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Abstract

We consider a two dimensional variant of the pancake problem
which asks whether an arbitrary n\times m array can be obtained from an

initial array by prefix reversals. We shall show subgroups of symmetric
groups generated by prefix reversals on n\times m dimensional arrays. The

alternating group is generated if both n and m are multiples of 4, and

the symmetric group is generated otherwise.

1 Introduction

A two dimensional variant of the pancake problem, which asks if it is pos‐

sible to sort randomly piled pancakes of different size Uy prefix reversals, is

introduced by [4]. The reader is referred to [1, 2, 3] for the pancake sort

problem. Given an n\times m array filled with integers of different size, we ask

whether every permutation of the integers on the array is obtained by prefix
reversals. A prefix reversal in this setting consists in inserting a spatula
vertically or horizontally into the array and rotating a left‐hand part or an

upper part 180 degree. We study subgroups of symmetric groups generated
by permutations realized in terms of prefix reversals on two dimensional

arrays.

2 Rearrangement of Two Dimensional Arrays

2.1 Prefix Reversals

We formulate a rearrangement of a two dimensional array by prefix reversals

as follows. Suppose A is an n\times m array. Then A comprises of n\times m cells. We
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Figure 1: n\times m array A

denote the entry in the (i, j) position of A by a_{ij} (see Fig 1). We employ the

standard matrix representation (a_{ij}) to denote an array A . The standard

array E_{n\times m} of size n\times m is defined to be (e_{ij}) where e_{ij} is the integer

(i-1)\times m+j (see Fig. 2). We denote A=\displaystyle \frac{A_{1}}{A_{2}} if A comprises of an upper

block A_{1} and a lower block A_{2} , or A=A_{3}|A_{4} if A comprises of a left block

A3 and a right block A_{4} . For an n\times m array A=(a_{ij}) , the reversal of A

is the n\times m array (b_{ij}) such that b_{ig}=a_{n-i+1,m-j+1} for every (i,j) . We

denote it by R(A) (see Fig. 3).

Suppose A is an n\times m array. The transformation \displaystyle \frac{A_{1}}{A_{2}}\Rightarrow\frac{R(A_{1})}{A_{2}} is called

a horizontal prefix reversal and denoted by hr(1, i) if A_{1} has i rows. The

transformation A_{3}|A_{4}\Rightarrow R(A_{3})|A_{4} is called a vertical prefix reversal and

denoted by vr(l,j) if A3 has j columns. The horizontal suffix reversal \displaystyle \frac{A_{1}}{A_{2}}\Rightarrow
 A_{1}

\overline{R(A_{2})}
and the vertical suffix reversal A_{3}|A_{4}\Rightarrow A_{3}|R(A_{4}) are obtained by

compositions of prefix reversals hr(l, n)\mathrm{o}hr(1, n-i)\circ hr(1, n) and vr(1, m)0
vr(1, m-j)\mathrm{o}vr(1, m) , respectively. We denote them by hr(i+1, m) and

vr(j+1, n) .

Figure 2: n\times m standard array E_{n\times m}
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Figure 3: \mathrm{R}(\mathrm{A})

2.2 Groups generated by prefix reversals

Let A be an n\times m array in which each integer in {1, 2, 3, . . .

, nm} is

placed on exactly one position. Suppose that  $\sigma$ is a permutation on the

set {1, 2, 3, . . . , nm}. The  n\times m array obtained from A by operating a on

each number placed on A is called a rearrangement of A by  $\sigma$ , and denoted

by  $\sigma$(A) .

Suppose that  $\sigma$ is a permutation of the set {1, 2, 3, . . .

, nm}. We say

that  $\sigma$ is generated by prefix reversals if an  n\times m array  $\sigma$(E_{n\times m}) is obtained

from the standard array E_{n\times m} by operating prefix reversals. Subgroups H

of a symmetric group is generated by prefix reversals if all the element of H

is generated by prefix reversals. The following theorem is given in [4]. In

this paper, we give another proof of the theorem.

Theorem 2.1 Let n and m be positive integers.
(1) Suppose either n\not\equiv 0 (mod4) or m\not\equiv 0 (mod4) holds. The symmetric
group S_{nm} is generated by prefix reversals.

(2) Suppose n\equiv m\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4) . The alternating group A_{nm} is generated
by prefix reversals.

First, we shall show that A_{nm} is generated by prefix reversals in any

case in Section2. Then, we show that a certain transposition is generated
by prefix reversals if either n\not\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4) or m\not\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4) holds in

Sections 4 and 5,

2.3 Elementary Operations

We introduce several operations realized by prefix reversals. Suppose A

is an n\times m array throughout this section. It is easy to see that if the

composition hr(1, i)\mathrm{o}hr(1,1)\circ hr(1, i) is operated to A
, we obtain an array

that coincides with A except for the ith row is reversed. Such an operation
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is called a row reversal and denoted by rr(i). Similarly, the composition
vr(1,j)\circ vr(1,1)\circ vr(1,j) reverses the jth column of A and called the column

reversal and denoted by cr(j) .

Now we operate the composition hr(n, n)\circ vr(1,1)\mathrm{o}hr(n, n)\mathrm{o}hr(1,1)0
vr(1,1)0hr(1,1) to A . The resulting array is obtained from A by exchanging
the four corners diagonally. We call this operation a corner exchanging and

denote it by ce.

For example, we see the composition  hr(4,4)\circ vr(1,1)\circ hr(4,4)0hr(1,1)\circ
 vr(1,1)ohr(1,1) exchanges the four corners of E_{4,4} diagonally, that is, 1

and 16 are exchanged and 4 and 13 are exchanged, respectively.

\left\{\begin{array}{llll}
1 & 2 & 3 & 4\\
5 & 6 & 7 & 8\\
9 & \mathrm{l}0 & 11 & 12\\
13 & 14 & \mathrm{l}5 & \mathrm{l}6
\end{array}\right\}\rightarrow[_{13}^{4}95 141063
\rightarrow\left\{\begin{array}{llll}
1 & 2 & 3 & \mathrm{l}3\\
9 & 6 & 7 & 8\\
5 & \mathrm{l}0 & 1\mathrm{l} & 12\\
4 & 14 & 15 & 16
\end{array}\right\}\rightarrow[_{16}^{1}59 151062

151172 161812]\rightarrow\left\{\begin{array}{llll}
13 & 3 & 2 & 1\\
9 & 6 & 7 & 8\\
5 & 10 & \mathrm{l}\mathrm{l} & 12\\
4 & 14 & 15 & 16
\end{array}\right\}
141173 114832]\rightarrow\left\{\begin{array}{llll}
16 & 2 & 3 & 13\\
5 & 6 & 7 & 8\\
9 & 10 & 11 & 12\\
1 & 15 & 14 & 4
\end{array}\right\}

\rightarrow\left\{\begin{array}{llll}
16 & 2 & 3 & \mathrm{l}3\\
5 & 6 & 7 & 8\\
9 & \mathrm{l}0 & \mathrm{l}\mathrm{l} & 12\\
4 & \mathrm{l}4 & \mathrm{l}5 & 1
\end{array}\right\}
We consider even permutations on the entries of A in a special form. We

consider entries on the (i, k) , (i, l) , (j, k) ,
and (j, l) positions of A(i\neq j

and k\neq l) . These four positions are the intersections of the ith and

jth rows and kth and lth columns. The permutations (a_{i},a_{j}\cdot,)(a_{i,l}, a_{j,l}) ,

(a_{i,k}, a_{i,l})(a_{j,k}, a_{j,l}) and (a_{i,k}, a_{j,l})(a_{i,l}, a_{j,k}) of entries of A are called a twin

transposition along column, a twin transposition along row and a twin trans‐

position along diagonal, respectively.

\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{i,k} & \cdots & a_{i,l} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{j,k}\cdots & \cdots & a_{j,l} & \cdots
\end{array}\right\}\rightarrow\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{\dot{J}^{k}} & \cdots & a_{j,l} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{i,k}\cdots & \cdots & a_{i,l} & \cdots
\end{array}\right\}
(Twin transposition along column)

132



\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{i,k} & \cdots & a_{i,l} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{j,k}\cdots & \cdots & a_{j,l} & \cdots
\end{array}\right\}\rightarrow\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{i,l} & \cdots & a_{i,k} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{j,l}\cdots & \cdots & a_{j,k}\cdots & \cdots
\end{array}\right\}
(Twin transposition along row)

\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{i,k} & \cdots & a_{i,l} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{j,k}\cdots & \cdots & a_{j,l} & \cdots
\end{array}\right\}\rightarrow\left\{\begin{array}{lllll}
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots & a_{j,l} & \cdots & a_{j,k} & \cdots\\
\cdots & \cdots & \cdots & \cdots & \cdots\\
\cdots\cdots & a_{i,l}\cdots & \cdots & a_{i,k}\cdots & \cdots
\end{array}\right\}
(Twin transposition along diagonal)

Note that the twin transposition (a_{i},a_{j}\cdot,)(a_{i,l}, a_{j,l}) along column is re‐

alized by hr(j, n)\circ hr(1, i)\circ vr(m-k+1, m)\circ vr(1, m-l+1)\mathrm{o}hr(1,1)0
ce\circ hr(1,1)\circ vr(m-k+1, m)\circ vr(1, m-l+1)ohr(j, n)\circ hr(1, i) . It is

denoted by tt((i, k)\leftrightarrow(j, k), (i, l)\leftrightarrow(j, l

Similarly, the twin transposition along row (a_{i,k}, a_{i,l})(a_{j,k}, a_{j,l}) is realized

by  hr(j, n)\mathrm{o}hr(1, i)\mathrm{o}vr(m-k+1, m)\mathrm{o}vr(1, m-l+1)\mathrm{o}vr(1,1)\mathrm{o}ce\mathrm{o}vr(1,1)\circ
 vr(m-k+1, m)\mathrm{o}vr(1, m-l+1)\mathrm{o}hr(j, n)\mathrm{o}hr(1, i) , and the twin transposition
along diagonal (a_{i,k}, a_{j,l})(a_{i,l}, a_{j,k}) is realized by hr(j, n)\circ hr(1, i)\mathrm{o}vr(m-k+
1, m)\mathrm{o}vr(1, m-l+1)\mathrm{o}ce\mathrm{o}vr(m-k+1, m)\mathrm{o}vr(1, m-l+1)\mathrm{o}hr(j, n)\mathrm{o}hr(1, i) .

The twin transpositions along row and diagonal are denoted by  tt((i, k)\leftrightarrow
(i, l) , (j, k)\leftrightarrow(j, l)) and tt((i, k)\leftrightarrow(j, l) , (i, l)\leftrightarrow(j, k respectively.

3 Even Permutations Are Generated

We show that any even permutation is generated by prefix reversals. Sup‐
pose a is factored as $\tau$_{1}$\tau$_{2}\cdots$\tau$_{2r} where $\tau$_{i}(1\leq i\leq 2r) is a transposition.
If we could prove that  $\rho$ is generated by prefix reversals, where  p=$\tau$_{1}$\tau$_{2}

and $\tau$_{1} and $\tau$_{2} are transpositions, then the general case can be obtained by
induction. Therefore, we consider the case that  $\sigma$=$\tau$_{1}$\tau$_{2} , where $\tau$_{1} and $\tau$_{2}

are transpositions. There are two cases to be considered: (1) $\tau$_{1} and $\tau$_{2} are

disjoint and (2) $\tau$_{1} and $\tau$_{2} are not disjoint.
Suppose $\tau$_{1} and $\tau$_{2} are not disjoint, that is the case (2). We have  $\rho$=

$\tau$_{1}$\tau$_{2}=$\tau$_{1} $\delta \delta \tau$_{2} for any transposition  $\delta$ because the inverse of a transposition
is itself. In particular, we may take any transposition  $\delta$ that is disjoint both
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from  $\tau$_{1} and from $\tau$_{2} . Then both  $\tau$_{1} $\delta$ and  $\delta \tau$_{2} fall in the case (1). Therefore,
it suffices to consider only the case (1). Consequently, we shall show that if

a permutation p factors as $\tau$_{1}$\tau$_{2} , where $\tau$_{1} and $\tau$_{2} are disjoint transpositions
then it is generated by prefix reversals.

Suppose that  $\rho$=$\tau$_{1}$\tau$_{2}, $\tau$_{1}=(a, b) , $\tau$_{2}=(c, d) and a, b, c, d are distinct

from each other (see the array transition below). We suppose that x is

placed on the same column as a and the same row as d and that y is placed
on the same column as d and on the same row as a . Then we operate two

twin transpositions along row, column or diagonal to exchange b and y , and

c and x , respectively. Note that since we use twin transpositions, there are

other entries replaced. Next we operate twin transpositions (a b)(cd) to

exchange a and b and c and d , respectively. After that we operate the same

twin transpositions above in the reverse order. Note that any entries except
for a, b, c, d stay the same position because the operations are carried out

twice. Therefore,  $\rho$ is realized by prefix reversals.

We only considered the case that  a, b, c, d are on different rows and

columns. Similarly we can show that any composition of disjoint trans‐

positions is realized by twin transpositions as well. It follows that prefix
reversals realize all the even permutations.
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4Symmetric Group S_{nm} Is Generated

We show that the symmetric group S_{nm} is generated by prefix reversals

if either n\not\equiv 0 (mod4) or m\not\equiv 0(\mathrm{m}\mathrm{o}\mathrm{d} 4) holds. Note that we have al‐

ready shown that all the even permutations are generated by prefix reversals.

Thus, the alternating group is generated by prefix reversals. Since the sym‐
metric group is generated by the alternating group and any transposition, it

is sufficient to show that one of transpositions is generated by prefix rever‐

sals. If n=1
, it is easy to see that any permutation is generated by vertical

reversal. It is also easy to see that any permutation is generated by vertical

reversal if n=2 (or m=2) (see [4]). Thus, we assume n>2 and m>2.

4.1 n\equiv 13 (mod4)

Suppose n=2k+1 for some positive integer k . We shall show that a certain

transposition is realized by prefix reversals.

We shall show how to realize a horizontal transposition of entries on the

(k+1,1) and (k+1,2) positions in \mathrm{a}(2k+1)\times m array A . There are 2k

rows except for the k+1 row in A . First, we operate k twin transpositions
along diagonal tt((i, 1)\leftrightarrow(n-i+1,2), (i, 2)\leftrightarrow(n-i+1,1)) for every i=

1 , 2, 3, . . . , k . Second, we operate vr(l, 2) . The resulting array is obtained

from A by transposing the entries of (k+1,1) and (k+1,2) positions.

4.2 n\equiv 2 (mod4)

Suppose n=4k+2 for some positive integer k . We shall show that a certain

transposition is realized by prefix reversals.

We show how to realize a vertical transposition of entries on the (2k+1,1)
and (2k+2,1) positions in \mathrm{a}(4k+2, m) array.

We operate vr(1,1) to exchange entries on the (2k+1,1) and (2k+2,1)
positions, however, this operation also moves the other entries on the first

column. We restore the entries on the first column except for (2k+1,1) and

(2k+2,1) positions by iterating the following operations for every 1\leq i\leq k.
The basic idea is to exchange the entries on the (2i, 1) and (4k-2i+3,1)
positions and (2i-1,1) and (4k-2i+4,1) positions, respectively by moving
these four entries in positions for a twin transposition and then exchange
couples of these entries, simultaneously.

First, we operate rr(4k-2i+3)\circ rr(2i) . Second, we operate tt((2i, m-

1)\leftrightarrow(2i-1, m-1) , (2i, m)\leftrightarrow(2i-1, m))\mathrm{o}tt((4k-2i+3, m-1)\leftrightarrow
(4k-2i+4, m-1) , (4k-2i+3, m)\leftrightarrow(4k-2i+4, m These two operations
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move the entries on the (2i, 1) and (4k-2i+3,1) positions and (2i-1,1)
and (4k-2i+4,1) positions in positions for a twin transposition. Third,
we operate tt((2i-1,1)\leftrightarrow(4k-2i+4,1), (2i-1, m)\leftrightarrow(4k-2i+4, m

This operation realizes the exchange of targeted entries. Fourth, we carry

out the same operations in the reverse order, that is, we operate tt((2i, m-

1)\leftrightarrow(2i-1, m-1) , (2i, m)\leftrightarrow(2i-1, m))\mathrm{o}tt((4k-2i+3, m-1)\leftrightarrow
(4k-2i+4, m-1) , (4k-2i+3, m)\leftrightarrow(4k-2i+4, m Lastly we operate

rr(4k-2i+3)\mathrm{o}rr(2i) . Then the transposition (a_{2k+1,1}a_{2k+2,1}) is realized. In

the iteration process, entries other than the targeted entries are not replaced
because we operate the same operation twice.

5 Alternating Group A_{nm} Is Generated

We shall show that prefix reversals generate the alternating group A_{nm} if

n\equiv 0 (mod4) and m\equiv 0 (mod4). We have already shown that all the

even permutations are generated by prefix reversals. Therefore we shall show

that no transposition is generated by prefix reversals in this case. Suppose
that A is an n\times m array, where n=4h and m=4k for some positive
integers h, k.

We consider the horizontal prefix reversal hr(1,p) for an arbitrary  1\leq

 p\leq 4k . The sub‐array operated by hr(l,p) is shown below:

[a_{p-1,1}:a_{p,1}a_{2,1}a_{1,1} a_{p-1,2}a_{p,2}a_{2,2}a_{1,2}:

:. a_{p-1,2h}a_{p^{:},2h}a_{2.' 2h}a_{1,2h} a_{p-1^{:},2h+1}a_{p,2h+1}a_{2,2h+1}a_{1,2,.h+1} :. a_{p-1^{:},4h-1}a_{p,4h-1}a_{2,4,.h-1}a_{1,4h-1} a_{p-1,4h}a_{p^{:_{4h}]}}a_{2.' 4h}a_{1,4h}
After operating hr(l,p) to A

, the upper p rows of A turns out to be

\left\{\begin{array}{llllllll}
a_{p,4h} & a_{p,4h-\mathrm{l}} & \cdots & a_{p,2h+\mathrm{l}} & a_{p,2h} & \cdots & a_{p,2} & a_{p,\mathrm{l}}\\
a_{p-\mathrm{l},4h} & a_{p-1,4h-\mathrm{l}} & \cdots & a_{p-\mathrm{l},2h+\mathrm{l}} & a_{p-1,2h} & \cdots & a_{p-1,2} & a_{p-1,\mathrm{l}}\\
 &  &  &  & \vdots &  &  & \\
a_{2,4h} & a_{2,4h-\mathrm{l}} & \cdots & a_{2,2h+\mathrm{l}} & a_{2,2h} & \cdots & a_{2_{)}2} & a_{2,1}\\
a_{1,4h} & a_{\mathrm{l},4h-1} & \cdots & a_{1,2h+1} & a_{\mathrm{l},2h} & \cdots & a_{1,2} & a_{\mathrm{l}_{)}1}
\end{array}\right\}
It is a routine to see that hr(1,p) generates a permutation which is a

product of disjoint transpositions (a_{w,x}, a_{y,z}) where 1\leq w, y\leq p,  1\leq x\leq
 2h , and 2h+1\leq z\leq 4h satisfying w+y=p+1 and x+z=4h+1 . Note
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that there are p\times 2h elements a_{w,x} satisfying 1\leq w\leq p and 1\leq x\leq 2h , and

also there are p\times 2h elements a_{y,z} satisfying 1\leq y\leq p and 2h+1\leq z\leq 4h.
Hence, the permutation realized by hr(l,p) is a product of p\times 2h disjoint
transpositions and so it is even.

Similarly a permutation realized by any vertical prefix reversal vr(1, q) is

even. Therefore every permutation realized by prefix reversals is a product of

even permutations, and so, no transposition is generated by prefix reversals.

Consequently, prefix reversals generate the alternating group A_{nm}.
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