.28)

for any x, y, u, v\in A and for any j=1 , 2, 3. here the index over j is defined modulo 3 as

before.

We call the algebra A satisfying these condition to be a regular triality algebra. ([K‐
\mathrm{O}.15])

Def. 1.2

Condition (B): We have AA=A.

Condition (C): If some b\in A satisfies either L(b)=0 , or R(b)=0 , then b=0.

We can now prove.

Proposition 1.3

Let A be a regular triality algebra satisfying either the condition (B) or (C) . We then

obtain the followings:
For any t=(t_{1}, t_{2}, t_{3})\in s\mathrm{o}Lrt(A) , we jave

[t_{j}, d_{k}(x, y)]=d_{k}(t_{j-k}x, y)+d_{k}(x, t_{j-k}y) . (1^{\cdot}.29a)

Especially, if we choose t_{j}=d_{j}(u, v) , it yields also

[d_{j}(u, v), d_{k}(x, y)]=d_{k}(d_{j-k}(u, v)x, y)+d_{k}(x, d_{j-k}(u, v)y) . (1.29b)

(ii) For any g=(g_{1}, g_{2}, g_{3})\in \mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) , we have

g_{j}d_{k}(x, y)g_{j}^{-1}=d_{k}(g_{j-k}x, y)+d_{k}(x, g_{j-k}y) (1.30)
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for any j, k=1 , 2, 3 and for any u, v, x, y\in A, ‐

Proof

Since Eqs.(1.29) have been already proved in [K‐O,15], we will give only a proof of

Eq.(1.30) below. In view of Eq.(1.26) and (1.27), we see that Eq.(1.30) holds valid for

any j=1 , 2, 3 and for k=1 , 2. Therefore, it suffices to prove of the case of k=3 . To this

end, we set

D_{j,k} :\equiv g_{j}d_{k}(x, y)g_{j}^{-1}-d_{k}(s_{j-k}x, y)-d_{k}(x, g_{j-k}y) (1.31)
for a fixed x, y\in A . Then, as we have noted, we have D_{j.1}=D_{j.2}=0 identically.
Moreover, we will show that it satisfies also

D_{j,k}(uv)=(D_{j+1,k+1}u)v+u(D_{j+2,k+2}v) . (1.32)

We first calculate

g_{j}d_{k}(x, y)g_{j}^{-1}(uv)=g_{j}d_{k}(x, y)\{(g_{j+1}^{-1}u)(g_{j+2}^{-1}v)\}=

g_{j}(\{d_{k+1}(x, y)(g_{j+1}^{-1}u)\}(g_{j+2}^{-1}v))+g_{j}((g_{j+1}^{-1}u)(d_{k+2}(x, y)g_{j+2}^{-1}v))
=g_{j+1}(d_{k+1}(x, y)(g_{j+1}^{-1}u)g_{j+2}(g_{j+2}^{-1}v))+(g_{j+1}g_{j+1}^{-1}u)(g_{j+2}d_{k+2}(x, y)g_{j+2}^{-1}v)

=g_{j+1}d_{k+1}(x, y)g_{j+1}^{-1}u)v+u(g_{j+2}d_{k+2}(x, y)g_{j+2}^{-1}v\}.
Similarly, we find

\{d_{k}(g_{j-k}x, y)+d_{k}(x, g_{j-k}y)\}(uv)=

\{d_{k+1}(g_{j-k}x, y)u\}v+u\{d_{k+2}(g_{j-k}x, y)v\}+\{d_{k+1}(x, g_{j-k})u\}v+u\{d_{k+2}(x, g_{j-k}y)v\},
and these prove the validity of Eq.(1.31).

if we choose k=3 in Eq.(1.31), we obtain

D_{j_{)}3}(uv)=(D_{j+1,1}u)v+v(D_{j+2,2}v)=0

which gives D_{j,3}=0 , provided that the condition (B) holds. On the other side, the choice

of k=1 or k=2 in Eq.(1.32) yields

0=u(D_{j+2,3}v)=(D_{j+1,3}u)v

for any j=1 , 2, 3 and for any u, v\in A . Therefore, it also gives D_{j,3}=0 under the

condition (C). \square 

We are now in position that we can construct a invariant sub‐group of Tnig(A) as

follow:

Let A be a regular triality algebra satisfying either condition (B) or (C), and set

L_{0}=span <d_{j}(x, y) , \forall x, y\in A, \forall j=1, 2, 3> . (1.33)

Then L_{0} is a Lie algebra by \mathrm{E}\mathrm{q}.(1.29\mathrm{b}) . Moreover, it is a ideal of the larger Lie algebra
s\circ Lrt(A) by \mathrm{E}\mathrm{q}.(1.29\mathrm{a}) . For any basis e_{1}, e_{2}\cdots, e_{N} of A with N=Dim A , and for any

$\alpha$_{j, $\mu,\ \nu$}\in F(j=1,2,3,  $\mu$, \mathrm{v}=1,2, \cdots, N) . We set

D_{j}=\displaystyle \sum_{k=1}^{3}\sum_{ $\mu,\ \nu$=1}^{N}$\alpha$_{j-k, $\mu,\ \nu$}d_{k}(e_{ $\mu$}, e_{ $\nu$})\in L_{0} (1.34)
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for j=1 , 2, 3. Then, D=(D_{1}, D_{2}, D_{3}) is a member of s\mathrm{o}Lrt(A) by Eq.(1.29). Thereofore

its exponential map

$\xi$_{j}=exp D_{j}(j=1,2,3) (1.35)
satisfies $\xi$_{j}(xy)=($\xi$_{j+1}x)($\xi$_{j+2}y) , i.e., ($\xi$_{1}, $\xi$_{2}, $\xi$_{3})\in \mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) , provided that the exponential
map is well‐defined. Moreover, for any g=(g_{1}, g_{2}, g_{3})\in \mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) . We calculate

g_{j}D_{k}g_{j}^{-1}=\displaystyle \sum_{l=1}^{3}\sum_{ $\mu,\ \nu$=1}^{N}$\alpha$_{k=l, $\mu,\ \nu$}\{d_{l}(g_{j-l}e_{ $\mu$}, e_{ $\nu$})+d_{j}(e_{ $\mu$}, g_{j-l}e_{ $\nu$})\}\in L_{0} (1.36)

by Eq.(1.30), so that

g_{j}$\xi$_{k}g_{j}^{-1}=g_{j}(expD_{k})g_{j}^{-1}=exp(g_{j}D_{k}g_{j}^{-1})\in exp L_{0} . (1.37)

Thereofre, the group G_{0}=<$\xi$_{1}, $\xi$_{2}, $\xi$_{3}>\mathrm{i}\mathrm{s} a invariant sub‐group of Trig(A) .

Remark 1.4

If a regular triality algebra satisfies \mathrm{E}\mathrm{q}.(1.23\mathrm{b}) as well as

d_{3}(x, y)z+d_{3}(y, z)x+d_{3}(z, x)y=0 , (1.38)

then A is known as a pre‐normal triality algebra([K‐O.15]). Moreover, if we have

Q(x, y, z)=d_{1}(z, xy)+d_{2}(y, zx)+d_{3}(x, yz)=0 (1.39)

in addition, A is called a normal triality algebra in [K‐O.15] also.

Further, suppose that A is involutive,with the involution map x\rightarrow\overline{x} as in Eq.(1.10)
and intoroduce the second bi‐linear product in the, same vector space of A by

x*y=\overline{xy}=\overline{y}\overline{x} . (1.40)

Then, the resulting algebra A^{*} is also involutive. If A^{*} is unital, then A^{*} is the structurable

algebra of Allison ([A.78]), and both conditions (B) and (C) are automatically satisfied.

If we set

D(x, y)=d_{0}(x, y)+d_{1}(x, y)+d_{2}(x, y) ,

then for any element x, y of a structurable algebra A^{*} , this D(x, y) satisfies the validity
of a generalized structurable algebra([Ka 92 That is, it holds

D(x, y) is a derivation, and D(x, yz)+D(y, zx)*D(z, xy)=0.

Finally, Eq.(l.l) is rewritten as a modified global triality relation of

\overline{g}_{j}(x*y)\cdot=(g_{j+1}x)*(g_{j+2}y) . (1.41)

Reviewing these results, we can construct an invariant sub‐group of Trig(A) from any

regular triality algebra A satisfying condition (B) or (C), in particular from any struc‐

turable algebra A^{*}.

However, for some cases, we can more directly construct some invariant sub‐group of

Trig (A) ,
as it happenes for the case of A being a symmetric composition algebra. The case

will be explored in the next section. Ifwe further restrict ourselves to the automorphism
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group, then we can also construct some explict automorphism of the Cayley algebra.
which we will study in other paper, and also other case of Trig(A) will be given in future.

In the end of this section, we note that the normal triality algebra is useful concept
for a construction of Lie algebras (to see, our paper [J.Alg., 416 (2014) 58‐83]).

(2) Symmetric Composition Algebra

This section is devoted for constructions of Trig(A) for symmetric composition alge‐
bras. Let A be an algebra over a field F of characteristic not 2 with a symmetric bi‐linear

non‐degenerate form < > . Suppose that it satisfies

(xy)x=x(yx)=<x|x>y (2.1)

for any x, y\in A . Then A is called a symmetric composition algebra, since it also satisfies

the composition law

<xy|xy>=<x|x><y|y> and <xy|z>=<x|yz> . (2.2)

Conversely, the validity of Eq.(2.2) implies that of Eq.(2.1) ([O,95]).
Linearizing Eq.(2.1), it gives

(xy)z+(zy)x=x(yz)+z(yx)=2<x|z>y (2.3)

for any x, y, z\in A . Moreover if we replace z by yz in the first relation of Eq.(2.3) and

note Eq.(2.2), it yields

(xy)(yz) =2<x|yz>y-<y|y>zx . (2.4)

Also, for any g=(g_{1}, g_{2}, g_{3})\in \mathrm{T}\dot{\mathrm{n}}\mathrm{g}(A) ,
we have

<g_{j}x|g_{j}y>=<x|y>(j=1,2,3) (2.5)

by the following reason. Applying g_{j} to both sides of Eq.(2.1), it gives

<x|x>g_{j}y=g_{j} {x (yx)} =(g_{j+1}x)g_{j+2}(yx)=

(g_{j+1}x)\{(g_{j}y)(g_{j+1}x)\}=<g_{j+1}x|g_{j+1}x>g_{j}y
so that we have <x|z>=<g_{j+1}x|g_{j+1}x> . Linearizing the relation, and letting j\rightarrow j-1,
we obtain then Eq.(2.5). Similarly, any t_{j}\in s\mathrm{o}Lrt(A) satisfies

<t_{j}x|y>=-<x|t_{j}y>. (j=1,2,3) (2.6)

Any symmetric composition algebra is known (see [0‐O,8I],[E,97], [K‐M‐R‐T,98]) to

be either a para‐Hurwitz algebra or 8‐dimensional pseudo‐octonion algebra where the

para‐Hurwitz algebra is the conjugate algebra of Hurwitz algebra with the para‐unit e

satisfying ex=xe =\overline{x}=2<e|x>e-x . Moreover, it is a normal triality algebra
([O,05]). Further, conditions (B)and (C) of section 1 are automatically satisfied by this

algebra. Since <\circ|\circ> is assumed to be non‐degenerate, there exists x\in A satisfying
<x|x>\neq O. Now Eq.(2.1) implies <x|x>y\in AA for any element y\in A , so that we
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have AA=A . If b\in A satisfies bA=0 . then/Eq.(2.1) also leads to <x|x>b=0 and here

b=0 . Therefore both conditions (B) and (C) are automatically.satisfied. Especially, any

symmetric composition algebra is a regular triality algebra satisfying both conditions (B)
and (C) (see Remark 1.4). Thus, we can construct some invariant sub‐group of Trig(A) as

has been demonstrated in the previous sections. However, for special case of Dim A=1,
we can construct entire Txig(A) as follows.

Example 2.1. Case of Dim A=1

We write A=Fe, where e\in A satisfies ee=e with <e|e>=1 . Then for any

g=(g_{1}, g_{2}, g_{3})\in \mathrm{h}\mathrm{i}\mathrm{g}(A) ,
we can write

g_{j}(e)=$\alpha$_{j}e, (j=1,2,3)

for some $\alpha$_{j}=$\alpha$_{j+1}$\alpha$_{j+2} while Eq.(2.5) yields ($\alpha$_{j})^{2}=1 . Therefore, there gives

$\alpha$_{1}^{2}=$\alpha$_{2}^{2}=$\alpha$_{3}^{2}=1 and $\alpha$_{1}$\alpha$_{2}$\alpha$_{3}=1

so that Trig(Fe) is isomorphic to the Klein�s 4‐group K_{4} . That is,

Trig (Fe)\cong< (Id , Id, Id), (Id, -Id, -Id) , (-Id, Id, -Id) , (-Id, -Id, Id)>_{span}.

Note that we have

Auto(Fe) =<Id>

being trivial.

For the case of Dim A=2 , we will discuss in future.
This paper is an announcement of our recent works, and the details will be considered

in future.

3 Other Examples of Triality Groups

Here, in this section, we will give some examples of the triality group for algebras
other than the symmetric composition algebra.

Example 3.1 (Matrix algebra)

Let M(n, F) be a set consisting all n\times n matrices over the field F. For any x,  y\in

 M(n, F) , the matrix product which we designate as x*y is associative and we write

x*(y*z)=(x*y)*z :=x*y*z . (3.1)

Moreover, for the transpose matrix t_{X} of any x\in M(n, F) , we set

\overline{x}=^{t}x . (3.2)

Then x\rightarrow\overline{x} is a involution map of the resulting algebra A^{*} . Then, A^{*} is a unital involutive

associative algebra. Especially, it is structurable ([A‐F,93]). Note that the n\times n unit

matrix e is, here, the unit element of A^{*} . We introducea subset of A^{*} by

A_{0}^{*}=\{x|\overline{x}*x=x*\overline{x}=e, x\in A^{*}\} . (3.3)
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For any three a_{j}\in A_{0}^{*}, (j=1,2,3) ,
we introduce $\sigma$_{j}(a)\in \mathrm{E}\mathrm{n}\mathrm{d}A^{*} by

$\sigma$_{j}(a)x :=a_{j}*x*\overline{a}_{j+1}, (j=1,2,3) (3.4)

where the indices over j are defined modulo 3, i.e., a_{j\pm 3}=a_{j} . It is easy to see the validity
of

$\sigma$_{j}(a)$\sigma$_{j}(\overline{a})=1, (3.5a)

\overline{$\sigma$_{j}(a)}x=a_{\mathrm{j}+1}*x*\overline{a}_{j}, (3.5b)
\overline{$\sigma$_{j}(a)}(x*y)=($\sigma$_{j+1}(a)x)*($\sigma$_{j+2}(a)y) . (3.5c)

Introducing the conjugate algebra A of A^{*} with the bi‐linear product xy by

xy=\overline{x*y}=\overline{y}*\overline{x} . (3.6)

then, these are rewritten as

$\sigma$_{j}(a)x=a_{j+1} (ajx) =(x\overline{a}_{j+1})\overline{a}_{j} (3.7a)

$\sigma$_{\mathrm{j}}(a)(xy)=\{($\sigma$_{j+1}(a)x)\}\{($\sigma$_{j+2}(a)y)\}. (3.7b)
We note that A is no longer associative but para‐associative with the para‐associative law

of

\overline{z}(xy)=(yz)\overline{x} . (3.8)
Fkom \mathrm{E}\mathrm{q}\mathrm{s}.(3.5\mathrm{a}) and (3.7b), we find

 $\sigma$(a)=($\sigma$_{1}(a), $\sigma$_{2}(a), $\sigma$_{3}(a))\in \mathrm{T}\mathrm{r}\mathrm{i}\mathrm{g}(A) . (3.9)

Furthermore, \mathrm{E}\mathrm{q}.(3.7\mathrm{a}) gives

$\sigma$_{j}(a)=L(a_{j+1})L(a_{j})=R(\overline{a}_{j})R(\overline{a}_{j+1}) , (3.10)

which has the same structures as the relations for the symmetric composition algebra.
For the corresponding to local triality case, let

p=(p_{1},p_{2},p_{3})\in(A^{*})^{3}, \overline{p}_{j}=-p_{j}(j=1,2,3) (3.11)

and define  d_{j}(p)\in End  A^{*} by

d_{j}(p)x=p_{j}*x-x*p_{j+1} . (3.12)

We then have

\overline{d_{j}(p)}x=x*\overline{p}_{j}-\overline{p}_{j+1}*x=p_{j+1}*x-x*p_{j} (3.13a)
\overline{d_{j}(p)}(x*y)=(d_{j+1}(p)x)*y+x*(d_{:i+2}(p)y) , (3.13b)

and hence

d_{j}(p)(xy)=(d_{j+1}(p)x)y+x(d_{J+2}(p)y) . (3.14)

\mathrm{T}_{ $\eta$}\mathrm{h}ese imply that d(p)=(d_{1}(p), d_{2}(p), d_{3}(p))\in s\mathrm{o}Lrt(A) .

This implies á version of matrix algebras for well‐known �

the principle of triality��
However, we will not go into details

In final of this section, we give some more simple examples for the triality group.
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Example 3.2 Let \mathrm{C} be the complex number with usual product x*y . If we define

for a=( $\alpha$,  $\beta,\ \gamma$)\in \mathrm{C}^{3} , and | $\alpha$|=| $\beta$|=| $\gamma$|=1,

$\sigma$_{1}(a)x= $\alpha$*x*$\beta$^{-1}

$\sigma$_{2}(a)x= $\beta$*x*$\gamma$^{-1}

$\sigma$_{3}(a)x= $\gamma$*x*$\alpha$^{-1}
where $\sigma$_{j\pm 3}=$\sigma$_{j}(j=0,1,2) , then we have

$\sigma$_{j}(a)(xy)=($\sigma$_{\mathrm{j}+1}(a)x)($\sigma$_{j+2}(a)y)

with respect to new product xy defined by xy=\overline{x*y},
where \overline{x} denotes the conjugation of x.

If we introduce for  a=( $\alpha.\ \beta$,  $\gamma$)\in (Im \mathrm{C})^{3}

d_{1}(a)x= $\alpha$*x-x* $\beta$, d_{2}(a)x= $\beta$*x-x* $\gamma$, d_{3}(a)x= $\gamma$*x-x* $\alpha$,

then we get

d_{j}(a)(xy)=(d_{j+1}(a)x)y+x(d_{j+2}(a)y) .

Example 3.3 Let \mathrm{H} be the quaternion number satisfying i^{2}=j^{2}=k^{2}=-1, i*j=
-j*i=k with basis \{1, i, j, k\} . If we define for  a=(i,j, k)\in (Im \mathrm{H})^{3},

$\sigma$_{1}(a)x=i*x*j^{-1}

$\sigma$_{2}(a)x=j*x*k^{-1}

$\sigma$_{3}(a)x=k*x*i^{-1}
where the product x*y is usual product of \mathrm{H},
then we have

$\sigma$_{j}(xy)=($\sigma$_{j+1}(a)x)($\sigma$_{j+2}(a)y)
w.r. \mathrm{t} . new product xy=\overline{x*y}
where \overline{x} denotes the involutive conjugation of x\in \mathrm{H}.

If we introduce d_{1}(a)x=i*x-x*j, d_{2}(a)x=j*x-x*k, d_{3}(a)x=k*x-x*i ,
then

we obtain

d_{j}(a)(xy)=(d_{j+1}(a)x)y+x(d_{j+2}(a)y
w.r. \mathrm{t} new product xy defined by xy=\overline{x*y}.

Finally, hereby we would like to note final words of Prof.S.Okubo;

Jisei no ku

�� To be or not to be? The quantum dream of the Sohrodinger Cat.

Farewell! Farewell!! forever. Departure time now to the black hole.

Never to return, farewell, sayonara.�

This paper is a cowork with Prof. S.Okubo in the end of his life.

This note is an announcement and the details will be worked in future.
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