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1 Introduction

A rewriting system is a simple but powerful abstract model of computation.
When we consider models of computation, fundamental problems are termina-
tion and complexity. In our paper in [2], We studied the complexity of string
rewriting systems and give conditions for a function to become the complexity
of a finite rewriting system. In this note we show that it is principally impossible
to determine the complexity of a given finite rewriting system. More precisely,
even if we know that a given system has either quadratic or cubic complexity,
we cannot decide which one it has.

2 Preliminaries

Let ¥ is a (finite) alphabet and let £* be the free monoid generated by £. An
element z € £* is called a word over ¥ and |z| denotes its length. For n > 0,
3™ denotes the set of words of length n over X.

A (string) rewriting system on X is a subset R of £* x £*. An element
r = (u,v) of R is called a rule and written u — v. If a word z € £* contains
the left-hand side u of the rule r as a subword, that is, z = z,uzs for some
Z1,%9 € ¥*, then we can apply the rule r to z and z is rewritten to the word
y = z1vz2. In this situation we write x —, y. If there is r € R such that
x —, Y, we write z =g y, and we call — g the reduction relation induced by R.
If any rule in R cannot be applied to z, z is called R-irreducible.

A rewriting system R is terminating on z € ¥*, if there is no infinite re-
duction sequence £ —g 1 —>R -+ —R Tn —R -+ starting with z. If R is
terminating on any z € ¥*, R itself is called terminating. For z,y € ¥* if there

*This is a preliminary version, and a final version will appear elsewhere.



is a reduction sequence of length n from z to y, we write z =% y. In particular,
—0 is the equality relation and —+L=—pg. Set =%= U,>0 —7%.
R R R n>0 7R
The maximal length of reduction sequences starting from z € ¥* is denoted
by ér(z);
0r(z) = max{n € N|z —>" y for some y € ¥*}.
If R is not terminating on z, then dg(z) = oco. The (derivational) complezity of
R is the function dg : N - R U {oo} defined by

dr(n) = max{dgr(z) |z € X"}

(see Hofbauer and Lautermann [1] and Kobayashi [2]).

For two functions f, g : N — RU {00}, if there is a constant C' > 0 such that
f(n) < Cg(n) (resp. f(n) > Cg(n)) for any sufficiently large n € N, we write
f =0(g) (resp. f=Q(g)). If both f = O(f) and f = Q(g) hold, f and g are
equivalent and we write as f = O(g).

Example 1. Let ¥ = {a,b} in (1) and (8) and £ = {a,b, ¢} in (2) below.
(1) Let Ry = {ab — ba}, then dg, (n) = ©(n?) because we have a sequence
arht —™" banbn—l 7 b2anb'n.—2 ST L.y pngn

of length n?.
(2) Let Ry = {ab — ba,ac — cb,bc — ca}, then dr,(n) = 6(n?) because we
have a sequence

2 _ _ 2 2
anbncn _)'n, bnancn _)n bncancn 1_)'n. canbncn 1___>'n, ”._>n cnanbn _>n cnbnan

of length n3 + 3n™.
(3) Let R3 = {ab — b%a}, then dg,(n) = O(2") because we have a sequence
a™b — a" b2 -2 g™ 2p%a? ot . 52T P2 gn

of length 2™ — 1.

3 Undecidability

Let L be a recursively enumerable non-recursive subset of £*. Let M (%,4,45,Q,0)
be a deterministic single-tape Turing machine that halts with input w € L but
does not halts with input w € £* \ L. Here, @ is a finite set of states, g; is the
initial state, g5 is the final state and § : (Q \ {gr}, Zs) — (@, X U {A, p}) is
the transaction function of M, where b is the blank symbol, X = X U {b} and
A (resp. p) is the symbol for the left (resp. right) move of the head. We may
assume that the head does not move to the left of its initial position and the
head is in the initial position when the machine halts.
For w € ¥* we define a rewriting system R,, over the alphabet

Q=YX,UQU{A,B,E.S,T,R,F}



as follows. Letting a,a’,c€ Xy, q,¢' € Q, R, consists of the rules

gAa  — ¢'o’B if 6(g,a) =(¢,a'),
qAa — a¢'B if 4(qg,a) =(d,p),
cgAa — d'caB if 4(q,0) = (d,)),
aA — Aa,

Ba — aB,

BE — Ab,

qu — qu

Sa - aS

SE — Ab,

SF — R,

aR — RE,

gsR — qAw.

Let m > 0, z € ™ and 2 = z’a with a € 3, and let ¢ € Q \ {gf}. If
d(g,a) = (¢’,a’) with ¢’ € Q,a’ € Iy, then we have

gqAzE — ¢'a’ B2’E ™! ¢a’2' BE — ¢'d’z’ Ab -™ ¢ Ad'zb (1)
in 2m + 1 steps. If §(q,a) = (¢, p),
qAaz’E — ag' B£'E —*™"1 aq’ Az'b (2)
in 2m steps. Let ¢ € X. If 6(g,a) = (¢, A),
cqAaz’E = ¢'caBz’ E —*™* ¢ Acaz'b (3)

in 2m + 2 steps.
Suppose that M is in a state g after it acts for ¢ steps. Let k € N. If k > ¢,
then by (1) — (3) we see

in:I:E’c —* quzEk—t (4)

for some y, z € Iy with |y| 4+ |z| = m + t in between 2mt and 2(m + 2¢)¢ steps.
If £ < t, then
G AZE* —* yqAz (5)

for some y, z € ¥} with [y| +|z| = m +k in between 2mk and 2(m + 2k)k steps,
and the last term ygAz in (5) is rewritten to the irreducible y'q’2' B in |z| steps
for some y', 2’ € &} and ¢’ € Q. Hence, if z ¢ L, that is, M does not halt with
input z, then

8(g; AzE®) = ©((m + k)k). (6)

On the other hand we have
qfAzE* — q;SzE* ™ q;2SE* — q;z ADE*!
=™ qrAzbEFT! 2 mH2) g Agh? B2 2(49)
2 MM g AZb® — qp Sz ST gpabtS (7)
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in ©((m + k)k) steps. Hence, if £ > 0, then

qs ATE*F* —* q;xb*SF® — qpzb*RF*™ Mtk o . REMTERE-L o g, AwE™ TR FE1

(8)
in 8((m + k)k) steps.
Suppose that z € L, and M halts in ¢ steps with input z. Let k > £, then
by (5) and (8) we have

G AzEFFY —* g AYyEF T Rt % g, AwE™ TR R 9)

for some y € X} with |y| = m +t in ©((m + k)k) steps. Here, if w ¢ L, then by
(6) and (9) we have
8(g; AzEFF%) = ©((m + k)k). (10)

Combining (6) and (10) we see
dr,(n) = Q(n?).

Because there is no sequence of length exceeding quadratic order when w ¢ L,

we have
dr,(n) = G(nz). (11)

Now suppose that w € L, and M halts in ¢ steps with input w, then by (9)
we have

inwEnFn _)G(nz) inwEn+man~——1 _}e(n2) . _)@(nz) inwE’n(mg-i—l) (12)

in ©(n3) steps, where mg = |w|. By (4) the last term in (12) is rewritten to
g AvE™™ot)~t for some v € X} with [v] = mg +¢ in O(1) steps, and this last
term is still rewritten to irreducible g;vb™(™o+)=tS in O(n?) steps . Therefore,

Sr, (GAWE™F™) = Q(n3).
Because there is no sequence of length exceeding cubic order, we see
dr, (n) = 6(n%). (13)
By (11) and (13) we get

Lemma 1. Ifw € L, R, has cubic complexity, and if w ¢ L, R,, has quadratic
complezxity.

Because L is non-recursive, Lemma 1 implies

Theorem 2. For the class C of finite rewriting systems with derivational com-
plexity either quadratic or cubic, it is undecidable a given system in C has
quadratic complexity.
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