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The theory of numerical semigroups is important to commutative ring theory via

semigroup ring k[H] as well as to the theory of algebraic curves via the Weier‐

strass semigroup of a point on a compact Riemann surface. Among the numerical

semigroups, symmetric semigroups played a central role.

The authors work in the field of commutative ring theory and the semigroup ring

k[H] over a field k of a numerical semigroup H is very useful when we need examples.
The semigroup ring k[H] is always Cohen‐Macauly (we will write as CM after this),
being a 1‐dimensional integral domain and the notion of symmetric semigroup is

particularly important because H is symmetric if and only if k[H] is a Gorenstein

ring. Besides this notion, we did not have any notions to classify the semigroups

except the notion of type denoted by type (H) , corresponding to the CM type of k[H],
until the notion of almost symmetric semigroups and almost Gorenstein rings were

defined by Barucci and Fröberg in [BF]. Incidentally, J. Komeda [Ko] classified 4‐

generated almost symmetric numerical semigroups of type 2 (a numerical semigroup
H is almost symmetric of type 2 if and only if H is pseudo‐symmetric). Barucci

and Fröberg defined almost Gorenstein rings only for 1‐dimensional analytically
irreducible CM rings ([BF] , [GMP]). The notion of almost Gorenstein rings has been

extended to higher dimension by S. Goto and his coworkers [GTT]. It is of interest

to note that if P is a point of a compact Riemann surface X whose Weierstrass

semigroup is H
, then the normal graded ring R(X, P)=\displaystyle \sum_{n\geq 0}H^{0}(X, \mathcal{O}_{X}(nP))t^{n}

is almost Gorenstein if and only of H is almost symmetric ([GW], [GTT]). In

particular, if genus of X is g and P is a general point of X
, then H=\{0, g+1, \rightarrow\}

is almost symmetric of type g and hence R(X, P) is almost Gorenstein.

This paper is a survey including some announcements of our results and the detailed version

will be submitted to somewhere else.
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Almost symmetric semigroups enjoy several symmetries and we believe we can

make a very beautiful theory on them, that is, the reason why we are writing this

article.

1. PRELIMINARIES AND FUNDAMENTAL PROPERTIES

Let us begin with very elementary theory of numerical semigroups and semigroup

rings. We refer to the basic concepts of numerical semigroups to the book [RG].

Definition 1.1. We always denote \mathbb{N}=\{0 ,
1

, 2, . . . \} the set of non‐negative integers.

(1) A numerical semigroup H is a subset of \mathrm{N} closed by addition, 0\in H and

\mathrm{N}\backslash H is a finite set. In the following, H will be a numerical semigroup. We

denote H_{+} to be the positive elements of H.

(2) We write H=\{n_{1} ,
. .

.,  n_{e}\rangle if  H=\displaystyle \{\sum a_{i}n_{i}|a_{i}\in \mathbb{N}\} and we say that H

is generated by \{n_{1}, \cdots, n_{e}\} . Furthermore, we denote by H_{+} the strictly

positive elements of H
, namely H_{+}=H\backslash \{0\} . If e is minimal with this

property, then we write \mathrm{e}\mathrm{m}\mathrm{b}(H)=e and say H is generated by e elements

or simply, H is e‐generated� Note that \mathrm{e}\mathrm{m}\mathrm{b}(H) is equal to the embedding
dimension of k[H].

(3) For any field k
,

let k[H]=k[t^{h}|h\in H] ,
where t is a variable over k and we

call k[H] the semigroup ring of H . We frequently write R=k[H] and also

R_{+} for the maximal graded ideal of R
, namely, R_{+} is the ideal generated by

elements of positive degree of R . If H=\{n_{1} ,
. . .

, n_{e} ), then we can define a

surjective ring homomorphism  $\pi$ from a polynomial ring  S=k[X_{1}, . . . , X_{e}]
to R=k[H] , sending X_{i} to t^{n}i . We denote I_{H}=\mathrm{K}\mathrm{e}\mathrm{r}( $\pi$) . The ideal I_{H} is

called the defining ideal of R=k[H] . Note that I_{H} is generated by binomials

of the form \displaystyle \prod X_{i}^{a_{i}}-\prod X_{j}^{b_{j}} with \displaystyle \sum a_{i}n_{i}=\sum b_{j}n_{j} . We consider R as a graded

ring in the sense of [GW] putting R_{m}=kt^{n} for every n\in H . Note that I_{H} is

generated by at least e-1 elements and H is called a complete intersection

(CI) if I_{H} is generated by exactly e-1 elements.

(4) We denote \displaystyle \mathrm{F}(H)=\max\{n\in \mathbb{Z}|n\not\in H\} and call it the Frobenius number

of H . We call c(H)=\mathrm{F}(H)+1 the conductor of H . Note that c(H) is the

minimal n such that n+\mathrm{N}\subset H . Note that \mathrm{F}(H)-h\not\in H for any h\in H.

(5) We denote g(H)=\#[\mathrm{N}\backslash H] and call it the genus of H.
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(6) H is called symmetric if for every n\in \mathbb{Z} one has that n\not\in H if and only if

\mathrm{F}(H)-n\in H . It is easy to see that for every H one has that c(H)\leq 2g(H) ,

and that H is symmetric if and only if c(H)=2g(H) . We say that H is

pseudo‐symmetric if we have c(H)=2g(H)-1 . Note that H is pseudo‐

symmetric if and only if \mathrm{F}(H) is even and for every n\in \mathbb{Z}, n\neq \mathrm{F}(H)/2,\mathrm{o}\mathrm{n}\mathrm{e}
has that n\not\in H if and only if \mathrm{F}(H)-n\in H . These notions are particularly

important because a semigroup H is irreducible (i.e. if H=H_{1}\cap H_{2} ,
then

H=H_{1} or H=H_{2}) if and only if H is symmetric or pseudo‐symmetroc.

(7) For n_{1}, n_{2}\in \mathbb{Z} , we define n_{1}\geq_{H}n_{2} if n_{1}-n_{2}\in H . We put \mathrm{P}\mathrm{F}(H) the

set of maximal elements of \mathbb{Z}\backslash H with respect to the order \geq_{H} . We call

\mathrm{P}\mathrm{F}(H) the set of pseudo Ftobenius numbers. Thus n\in \mathrm{P}\mathrm{F}(H) if and only
if n\not\in H and for every h\in H_{+}, n+h\in H . Note that H is symmetric if and

only if \mathrm{P}\mathrm{F}(H)=\{\mathrm{F}(H)\} and H is pseudo‐symmetric if and only if \mathrm{P}\mathrm{F}(H)=
\{\mathrm{F}(H), \mathrm{F}(H)/2\} . We define type (H)=\#\mathrm{P}\mathrm{F}(H) . For the convenience, we

denote \mathrm{P}\mathrm{F}(H)=\mathrm{P}\mathrm{F}(H)\backslash \{\mathrm{F}(H)\}.
(8) We denote by K_{R} the graded R‐module generated by \{t^{-n}|n\not\in H\} . Thus

t^{-\mathrm{F}(H)} is a generator of K_{R} of the minimum degree. It is clear that K_{R} is

generated by \{t^{-n}|n\in \mathrm{P}\mathrm{F}(H)\} . Since in commutative ring theory, the CM

type type (R) is defined by the number of minimal generators of K_{R} ,
we see

that type (H)=\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(k[H]) .

Now we can define almost symmetric numerical semigroups.

Definition 1.2 ([BF]). We say that H almost symmetric (AS) if for every  f\in

\mathrm{P}\mathrm{F}'(H) and h\in H_{+}, -f+h+\mathrm{F}(H)\in H . In other words, the factor R‐module

K_{R}/t^{-\mathrm{F}(H)}R is killed by R_{+} . (The R‐module K_{R}/t^{-\mathrm{F}(H)}R is a �finite dimensional

vector space

Note that by this definition H is AS and type(H)=2
�

is equivalent to say that

H is pseudo‐symmetric.

We define almost Gorenstein rings.

Definition 1.3. (1) [BF] Assume (R, \mathrm{m}) is a one‐dimensional analytically unrami‐

fied CM local ring with canonical module K_{R} . Then we call R is almost Gorenstein

(AG) if for a general element  $\omega$ of  K_{R},  K_{R}/R $\omega$ is a vector space (killed by m). Thus

by the remark above,  R=k[H] is AG if and only if H is AS.
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(2) [GTT] Assume (R, \mathrm{m}) is a CM local ring of dimension d\geq 1 with canonical

module K_{R} . Then we say that R is AG if there is an injective R homomorphism
 $\kappa$ :  R\rightarrow K_{R} such that K_{R}/ $\kappa$(R) is a Ulrich R‐module of dimension d-1 (a CM

R‐module M of pure dimension d is called an Ulrich module if  $\mu$(M)=e(M) ,
where

 $\mu$(M) , e(M) denote the number of minimal generators of M and the multiplicity of

M
, respectively.)

Notation 1.4. In the following, we abbreviate almost symmetric as AS and almost

Gorenstein as AG. Also, when we mention about AS or AG, we assume that H is

not symmetric (k[H] is not Gorenstein).

There are several beautiful symmetries in the theory of AS semigroups. We can

distinguish a given H is AS or not by looking at \mathrm{P}\mathrm{F}(H) .

Theorem 1.5. ([Na]) H=\langle n_{1} ,
. . .

,  n_{e}\rangle with type(H)=t and put

\mathrm{P}\mathrm{F}(H)=\{f_{1}, f_{2}, . . . .f_{t-1}, F(H)\} so that f_{1}<f_{2}<\ldots<f_{t-1}<F(H) . Then H is

AS if and only if for every i, 1\leq i\leq t-1, f_{i}+f_{t-i}=F(H) .

Thanks to the package �numerical semigroups�� of GAP, we can get \mathrm{P}\mathrm{F}(H) once

we input the generators of H . So, we can determine if H is AS or not, instantly.
Also there is a beautiful structure theorem of AS numerical semigroups with

respect to irreducible numerical semigroups due to Rosales and Garcia‐Sanchez.

Theorem 1.6. [RG2] Assume that H is AS with F=\mathrm{F}(H) . Then there is a

unique irreducible (symmetric or pseudo‐symmetric) numerical semigroup H_{1} with

\mathrm{F}(H_{1})=F(H) and a subset A of the minimal generating set of H_{1} satisfying the

following condition (  $\dagger$ ) so that  H=H_{1}\backslash A.
(  $\dagger$ ) For evew  x\in A, x>\mathrm{F}(H)/2 and for every x, y\in A, x+y-\mathrm{F}(H)\not\in H.
In this case, type (H)=\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(H_{1})+2\# A.

Let H=\{n_{1} ,
. . .

, n_{e}\rangle, S=k[X_{1}, . . . , X_{e}] and  $\pi$ :  S\rightarrow R=k[H] defined by

 $\pi$(X_{i})=t^{n_{i}} . The minimal free resolution of R over S is very important in the

commutative ring theory.
Let (F., d.) be a minimal free resolution of R=k[H] as a graded S module. We

denote F_{i}=\oplus S(-b_{ij}) and $\beta$_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F_{i}) .
Later we will explain a special property of (F., d.) when H is AS.
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2. REVIEW OF SOME KNOWN RESULTS WHEN H HAS SMALL EMBEDDING

DIMENSION

If \mathrm{e}\mathrm{m}\mathrm{b}(H) is small, then it is easy to describe H . We recall some know facts.

Facts 2.1. (1) If e=2_{\mathrm{Z}} then H=\langle a,  b\rangle with (a, b)=1 . In this case R=

k[X, \mathrm{Y}]/(X^{b}-Y^{a}) and c(H)=(a-1)(b-1) .

(2) If e=3 and H is symmetric, then H is a CI (complete intersection). For any

e
,

it is shown by D. Delorme that if H is a CI_{\mathrm{Z}} then H can be obtained by successive

gluings (see [De], [RG] for the detail).

(3) ([He], [NNW]) If e=3 and H is not symmetric2 then type(H)=2 and I_{H} is

generated by the 2 by 2 minors of a matrix \left(\begin{array}{lll}
X^{ $\alpha$} & Y^{ $\beta$} & Z^{ $\gamma$}\\
\mathrm{Y}^{ $\beta$}' & Z^{ $\gamma$}' & X^{ $\alpha$}'
\end{array}\right) . In this case, H is

AS (pseudo‐symmetri) if and only if either  $\alpha$= $\beta$= $\gamma$=1 or $\alpha$'=$\beta$'=$\gamma$'=1.

(3) ([Br]) Assume e=4, H is symmetric and not CI. Then it was shown by
H. Bresinsky that I_{H} is generated by 5 elements and the structure of I_{H} is given,

too.

(4) ([Ko]) Assume e=4 and H is pseudo‐symmetric. Then it was shown by J.

Komeda that I_{H} is generated by 5 elements and the structure of I_{H} was given, too.

Later we will discuss about the description of I_{H} using Moscariello�s RF matrix.

(5) The structure of the minimal free resolutions of case (3), (4) is given in [BFS].
(6) T. Numata conjectured in [Nul] that if e=4 and H is AS then type (H)\leq 3.

He proved it in the case \mathrm{e}\mathrm{m}\mathrm{b}(H_{1})\leq 3 in the expression of 1.6. This conjecture was

proved by A. Moscariello ([Mo]) and we will talk about his methods.

3. THE APERY SET AND THE INVARIANT $\alpha$_{i}

In the following, we will discuss the structure of H which is AS. For that purpose,

we review the methods of Komeda and Moscariello so that we can see the structure

of H clearer.

Definition 3.1. Let a\in H . Then we denote

\mathrm{A}\mathrm{p}(a, H)=\{h\in H|h-a\not\in H\},

and call it the Apery set of a in H . It is clear that \#\mathrm{A}\mathrm{p}(a, H)=a ,
and that

0, n_{i}\in \mathrm{A}\mathrm{p}(a, H) for every i and that the largest element in \mathrm{A}\mathrm{p}(a, H) is a+\mathrm{F}(H) .
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If H is almost symmetric, then there is a duality on the Apery set. The proof is

a consequence of the duality on \mathrm{P}\mathrm{F}(H) , as given in Theorem 1.5.

Lemma 3.2. Let a\in H and h\in \mathrm{A}\mathrm{p}(a, H) . Then:

(1) If h, h'\in H and if h+h`\in \mathrm{A}\mathrm{p}(a, H) , then h, h\in \mathrm{A}\mathrm{p}(a, H) .

(2) Assume H is AG . If h\in \mathrm{A}\mathrm{p}(a, H) , then either (a+\mathrm{F}(H))-h\in \mathrm{A}\mathrm{p}(a, H)
or (a+\mathrm{F}(H))-h\in \mathrm{P}\mathrm{F}(H) . In the latter case, we have h-a\in \mathrm{P}\mathrm{F}(H) .

Now, we put H=\langle n_{1} ,
.. .

, n_{\mathrm{e}} ) and define the invariant $\alpha$_{i} for each n_{i}.

Definition 3.3. For every i, 1\leq i\leq e , we define $\alpha$_{i} to be the minimal positive

integer such that

$\alpha$_{i}n_{i}=\displaystyle \sum_{j=1,j\neq i}^{e}$\alpha$_{ij}n_{j}.
Note that $\alpha$_{i\mathrm{j}} may not be uniquely determined.

It is easy to see the following from the minimality of $\alpha$_{i}.

Lemma 3.4. For every 1\leq i, k\leq e, i\neq k, ($\alpha$_{i}-1)n_{i}\in \mathrm{A}\mathrm{p}(n_{k}, H) .

Combining these properties, we get the following, which will play an important
role for the structure of AS semigroups.

Corollary 3.5. IfH is AS_{f} then for every k andi\neq k , either \mathrm{F}(H)+n_{k}-($\alpha$_{i}-1)n_{i}\in
 H or ($\alpha$_{i}-1)n_{i}=f+n_{k} for some f\in \mathrm{P}\mathrm{F}'(H) .

We give a short review on unique factorization of elements in H on the minimal

generators of I_{H}.

Definition 3.6. Let H be a numerical semigroup minimally generated by \{n_{1}, \cdots , n_{e}\}.

(1) We say that h=\displaystyle \sum_{i}a_{i}n_{i} has UF (Unique Factorization) if this expression is

unique. It is obvious that h does not have UF if and only if h\geq_{H}\deg( $\phi$) for

some  $\phi$\in I_{H}.

(2) We put \mathrm{N}\mathrm{U}\mathrm{F}(H)= {h\in H|h does not have UF} =\{\deg( $\phi$)| $\phi$\in I_{H}\} . This

is an ideal of H.

(3) We put \mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H)= { h\in \mathrm{N}\mathrm{U}\mathrm{F}(H)|h is minimal with respect to \leq_{H} }.
Note that if  $\phi$\in I_{H} and \deg( $\phi$)\in \mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H) , then  $\phi$ is a minimal generator
of  I_{H} . But the converse is not true in general. Hence \#\mathrm{m}\mathrm{N}\mathrm{U}\mathrm{F}(H)\leq $\mu$(I_{H}) .
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Lemma 3.7. Let  $\phi$=m_{1}-m_{2} be a minimal generator of I_{H} , where m_{1}, m_{2} are

monomials on the Xi�s. Then

(1) Take i, j so that X_{i}|m_{1} and X_{j}|m_{2} . Then \deg $\phi$-n_{i}-n_{j}\not\in H and hence for
some f\in \mathrm{P}\mathrm{F}(H) , \deg( $\phi$)\leq_{H}f+n_{i}+n_{j}.

(2) \deg( $\phi$)=f+n_{i}+n_{j} for some f\in \mathrm{P}\mathrm{F}(H) if and only if \mathrm{F}(H)+n_{i}+n_{j}-
\deg( $\phi$)\not\in H.

The following fact will play an important role in the classification of AS semi‐

groups.

Lemma 3.8. We assume that H is AS.

(1) If \mathrm{F}(H)+n_{k} has UF for some k and assume that \displaystyle \mathrm{F}(H)+n_{k}=\sum_{j\neq k}b_{j}n_{j}
with b_{j}<$\alpha$_{j} for every j . Then n_{k}=\displaystyle \prod_{j\neq k}(b_{j}+1)+\mathrm{t}\mathrm{y}\mathrm{p}\mathrm{e}(H)-1.

(2) If e=4 and $\alpha$_{ik}\geq 1 for every i\neq k ,
then \mathrm{F}(H)+n_{k} has UF.

4. THE MOSCARIELLO MATRIX \mathrm{R}\mathrm{F}(f) FOR f\in \mathrm{P}\mathrm{F}(H)

A. Moscariello introduced the notion of RF (row factorization) matrices in his

paper and we think this notion is very useful to describe the classification of AS

semigroups.

Definition 4.1. ([Mo]) Let f\in \mathrm{P}\mathrm{F}(H) . Then an e\times e matrix A=(a_{ij}) is an

RF‐matrix (short for row‐factorization matrix) if a_{ii}=-1 for every i, a_{ij}\in \mathbb{N} if

i\neq j and for every i=1
,

. . .

, e,

\displaystyle \sum_{j=1}^{e}a_{ij}n_{j}=f.
In this case, we denote A=\mathrm{R}\mathrm{F}(f) . Note that \mathrm{R}\mathrm{F}(f) need not be determined

uniquely.

The most important property of the RF‐matrix \mathrm{R}\mathrm{F}(f) is the following.

Lemma 4.2. ([Mo], Lemma 4) Let f, f'\in \mathrm{P}\mathrm{F}(H) with f+f=\mathrm{F}(H) . If we put

\mathrm{R}\mathrm{F}(f)=A=(a_{ij}) and \mathrm{R}\mathrm{F}(f')=B=(b_{ij}) ,
then either a_{ij}=0 or b_{ji}=0 for every

pair i\neq j . In particular, If we put \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2)=(a_{ij}) , then either a_{i\dot{}}=0 or

a_{\dot {}i}=0 for every i\neq j.
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Proof. By our assumption, f+n_{i}=\displaystyle \sum_{k\neq i}a_{ik}n_{k} and f+n_{j}=\displaystyle \sum_{l\neq j}b_{jl}n_{l} . If a_{i\dot{}}\geq 1

and b_{ji}\geq 1 , then summing up these equations, we get

\displaystyle \mathrm{F}(H)=f+f'=(b_{ji}-1)n_{i}+(a_{ij}-1)n_{j}+\sum_{s\neq i,j}(a_{is}+b_{js})n_{s}\in H,
a contradiction! \square 

Example 4.3. A nice property of \mathrm{R}\mathrm{F}(f) is that we can get generators of I_{H} from
the set of matrices \{\mathrm{R}\mathrm{F}(f)|f\in \mathrm{P}\mathrm{F}(H)\} by 3. 7. Namely, take any 2 rows a_{i}, a_{j} of

\mathrm{R}\mathrm{F}(f) and write a_{i}-a_{j} as b_{+}-b_{-} , which corresponds to an element of I_{H} . We

will explain this by 2 examples. In the following, we use variables x, y, z, w instead

of X_{1} , . . .

, X_{4}.

(1) Let H=\langle 12 , 17, 31, 40} with \mathrm{P}\mathrm{F}(H)=\{45 , 90 \} . Since 90=2\cdot 45
,

we know

that H is pseudo‐symmetric. We compute \mathrm{R}\mathrm{F}(45)=\left(\begin{array}{llll}
-1 & 1 & 0 & \mathrm{l}\\
0 & -\mathrm{l} & 2 & 0\\
3 & 0 & -1 & 1\\
0 & 5 & 0 & -1
\end{array}\right)
and in this case l_{H}=(z^{5}-x^{3}yw, y^{6}-z^{2}w, xz^{2}-y^{2}w, w^{2}-xy^{4}, x^{4}-yz) . The

generators of I_{H} corresponds to a_{1}-a_{3}, a_{4}-a_{2}, a_{2}-a_{1}, a_{1}-a_{4}, a_{3}-a_{1},

respectively.

(2) Let H=\{18 , 21, 23, 26 \} with \mathrm{P}\mathrm{F}(H)=\{31 , 66, 97\} and I_{H}=(xw-yz, y^{5}-
x^{2}z^{3}, xz^{4}-y^{4}w, z^{5}-y^{3}w^{2}, x^{2}y^{2}-w^{3}, x^{3}y-zw^{2}, x^{4}-z^{2}w) . We can check

that H is AS of type 3 since 31+66=97 and we compute

\mathrm{R}\mathrm{F}(31)=\left(\begin{array}{llll}
-1 & 0 & \mathrm{l} & \mathrm{l}\\
0 & -\mathrm{l} & 0 & 2\\
3 & 0 & -1 & 0\\
2 & 1 & 0 & -1
\end{array}\right), \mathrm{R}\mathrm{F}(66)=\left(\begin{array}{llll}
-1 & 4 & 0 & 0\\
1 & -1 & 3 & 0\\
0 & 3 & -1 & 1\\
0 & 0 & 4 & -\mathrm{l}
\end{array}\right)
We see that the equations y^{5}-x^{2}z^{3}, x^{2}y^{2}-w^{3}, x^{3}y-zw^{2}, x^{4}-z^{2}w are

obtained from RF(31), xz^{4}-y^{4}w, z^{5}-y^{3}w^{2} from RF(66) and xw—yz from
both matrices.

Moscariello proves a nice property of an RF‐matrix. But his result can be im‐

proved a little more.
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Lemma 4.4. Assume e=4 . Assume f\in \mathrm{P}\mathrm{F}(H) , f\neq \mathrm{F}(H) and put A=(a_{ij})=
\mathrm{R}\mathrm{F}(f) . Then for every j , there exists i such that a_{ij}> O. Namely, any column of
A should contain some positive component.

Remark 4.5. Moscariello proves that if for some j and a_{i\dot{}}=0 for every i\neq j ,
then

f=\mathrm{F}(H)/2.

Combining Lemma 4.2 and Lemma 4.4, we get the following Corollary.

Corollary 4.6. Assume H is AG and let f\in \mathrm{P}\mathrm{F}'(H) . Then every row of \mathrm{R}\mathrm{F}(f)
has at least one 0 entry.

We can restate the structure theorem of Komeda by using \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) .

Theorem 4.7. ([Ko]) Let H=\langle n_{1}, n_{2} , n3,  n_{4}\rangle be pseudo‐symmetric.
1

(1) For a suitable permutation of {1, 2, 3, 4}, \mathrm{F}(H)/2+n_{k} has UF for every

k (that is, \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) is uniquely determined) and \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) is in the

following form

\mathrm{R}\mathrm{F}(\mathrm{F}(H)/2)=\left(\begin{array}{lllll}
-\mathrm{l} & $\alpha$_{2}-1 &  & 0 & 0\\
0 & -1 &  & $\alpha$_{3}-1 & 0\\
$\alpha$_{1}-\mathrm{l} & 0 &  & -1 & $\alpha$_{4}-1\\
$\alpha$_{1}-\mathrm{l} & $\alpha$_{2}-\mathrm{l}- & $\alpha$_{12} & 0 & -1
\end{array}\right)
(2) \mathrm{F}(H)+n_{2} has UF and we have n_{2}=$\alpha$_{1}$\alpha$_{4}($\alpha$_{3}-1)+1.

(3) Every generator of I_{H} is obtained from \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) as in the Example 4. B.

Namely, I_{H}=(x_{2}^{$\alpha$_{2}}-x_{1}x_{3}^{$\alpha$_{3}-1} , x_{1}^{$\alpha$_{1}}-x_{2}^{$\alpha$_{12}}x_{4}, x_{3}^{ $\alpha$}3-x_{1}^{ $\alpha$-1}x_{2}x_{4}^{ $\alpha$-1},x_{3}^{$\alpha$_{3}-1}x_{4}14-
x_{1}^{$\alpha$_{1}-1}x_{2}^{$\alpha$_{2}-$\alpha$_{12}}, x_{4}^{ $\alpha$}4-x_{2}^{$\alpha$_{2}-1-$\alpha$_{12}}x_{3}) . (The difference of 1st and 3rd rows does

not give a minimal generator of I_{H}.)

Remark 4.8. The generators of I_{H} in [Ko] or [BFS] are obtained after the permutation

( 1, 2, 3, 4)\rightarrow(3,1,4,2) . Namely, if we put

\mathrm{R}\mathrm{F}(\mathrm{F}(H)/2)=\left(\begin{array}{llll}
-\mathrm{l} & 0 & 0 & $\alpha$_{4}-1\\
$\alpha$_{21} & -1 & $\alpha$_{3}-\mathrm{l} & 0\\
$\alpha$_{1}-1 & 0 & -1 & 0\\
0 & $\alpha$_{2}-1 & $\alpha$_{3}-\mathrm{l} & -1
\end{array}\right)
then we get their equations.

Using \mathrm{R}\mathrm{F}(f) , we can have a different proof of Moscariello�s Theorem.

�Komeda uses the terminology �almost symmetric�� for pseudo‐symmetric
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Theorem 4.9. [Mo] If H=\{n_{1} ,
. . .

,  n_{4}\rangle is  AG, then type (H)\leq 3.

We will not present the proof here but we list the lemmas which we use to prove

this theorem.

Lemma 4.10. We denote by e_{i} the i‐th unit vector of \mathbb{Z}^{4} . Assume e=4 and H is

AS.

(1) There are 2 rows in \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) of the form ($\alpha$_{i}-1)e_{i}-e_{k} situated as the

k‐th row.

(2) If f\neq f'\in \mathrm{P}\mathrm{F}(H) with f+f=\mathrm{F}(H) , then there are 4 rows in \mathrm{R}\mathrm{F}(f) and

\mathrm{R}\mathrm{F}(f') of the fonn ($\alpha$_{i}-1)e_{i}-e_{k} situated as the k‐th row.

Lemma 4.11. Assume e=4 and H is AS. Then for any f, f'\in \mathrm{P}\mathrm{F}(H) ,  f\neq

 f, f+n_{k}\neq f+n_{l} for any 1\leq k, l\leq 4.

The following question is asked in [Mo].

Question 4.12. Is type(H) bounded for a given e if H is AS? If this is the case,

what is the upper bound?

5. THE FREE RESOLUTION OF k[H] AND THE MAPPING CONE

Let as before H=\{n_{1} ,
. . .

, n_{\mathrm{e}} ), S=k[X_{1}, . . . , X_{\mathrm{e}}] and  $\pi$ :  S\rightarrow R=k[H] defined

by  $\pi$(X_{i})=t^{n}i . The minimal free resolution of R over S is very important in

commutative ring theory.
Let (F., d.) be a minimal free resolution of R=k[H] as a graded S module.

Let F_{i}=\oplus_{j}S(-b_{ij}) and set $\beta$_{i}=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(F_{i}) . For example, the multiset \{b_{ij}\} is the

multiset of the degrees of the minimal generators of I_{H} and $\beta$_{1} is the number of the

minimal generators of I_{H}.

Note that F_{\mathrm{e}-1}\cong\oplus_{f\in \mathrm{P}\mathrm{F}(H)}S(-f-N) , where we put N=\displaystyle \sum_{i=1}^{\mathrm{e}}n_{i} and  K_{R}\cong

\oplus_{n\in \mathrm{N}\backslash H}kt^{-n}.
Let us recall that R is AG (or H is AS) if the cokernel of a natural R‐module

homomorphism

R\rightarrow K_{R}(-\mathrm{F}(H))
is annihilated by \mathrm{m} :=R_{+} . In other words, there is an exact sequence of graded
S‐modules

0\rightarrow R\rightarrow K_{R}(-\mathrm{F}(H))\rightarrow\oplus_{f\in \mathrm{P}\mathrm{F}'(H)}k(-f)\rightarrow 0.
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Note that we used the symmetry of \mathrm{P}\mathrm{F}(H) (Theorem 1.5) when H is \mathrm{a}\mathrm{A}\mathrm{S}.

Since K_{S}\cong S(-N) , the minimal free resolution of K_{R} is given by (F.)^{\vee} ,
where

(\mathrm{e})^{\vee}=\mathrm{H}\mathrm{o}\mathrm{m}_{S}(, S(-N)) . Now, the injection R\rightarrow K_{R}(-\mathrm{F}(H)) lifts to a morphism

 $\phi$ :  F. \rightarrow(F.)^{\vee}(-\mathrm{F}(H)) and the cokernel of R\rightarrow K_{R}(-\mathrm{F}(H)) is given by the

mapping cone MC( $\phi$) of  $\phi$.
On the other hand, the free resolution of the residue field k is given by the Koszul

complex Kos. =Kos.(X_{1}, \ldots, X_{e}) . Hence we get

Lemma 5.1 (Key Lemma). The mapping cone MC( $\phi$) gives a (non‐minimal) free
resolution of\oplus_{f\in \mathrm{P}\mathrm{F}(H),f\neq \mathrm{F}(H)}k(-f) . Hence, the minimal free resolution obtained

from MC( $\phi$) is isomorphic to\oplus_{f\in \mathrm{P}\mathrm{F}'(H)}Kos.(-f) .

What can we say from this lemma? For example, we get the structure of F_{1} and

F_{\mathrm{e}-2}.

Lemma 5.2. $\beta$_{e-2}\geq e(t(H)-1) and if $\beta$_{\mathrm{e}-2}=e(t(H)-1)+s ,
then there

exist minimal generators g_{1} ,
. . .

, g_{s} of I_{H} such that the multisets \{b_{e-2,j}\}_{j=1}^{$\beta$_{\mathrm{e}-2}} and

\coprod_{f\in \mathrm{P}\mathrm{F}'(H)}\{f+N-n_{i}\}_{i=1}^{4}\square \{\mathrm{F}(H)+N-\deg(g)\}_{i=1}^{s} coincide.

The following statement for type 3 AS looks very probable but we do not have a

proof yet.

Conjecture 5.3. Assume that H is AS with \langle n_{1}, n_{2}, n_{3}, n_{4} ) and type(H)=3 with

\mathrm{P}\mathrm{F}(H)=\{f, f, \mathrm{F}(H)\} with f+f=\mathrm{F}(H) . Then I_{H} is minimally generated by 6

or 7 elements and 6 of minimal generators are obtained from \mathrm{R}\mathrm{F}(f) or \mathrm{R}\mathrm{F}(f') as

in Remark 2.2 with no cancellation. If  $\mu$(I_{H})=7, then X_{1}X_{4}-X_{2}X_{3}\in I_{H}.

6. WHEN IS H+m AS FOR INFINITELY MANY m?

Definition 6.1. For H=\{n_{1} , n_{2} ,
. . .

, n_{e} ), we put H+m=\langle n_{1}+m, n_{2}+m ,
. . .

, n_{\mathrm{e}}+

m) In this section, we always assume that n_{1}<n_{2}<\ldots<n_{e} and put s=n_{e}-n_{1}.

Families of semigroups of the type H+m have first been considered by Herzog
and Srinivasan. They conjectured that the Betti numbers $\beta$_{i}(I_{H+m}) are periodic
functions on m for m\gg 0 . This conjecture was later proved by Than Vu [Vu]. It is

a natural question whether the AS property behaves in the same way.

First, we give a lower bound for the Frobenius number of H+m.
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Lemma 6.2. If we put n_{e}-n_{1}=s ,
then \mathrm{F}(H+m)\geq m^{2}/s for all sufficiently large

m.

The following fact is trivial but very important in our argument.

Lemma 6.3. If $\phi$=\displaystyle \prod_{i=1}^{e}X_{i}^{a_{i}}-\prod_{i=1}^{e}X_{i}^{b_{i}}\in I_{H} is homogeneous, namely, if\displaystyle \sum_{i=1}^{e}a_{i}=
\displaystyle \sum_{i=1}^{e}b_{i} , then  $\phi$\in I_{H+m} for every m.

We define $\alpha$_{i}(m) to be the minimal positive integer such that

$\alpha$_{i}(m)(n_{i}+m)=\displaystyle \sum_{j=1,j\neq i}^{e}$\alpha$_{ij}(m)(n_{j}+m) ,

similarly as in Definition 3.3.

Lemma 6.4. Let H+m be as in Definition 6.1. Then, $\alpha$_{2}(m) ,
. . .

, $\alpha$_{e-1}(m) is

constant for m\gg 1 , while $\alpha$_{1}(m) , $\alpha$_{\mathrm{e}}(m)\geq m/s

If we recall the form of \mathrm{R}\mathrm{F}(\mathrm{F}(H)/2) in Theorem 4.7, the following result is easily

proved.

Theorem 6.5. Assume H+m=\{n_{1}+m ,
. . .

,  n_{4}+m\rangle . Then for large enough  m,

H+m is not AG of type 2.

We think the following will be true.

Conjecture 6.6. If H+m=\{n_{1}+m, n_{2}+m, . . . , n_{e}+m\} is AS for infinitely many

m
,

then type(H+m) is odd if H+m is AG.

Unlike the case of type 2, there are infinite series of H+m ,
which are AG of type

3 for infinitely many m . The following example was given by T. Numata.

Example 6.7. If H=\langle 10 , 11, 13,  14\rangle , then  H+4m is AS of type 3 for all integer

m\geq 0.

Example 6.8. For the following H, H+m is AS with type 3 if m is a multiple of

s=n_{4}-n_{1}.

(1) H=\langle 34 , 37, 39, 42\rangle,
(2) H=\langle 14 , 19, 21,  26\rangle
(3)  H=\langle 18 , 25, 27, 34\rangle.
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We think we can completely determine H+m which are AS of type 3 for infinitely

many m . But the following is what we get at this moment.

Proposition 6.9. Assume H+m ís AS of type 3 for infinitely many m . We fix suffi‐

ciently big m such that H+m is AS of type 3. If \mathrm{P}\mathrm{F}(H+m)=\{f(m) , f'(m) , \mathrm{F}(H+

m)\} with f(m)<f'(m) and f(m)+f'(m)=\mathrm{F}(H+m)_{f} then we have the following

facts.

(1) $\alpha$_{2}=$\alpha$_{3}\geq 3 and an odd integer. We will write a=$\alpha$_{2}=$\alpha$_{3} in the following.

(2) \mathrm{R}\mathrm{F}(f(m))=\left(\begin{array}{llll}
-1 & a-1 & 0 & 0\\
\mathrm{l} & -1 & -2a & 0\\
0 & -a2 & -1 & 1\\
0 & 0 & a-1-1 & 
\end{array}\right).
(3) Hence, we have the relations (n_{1}+m)+f(m)=(a-1)(n_{2}+m) and (n_{4}+m)+

f(m)=(a-1)(n_{3}+m) , in particular, xy‐zw, y^{a}-x^{2}z^{a-2}, z^{a}-y^{a-2}w^{2}\in I_{H_{m}}.
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