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Abstract

The purpose of this paper, by using the resolvent operator technique associated with

randomly (A,  $\eta$, m)‐monotone operator, is to establish an existence and convergence the‐

orem for a class of system of random nonlinear equations with fuzzy mappings in Hilbert

spaces. Our works are improvements and generalizations of the corresponding well‐known

results.
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1 Introduction

The fuzzy sets theory is an extension of a crisp set by enlarging the truth valued set \{0 , 1 \}
to the real unit interval [0 , 1 ] ([27]). A fuzzy set is characterized and identified by a mapping
called a membership grade function from the whole set into [0 , 1] . Heilpern [13] introduced the

concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction mapping

数理解析研究所講究録
第2011巻 2016年 17-28

17



Jong Kyu Kim and Salahuddin

which is a fuzzy analogue of Nadler�s fixed point theorem for multi‐valued mappings.
In 1989, Chang and Zhu [6] first introduced and studied a class of variational inequalities

for fuzzy mappings. Since then several classes of variational inequalities, quasi variational

inequalities and complementarity problems with fuzzy mappings were considered by Agarwal
et al. [1], Chang and Huang [8], Ding et al. [9], Huang [10], Lee et al. [21], Salahuddin [25] in

the setting of Hilbert spaces and Banach spaces.

Lan [20] introduced a new concepts of (A,  $\eta$)‐monotone operator which generalizes the

(H,  $\eta$)‐monotonicity and A‐monotonicity in Hilbert spaces and studied some properties of

(A,  $\eta$)‐monotone operators and applied resolvent operators associated with (A,  $\eta$)‐monotone

operators to approximate the solution of a new class of nonlinear (A,  $\eta$)‐monotone operator

inclusion problems with relaxed cocoercive operators in Hilbert spaces. Recently Kim et al.

[16] introduced the (A,  $\eta$, m)‐proximal operator to study the system of equations in Hilbert

spaces.

Recently some systems of variational inequalities, variational inclusions, complementarity

problems and equilibrium problems have been studied by some authors in recent years be‐

cause of their close relation to Nash equilibrium problems. Huang and Fang [11] introduced

a system of order complementarity problems and established some existence results for these

using fixed point theory. Kim and Kim [18] introduced and studied some system of variational

inequalities and developed some iterative algorithms for approximately the solutions of system
of variational inequalities.

On the other hand, random variational inequality problems, random quasi variational

inequality problems and random variational inclusions and complementarity problems have

been studied by Chang [5], Chang and Huang [7], Huang [10], Khan and Salahuddin [15] and

Bharucha\ulcornerRed [3], etc.

The concepts of random fuzzy mapping was first introduced by Huang [10]. Subsequently
the random variational inclusion problems for random fuzzy mappings is studied by Anastas‐

siou et al. [2], Salahuddin [25], Zhang and Bi [28].
Inspired and motivated by the works [2, 12, 14, 17, 23, 26], we establish the existence and

convergence theorem for system of random nonlinear equations with fuzzy mapping in Hilbert

spaces by using random (A,  $\eta$, m)‐proximal operator equations

2 Preliminaries

Throughout this paper, ( $\Omega$,  $\Sigma$) is a measurable space with a set  $\Omega$ and a a‐algebra  $\Sigma$ of a

subset of  $\Omega$, H is a real separable Hilbert space endowed with a norm \Vert\cdot\Vert and inner product
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Notations \mathcal{B}(H) ,
2^{H} and CB(H) denote the class of Borel a‐fields in H

, the family
of all nonempty subsets of H and the family of all nonempty closed bounded subset of H,

respectively.

Definition 2.1. A mapping u: $\Omega$\rightarrow H is said to be measurable if for any B\in B(H) , u^{-1}=

\{t\in $\Omega$, u(t)\in B\in $\Sigma$\}.

Definition 2.2. A mapping f :  $\Omega$\times H\rightarrow H is called a random mapping if for each fixed

u\in H, a mapping f(\cdot, u) :  $\Omega$\rightarrow H is measurable. A random mapping f is said to be

continuous if for each fixed  t\in $\Omega$ , a mapping  f(t, \cdot) : H\rightarrow H is continuous.

Definition 2.3. A multi‐valued mapping T :  $\Omega$\rightarrow 2^{H} is said to be measurable if for any

B\in B(H) , T^{-1}(B)=\{t\in $\Omega$ : T(t)\cap B\neq\emptyset\}\in $\Sigma$.

Definition 2.4. A mapping u :  $\Omega$\rightarrow H is called a measurable selection of a measurable

multi‐valued mapping T :  $\Omega$\rightarrow 2^{H} ,
if u is measurable and for any t\in $\Omega$, u(t)\in T_{t}(u(t)) .

Definition 2.5. A mapping T: $\Omega$\times H\rightarrow 2^{H} is called a random multi‐valued mapping if

for each fixed x\in H, T x) :  $\Omega$\rightarrow 2^{H} is a measurable multi‐valued mapping. A random

multi‐valued mapping T: $\Omega$\times H\rightarrow CB(H) is said to be \mathfrak{D}‐continuous if for each fixed t\in $\Omega$,

T(t, \cdot) :  $\Omega$\times H\rightarrow 2^{H} is randomly continuous with respect to the Hausdorff metric \mathfrak{D}.

Definition 2.6. A multi‐valued mapping T :  $\Omega$\times H\rightarrow 2^{H} is called random if for any

x\in H, T x) is measurable (denoted by T_{t,x} or T_{t} ).

Let  $\Omega$ be a set and  ff(H) be a collection of fuzzy sets over H . A mapping \tilde{F} :  $\Omega$\times H\rightarrow

\mathrm{f}\mathrm{f}(H) is called a fuzzy mapping on H . If \tilde{F} is a fuzzy mapping on H then for any t\in $\Omega$, \tilde{F}(t)
(denote it by F in the sequel) is a fuzzy mapping on H and \tilde{F}_{t}(x) is the membership grade of

x in \tilde{F}_{t} . Let A\in ff(H) ,  $\alpha$\in(0,1 ]. Then the set

A_{ $\alpha$}=\{x\in H:A(x)\geq $\alpha$\}

is called an  $\alpha$‐cut of  A.

Definition 2.7. A fuzzy mapping \tilde{F} :  $\Omega$\times H\rightarrow \mathfrak{F}(H) is said to be measurable, if for any

 $\alpha$\in(0,1], (\tilde{F}(\cdot))_{ $\alpha$} :  $\Omega$\rightarrow 2^{H} is a measurable multi‐valued mapping.

Definition 2.8. A fuzzy mapping \tilde{F} :  $\Omega$\times H\rightarrow \mathrm{f}\mathrm{f}(H) is a random fuzzy mapping if for any

x\in H, F x) :  $\Omega$\times H\rightarrow \mathfrak{F}(H) is a measurable fuzzy mapping (denoted by \tilde{F}_{t,x} short down

\tilde{F}_{t}(x)) .
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Let \tilde{T} :  $\Omega$\times H\rightarrow \mathfrak{F}(H) be a random fuzzy mapping satisfying the following condition:

(*) : there exists a function  $\alpha$ :  H\rightarrow(0,1 ] such that for all (t, x)\in $\Omega$\times H , we have

(\tilde{T}_{t.x(t)})_{ $\alpha$(x(t))}\in CB(H) , where T_{t,x} denotes the value of T at (t, x) . Induced multi‐valued

random mapping \tilde{T}_{t} from T as follows:

T: $\Omega$\times H\rightarrow CB(H) , T_{t}=\tilde{T}(t, x(t))_{ $\alpha$(x(t))} , (t, x)\rightarrow T_{t,x_{ $\alpha$(x)}},\forall(t, x)\in $\Omega$\times H.

In this paper we consider the following random (A_{t}, $\eta$_{t}, m_{t})‐proximal operator equation

system with fuzzy mappings, we consider for each fixed  t\in $\Omega$ finding (x(t), y(t)) , (z(t), w(t))\in
 H_{1}\times H_{2}, u(t)\in T_{t}(x(t)) and

E_{\mathrm{t}}(x(t), y(t))+$\rho$^{-1}R_{ $\rho$,A_{1,\ell}}^{M_{\mathrm{t}}(\cdot,x(t))}(z(t))=0,
G_{t}(u(t), y(t))+$\rho$^{-1}R_{ $\rho$,A_{2,t}}^{N_{t}(\cdot,y(t))}(w(t))=0 (2.1)

where T : H_{1}\times $\Omega$\rightarrow \mathfrak{F}(H_{1}) is a fuzzy mapping, E : H_{1}\times H_{2}\times $\Omega$\rightarrow H_{1}, G :  H_{1}\times

 H_{2}\times $\Omega$\rightarrow H_{2}, g:H_{1}\times $\Omega$\rightarrow H_{1}, h:H_{2}\times $\Omega$\rightarrow H_{2}, $\eta$_{1}:H_{1}\times H_{2}\times $\Omega$\rightarrow H_{1} and

$\eta$_{2} : H_{2}\times H_{2}\times $\Omega$\rightarrow H_{2} are nonlinear random single‐valued mappings, A_{1} :  H_{1}\times $\Omega$\rightarrow

 H_{1}, A_{2}:H_{2}\times $\Omega$\rightarrow H_{2}, M:H_{1}\times H_{1}\times $\Omega$\rightarrow 2^{H_{1}} and N:H_{2}\times H_{2}\times $\Omega$\rightarrow 2^{H_{2}} are

any nonlinear operators such that for all (z(t), t)\in H_{1}\times $\Omega$, M_{t} z_{t} ) : H_{1}\rightarrow 2^{H_{1}} is a ran‐

domly (A_{1,t}, $\eta$_{1,t}, m_{1,t})‐monotone operator with  f_{t}(H_{1})\cap d $\sigma$ m(M_{t}(\cdot, z(t)))\neq\emptyset and for all (w, t)\in
 H_{2}\times $\Omega$, N_{t} w(t)) : H_{2}\rightarrow 2^{H_{2}} is a randomly (A_{2,t}, $\eta$_{2,t}, m_{2,t})‐monotone operator with  g_{t}(H_{2})\cap
 dom(N_{t}(\cdot, w(t))\neq\emptyset, R_{$\rho$_{\mathrm{t}},A_{1.t}}^{M_{t}(\cdot,x(t))}=I-A_{1,t}(J_{ $\rho$ \mathrm{r},A_{1,\mathrm{t}}}^{M_{\mathrm{t}}(\cdot,x(\mathrm{t}))}), R_{ $\rho$ \mathrm{t}}^{N_{t}(,y(t))}=A_{2,\mathrm{t}}I-A_{2,t}(J_{$\rho$_{\mathrm{t}},A_{2,\mathrm{t}}}^{N_{\mathrm{t}}(\cdot,y(t))}), I is

the identity mapping, A_{1,t}(J_{$\rho$_{t},A_{1,\mathrm{t}}}^{M_{\mathrm{t}}(\cdot,x(t))}(z(t)))=A_{1,t}(J_{$\rho$_{\mathrm{t}},A_{1,\mathrm{t}}}^{M_{\mathrm{t}}(\cdot,x(t))})(z(t)) , A_{2,t}(J_{$\rho$_{t},A_{2,\mathrm{t}}}^{N_{t}(,y(t))}(w(t)))=
A_{2,\mathrm{t}}(J_{ $\rho \iota$,A_{2,\mathrm{t}}}^{N_{t}(\cdot,y(t))})(w(t)) , J_{$\rho$_{\mathrm{t}},A_{1,t}}^{M_{\ell}(\cdot,x(t))}=(A_{1,t}+$\rho$_{t}M_{t}(\cdot, x(t)))^{-1} and J_{ $\rho$ t}^{N_{t}(\cdot,y(t))}A_{2.\mathrm{t}}=(A_{2,t}+$\rho$_{t}N_{t}(\cdot, y(t)))^{-1},
for all (x(t), z(t))\in H_{1}, (y(t), w(t))\in H_{2} and  $\rho$,  $\rho$ :  $\Omega$\rightarrow(0,1) are measurable mappings.

For appropriate and suitable choice of T, E, G, M, N, f, g, A_{i}, $\eta$_{i} and H_{i} for i=1 , 2 we see

that (2.1) is generalized version of some problems which include the system (random) vari‐

ational inclusions, (random) generalized quasi variational inequalities and (random) implicit

quasi variational inequalities for fuzzy mappings, see [17, 18].

Lemma 2.9. [4] Let M :  $\Omega$\times H\rightarrow CB(H) be a \mathfrak{D}‐continuous random multi‐valued mapping.
Then for a measurable mapping x :  $\Omega$\rightarrow H , the mapping M x :  $\Omega$\rightarrow CB(H) is

measurable.

Lemma 2.10. [4] Let M, V :  $\Omega$\rightarrow CB(H) be two measurable multi‐valued mappings and

 $\epsilon$>0 be a constant and x :  $\Omega$\rightarrow H be a measurable selection of M . Then there exists a
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measurable selection y :  $\Omega$\rightarrow H of V such that for all  t\in $\Omega$

\Vert x(t)-y(t)\Vert\leq(1+ $\epsilon$)\mathfrak{D}(M(t), V(t)) .

Lemma 2.11. [22] Let (H, d) be a complete metric space. Suppose that G:H\rightarrow CB(H)
satisfies

\mathfrak{D}(G(x), G(y))\leq $\omega$ d(x, y) , \forall x, y\in H,

where  $\omega$\in(0,1) is a constant. Then the mapping G has a fixed point in H.

Definition 2.12. Let x, y, w: $\Omega$\rightarrow H be random mappings and  t\in $\Omega$ . A random mapping
 T: $\Omega$\times H\times H\rightarrow H is said to be:

(i) randomly monotone in the first argument if

\{T_{t}(x(t), w(t))-T_{t}(y(t), w(t)) , x(t)-y(t))\geq 0,

for all x(t) , y(t)\in H.

(ii) randomly strictly monotone in the first argument if T_{t} is monotone and

\{T_{t}(x(t), w(t))-T_{t}(y(t), w(t)) , x(t)-y(t)\rangle=0

if and only if x(t)=y(t) ;

(iii) randomly r_{t}‐strongly monotone in the first argument if there exists a measurable function

r_{t} :  $\Omega$\rightarrow(0, \infty) such that

\{T_{\mathrm{t}}(x(t), w(t))-T_{t}(y(t), w(t)) , x(t)-y(t))\geq r_{t}\Vert x(t)-y(t)\Vert^{2},

for all x(t) , y(t)\in H.

(iv) randomly m_{t}‐relaxed monotone in the first argument if there exists a measurable function

m_{t} :  $\Omega$\rightarrow(0, \infty) such that

\{T_{t}(x(t), w(t))-T_{t}(y(t), w(t)), x(t)-y(t)\}\geq-m_{t}\Vert x(t)-y(t)\Vert^{2},

for all x(t) , y(t)\in H.

(v) randomly s_{t}‐cocoercive in the first argument if there exists a measurable function s_{t} :

 $\Omega$\rightarrow(0, \infty) such that

\langle T_{t}(x(t),w(t))-T_{t}(y(t), w(t)) , x(t)-y(t))\geq s_{t}\Vert T_{t}(x(t), w(t))-T_{t}(y(t), w(t))\Vert^{2},

for all x(t) , y(t) , w(t)\in H\times H\times H.
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(vi) randomly $\gamma$_{t} ‐relaxed cocoercive with respect to A_{t} in the first argument if there exists a

measurable function $\gamma$_{t}\rightarrow(0, \infty) such that

\{T_{t}(x(t), w(t))-T_{t}(y(t), w(t)) , A_{t}(x(t))-A_{t}(y(t))\rangle\geq-$\gamma$_{t}\Vert T_{t}(x(t), w(t))-T_{t}(y(t), w(t))\Vert^{2},

for all x(t) , y(t) , w(t)\in H\times H\times H.

(vii) randomly ($\gamma$_{t}, $\alpha$_{t})‐relaxed cocoercive with respect to A_{t} in the first argument if there exist

measurable functions $\gamma$_{\mathrm{t}}, $\alpha$_{t} :  $\Omega$\rightarrow(0, \infty) such that

\langle T_{t}(x(t), w(t))-T_{t}\cdot(y(t), w(t)) , A_{t}(x(t))-A_{t}(y(t))\rangle

\geq-$\gamma$_{\mathrm{t}}\Vert T_{t}(x(t), w(t))-T_{t}(y(t), w(t))\Vert^{2}+$\alpha$_{\mathrm{t}}\Vert x(t)-y(t)\Vert^{2},

for all x(t) , y(t) , w(t)\in H\times H\times H.

(viii) randomly $\mu$_{t}‐Lipschitz continuous in the first argument if there exists a measurable func‐

tion $\mu$_{t} :  $\Omega$\rightarrow(0, \infty) such that

\Vert T_{t}(x(t), w(t))-T_{t}(y(t), w(t))\Vert\leq$\mu$_{t}\Vert x(t)-y(t)\Vert,

for all x(t) , y(t) , w(t)\in H\times H\times H.

In a similar way, we can define a randomly Lipschitz continuity of the operator T ., ) in

the second argument.

Definition 2.13. Let T:H\times $\Omega$\rightarrow 2^{H} be a random multi‐valued mapping. Then T is said

to be randomly $\tau$_{t^{-}}\tilde{D}‐Lipschitz continuous in the first argument if there exists a measurable

mapping  $\tau$ :  $\Omega$\rightarrow(0,1) such that

\overline{D}(T_{t}(x(t)), T_{t}(y(t)))\leq$\tau$_{t}\Vert x(t)-y(t)\Vert,

for all x(t) , y(t)\in H,  t\in $\Omega$ , where \overline{D}:2^{H}\times 2^{H}\rightarrow(-\infty, +\infty)\cup\{+\infty\} is the Hausdorff metric

i. e.,

\displaystyle \overline{D}(A, B)=\max\{\sup_{x(t)\in A}\inf_{y(t)\in B}\Vert x(t)-y(t)\Vert , \displaystyle \sup_{x(t)\in B}\inf_{y(t)\in A}\Vert x(t)-y(t)\Vert\} , \forall A, B\in 2^{H}.

In a similar way we can define randomly \tilde{D}‐Lipschitz continuity of the T ) in the second

argument.
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Lemma 2.14. Let (H, d) be a complete metric space and T_{1}, T_{2} : H\rightarrow CB(H) be two

set‐valued contractive mappings with same contractive constant t\in(0,1) i. e.,

\tilde{\mathcal{D}}(T_{i}(x), T_{i}(y))\leq td(x, y) , \forall x, y\in H, i=1, 2 .

Then

\displaystyle \overline{\mathcal{D}}(F(T_{i}), F(T_{i}))\leq\frac{1}{1-t}\sup_{x\in H}\overline{\mathcal{D}}(T_{1}(x), T_{2}(x)) ,

where F(T_{1}) and F(T_{2}) are the sets of fixed points of T_{1} and T_{2} , respectively.

Definition 2.15. Let A:H\times $\Omega$\rightarrow H,  $\eta$ :  H\times H\times $\Omega$\rightarrow H be two random single
valued mappings. The set‐valued mapping M : H\times H\times $\Omega$\rightarrow 2^{H} is said to be randomly

(A_{t}, $\eta$_{t}, m_{t})‐monotone if

(1) M is randomly m_{t}‐relaxed $\eta$_{t}‐monotone mapping;

(2) (A_{t}+$\rho$_{t}M_{t})(H)=H , where  $\rho$: $\Omega$\rightarrow(0,1) is a measurable mapping.

Definition 2.16. Let A: $\Omega$\times H\rightarrow H be a randomly r_{t}‐strongly $\eta$_{t}‐monotone mapping
and M :  $\Omega$\times H\rightarrow 2^{H} be a randomly (A_{t}, $\eta$_{t})‐monotone operator. Then random operator

(A_{t}+$\rho$_{t}M_{t})^{-1} is a single‐valued random mapping for any measurable function  $\rho$:H\rightarrow(0, \infty)
and t\in $\Omega$.

Definition 2.17. Let A: $\Omega$\times H\rightarrow H be a randomly strictly $\eta$_{t}‐monotone mapping and M :

 $\Omega$\times H\rightarrow 2^{H} be a randomly (A_{t}, $\eta$_{t}, m_{t}) ‐monotone mapping. Then for any given measurable

mapping  $\rho$ :  $\Omega$\rightarrow(0,1) , the random resolvent operator J_{ $\beta$ t}^{$\eta$_{\mathrm{t}},M_{\mathrm{t}}}A_{t} : H\rightarrow H is defined by

\sqrt{}^{\mathrm{t}}$\rho$_{t},A_{t}M{}^{\mathrm{t}}(x(t))=(A_{t}+$\rho$_{t}M_{t})^{-1}(x(t)) , \forall t\in $\Omega$, x(t)\in H.

Proposition 2.18. [19] Let H be a Hilbert space and  $\eta$ :  $\Omega$\times H\times H\rightarrow H be a randomly
$\tau$_{t}‐Lipschitz continuous mapping, A :  $\Omega$\times H\rightarrow H be a randomly r_{\mathrm{t}}‐strongly $\eta$_{t}‐monotone

mapping and M :  $\Omega$\times H\rightarrow 2^{H} be a randomly (A_{t}, $\eta$_{t}, m_{t})‐monotone mapping. Then the

random resolvent operator \sqrt{}^{0,M_{\mathrm{t}}} $\beta$ \mathrm{t}^{A $\iota$} : H\rightarrow H is a randomly (\displaystyle \frac{$\tau$_{\mathrm{t}}}{r_{\mathrm{t}}-$\rho$_{t}m_{t}}) ‐Lipschitz continuous

mapping i. e.,

\displaystyle \Vert J_{$\rho$_{\mathrm{t}},A_{t}}^{$\eta$_{l},M_{l}}x(t)-J_{$\eta$_{\mathrm{t}},M_{l}}^{$\rho$_{t},A_{t}}y(t)\Vert\leq\frac{$\tau$_{t}}{r_{t}-$\rho$_{\mathrm{t}}m_{t}}\Vert x(t)-y(t)\Vert,
where $\rho$_{t}\in(0,r\lrcorner_{-)}m_{k} is a real‐valued random variable for all t\in $\Omega$.

In connection with a randomly (A_{t}, $\eta$_{t}, m_{t})‐proximal operator equation system (2.1), we

consider the system of random nonlinear equation with fuzzy mappings for finding measurable
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mappings x, u: $\Omega$:\rightarrow H_{1}, y: $\Omega$\rightarrow H_{2} such that for all  t\in $\Omega$ and each fixed \tilde{T}_{t,x(t)}(u(t))\geq
 $\alpha$(x(t)) and

0\in E_{t}(x(t), y(t))+M_{t}(x(t),x(t)) ,

0\in G_{t}(u(t), y(t))+N_{t}(y(t), y(t)) . (2.2)

Lemma 2.19. For t\in $\Omega$, x, u:Q\rightarrow H_{1} and y: $\Omega$\rightarrow H_{2}, (x(t), y(t), u(t)) is a solution of

problem (2.2) if and only if (x(t), u(t))\in H_{1}, y(t)\in H_{2} such that

x(t)=J_{A_{1,\mathrm{t}}, $\mu$}^{M_{\mathrm{t}}(\cdot,x(t))}[A_{1,t}(x(t))-$\rho$_{t}E_{t}(x(t),y(t))]
y(t)=J_{A_{2,t},$\rho$_{\mathrm{t}}}^{N_{l}(\cdot,y(t))}[A_{2,t}(y(t))-$\rho$_{t}G_{t}(u(t), y(t))] (2.3)

where J_{A_{1,t},p $\iota$}^{M_{t}(\cdot,x(t))}=(A_{1,t}+$\rho$_{t}M_{t}(\cdot, x(t)))^{-1} and J_{A_{2,\mathrm{t}}, $\rho$ t}^{N_{\mathrm{t}}(\cdot,y(t))}=(A_{2,t}+$\rho$_{t}N_{t} y(t)))^{-1} are corre‐

sponding random resolvent operator in the first argument of a random (A_{1,t}, $\eta$_{1,t})‐monotone

operator M_{t} random (A_{2,t}, $\eta$_{2,t})‐monotone operator.  N_{t}(\cdot , respectively,  A_{i,t} is a randomly

r_{i,t}‐strongly monotone operator for i=1 , 2 and  $\rho$,  $\rho$ :  $\Omega$\rightarrow(0,1) are measurable mappings.

Now we prove that problem (2.1) is equivalent to problem (2.3).

Lemma 2.20. For  t\in $\Omega$ the problem (2.1) has a solution (x(t), y(t), u(t)) with u(t)\in\tilde{T}_{\mathrm{t}}(x(t))
if and only if the problem (2.3) has a solution (x(t), y(t), u(t)) with u(t)\in\tilde{T}_{t}(x(t)) , where

x(t)=J_{A_{1,t, $\beta$ \mathrm{f}}}^{M_{t}(\cdot,x(t))}(z(t)) , y(t)=J_{A_{2,t},$\rho$_{\mathrm{t}}}^{N_{\mathrm{t}}(\cdot,y(t))}(w(t)) (2.4)

and

z(t)=A_{1,t}(x(t))-$\rho$_{t}E_{t}(x(t), y(t)) ,

w(t)=A_{2,t}(y(t))-$\rho$_{t}G(u(t), y(t)) ,

where  $\rho$,  $\rho$ :  $\Omega$\rightarrow(0,1) are measurable mappings.

3 Main Results

In this section, we first discuss the existence thorem. And then we developed an algorithm for

the problem and proved the convergence of the random sequence generated by given algorithm.

Theorem 3.1. Let ( $\Omega$,  $\sigma$) be a measurable space. Let $\Lambda$_{i} : H_{i}\times $\Omega$\rightarrow H_{i} be a randomly

r_{i,t}‐strongly monotone and randomly s_{i,t}‐Lipschitz continuous mapping for each i=1 , 2, T :

H_{1}\times $\Omega$\rightarrow \mathrm{f}\mathrm{f}(H_{1}) be a fuzzy mapping induced by a set‐valued mapping \tilde{T} : H_{1}\times $\Omega$\rightarrow H_{1} , and
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 $\alpha$ :  H_{1}\rightarrow(0,1) and \tilde{T}_{t,x(t)}(x(t))\geq $\alpha$(x(t)) satisfying the condition (*) . Let \tilde{T} : H_{1}\times $\Omega$\rightarrow H_{1}
be the randomly $\kappa$_{t}-\overline{D}‐Lipschitz continuous mapping induced by T , where \overline{\mathcal{D}} is the Hausdorff

pseudo metric on 2^{H_{i}} , for each i=1 , 2. Let M : H_{1}\times H_{1}\times $\Omega$\rightarrow 2^{H_{1}} be a randomly

(A_{1,t}, $\eta$_{1,t})‐monotone mapping with measurable mapping m_{1} :  $\Omega$\rightarrow(0,1) in the first variable

and N : H_{2}\times H_{2}\times $\Omega$\rightarrow 2^{H_{2}} be a randomly (A_{2,\mathrm{t}}, $\eta$_{2,\mathrm{t}})‐monotone mapping with measurable

mapping m_{2} :  $\Omega$\rightarrow(0,1) in the first variable. Let $\eta$_{1} : H_{1}\times H_{1} $\Omega$\rightarrow H_{1} be a randomly $\tau$_{2,t^{-}}

Lipschitz continuous mapping, $\eta$_{2} : H_{2}\times H_{2}\times $\Omega$\rightarrow H_{2} be randomly $\tau$_{2,t}‐Lipschitz continuous

mapping, E : H_{1}\times H_{2}\times $\Omega$\rightarrow H_{1} be the randomly Lipschitz continuous mapping with

respect to first variable with measurable mapping  $\beta$ :  $\Omega$\rightarrow(0,1) , and second argument with

respect to the measurable mapping  $\xi$ :  $\Omega$\rightarrow(0,1) and randomly ($\gamma$_{1,t}, $\alpha$_{1,t})‐relaxed cocoercive

with respect to A_{1,t} and first variable of E_{t} with measurable mappings  $\gamma$,  $\alpha$ :  $\Omega$\rightarrow(0,1) .

Let G : H_{1}\times H_{2}\times $\Omega$\rightarrow H_{2} be the randomly Lipschitz continuous with respect to first

and second variables with measurable mappings  $\mu$,  $\zeta$ :  $\Omega$\rightarrow(0,1) , respectively. Let G be a

randomly ($\gamma$_{2,t}, $\alpha$_{2,t})‐relaxed cocoercive mapping with respect to A_{2,t} with measurable mappings

$\gamma$_{2}, $\alpha$_{2} :  $\Omega$\rightarrow(0,1) , respectively. If in addition  $\rho$ :  $\Omega$\rightarrow(0, \rightarrow mr1,t) and  $\rho$ :  $\Omega$\rightarrow(0,mr\text{∽^{}2\mathrm{t}}2,\mathrm{t}) are

measurable mappings and

\Vert J_{$\rho$_{t},A_{1,t}}^{M_{t}(\cdot,x(t))}(z(t))-J_{ $\rho$ t,A_{1,\mathrm{t}}}^{M_{\mathrm{t}}(\cdot,y(t))}(z(t))\Vert\leq v_{1,t}\Vert x(t)-y(t)\Vert , (3.1)

for all (x(t), y(t), z(t), t)\in H_{1}\times H_{1}\times H_{1}\times $\Omega$,

\Vert J_{$\rho$_{t},A_{2.t}}^{N_{t}(\cdot,x(t))}(z(t))-J_{$\rho$_{t},A_{2,\mathrm{t}}}^{N_{t}(\cdot,y(t))}(z(t))\Vert\leq v_{2,t}\Vert x(t)-y(t)\Vert , (3.2)

for all (x(t), y(t), z(t), t)\in H_{2}\times H_{2}\times H_{2}\times $\Omega$ , where  x, u :  $\Omega$\rightarrow H_{1} and y :  $\Omega$\rightarrow H_{2} are

measurable mappings, then problem (2.1) has a random solution (x^{*}(t), y^{*}(l), u^{*}(t)) .

4 Iterative algorithms and convergence analysis

In this section, based on Lemma 2.20 and Nadler results [23], we shall construct a new class

of iterative algorithms for solving problems (2.1) and discuss the convergence analysis of the

algorithms.

Algorithm 4.1. Assume that H_{i}, A_{ $\eta$}\cdot, $\eta$_{i}, M, N, E, G, T, \tilde{T} are same as in the problem (2.1) for

each i=1 , 2 and x_{0} :  $\Omega$\rightarrow H_{1}, y_{0} :  $\Omega$\rightarrow H_{2} are measurable mappings. For a : H_{2}\rightarrow(0,1) ,

n\geq 0 and the random element (x(t), y(t), u(t))\in H_{1}\times H_{2}\times H_{1} ,
we define the iterative

sequences \{x_{n}(t)\}, \{y_{n}(t)\}, \{u_{n}(t)\} by

x_{n+1}(t)=(1-$\lambda$_{n}(t))x_{n}(t)+$\lambda$_{n}(t)[J_{p_{t},A_{1,\mathrm{t}}}^{M_{\mathrm{t}}(\cdot,x_{n}(t))}(A_{1,t}(x_{n}(t))-$\rho$_{t}E_{t}(x_{n}(t), y_{n}(t)))]+p_{n}(t) , (4.1)
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y_{n+1}(t)=(1-$\lambda$_{n}(t))y_{n}(t)+$\lambda$_{n}(t)[J_{$\rho$_{\mathrm{t}},A_{2,t}}^{N_{t}(\cdot,y_{n}(t))}(A_{2,t}(y_{n}(t))-$\rho$_{t}G_{t}(u_{n}(t), y_{n}(t)))]+q_{n}(t) , (4.2)

\tilde{T}_{t,x(t)}(u_{n}(t))\geq a(x_{n}(t)) , \Vert u_{n}(t)-u(t)\Vert\leq(1+ $\iota$)\overline{\mathcal{D}}(\tilde{T}_{t}(x_{n}(t)),\tilde{T}_{t}(x(t))) , (4.3)

where  $\rho$,  $\rho$ :  $\Omega$\rightarrow(0,1) are measurable, \{$\lambda$_{n}(t)\} is a measurable sequence in (0,1], and

p_{n}(t) , q_{n}(t) are two random error sequences satisfying the same conditions in H_{1} and H_{2},

respectively.

Lemma 4.2. [24] Let {an}, \{b_{n}\} and \{c_{n}\} be three sequences of nonnegative real numbers

satisfying the following conditions:

(i) 0\leq b_{n}<1, n=0 , 1, 2, \cdots and \displaystyle \lim\sup_{n}b_{n}<1 ;

(ii) $\Sigma$_{n=0^{C_{n}}}^{\infty}<+\infty ;

(ii)  a_{n+1}\leq b_{n}a_{n}+c_{ $\eta$} , n=0 , 1, 2, \cdots

Then \displaystyle \lim_{n\rightarrow\infty}a_{n}=0.

Theorem 4.3. Let H_{1}, H_{2}, T_{t}, \tilde{T}_{t}, $\eta$_{1,t}, $\eta$_{2,t}, A_{1,t}, A_{2,t}, M_{t}, N_{t}, E_{t}, G_{t} be the same as in Theorem

3.1. Assume that all the conditions of Theorem 3.1 hold and

\displaystyle \lim\sup_{n}$\lambda$_{n}(t)<1, $\Sigma$_{n=0}^{\infty}(\Vert p_{n}(t)\Vert+\Vert q_{n}(t)\Vert)<+\infty . (4.4)

Then the random iterative sequences (x_{n}(t), y_{n}(t)) with u_{n}(t)\in\tilde{T}_{t}(x(t)) defined by Algorithm

4.1, converges strongly to the random solution (x^{*}(t), y^{*}(t), u^{*}(t)) of (2.1).
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