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Abstract

Let G_{1} and G_{2} be locally compact Hausdorff groups, E(G_{1}) and E(G_{2}) the function

spaces (Banach algebras or Banach spaces) on G_{1} and G_{2} respectively. Then it is known

that if G_{1}\simeq G_{2} , implies E(G_{1}) and E(G_{2}) are isomorphic. Naturally, an inverse problem

arises that

(P) Whether an algebaic isomorphism  $\Phi$ :  E(G_{1})\rightarrow E(G_{2})

could deduce G_{1}\simeq G_{2} ?

In this paper, we would solve Problem (P) for A^{p}(G) ‐algebras, 1\leq p\leq 2.

1. PRELIMINARIES

(1) 1948, Y. Kawada [7] solved this problem under bipositive isomorphism

 $\Phi$:L^{1}(G_{1})\rightarrow L^{1}(G_{2}) .

(2) 1952, Wendel [13] proved (P) under the isomorphism  $\Phi$ from the algebra  L^{1}(G_{1})

onto L^{1}(G_{2}) by assuming  $\Phi$ is a norm nonincreasing.

(3) 1965, Edwards [2] considered the groups  G_{i}(i=1,2) are compact, and if there

exists a bipositive isomorphism of IP(G_{1}) onto L^{p}(G_{2}) to get,then G_{1}\simeq G_{2} . He

asked whether the compact groups G_{1} and G_{2} are necessarily homeomorphic, if

bipositive is replaced by isometry?

(4) 1966, The affirmative answer to this question in [2] by positive replaced isometry

was given by Strichartz [12].

(5) 1968, Further, Parrott [11] proved the question in Edwards [2] for general locally

compact groups G_{1} and G_{2} if there is an isomertic transformation of L^{p}(G_{1}) onto

IP(G_{2})(1\leq p<\infty, p\neq 2) .

Remark : The Lebesgue space Ii^{p}(G) need not be an algebra if G is not compact.
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(6) 1973, Lai/Lien[10] solved the problem (P) by assume that if there exists an

injective bipositive linear mapping from the Banach space L^{p}(G_{1}) onto Banach

space L^{p}(G_{2}) , then G_{1}\simeq G_{2} is deduced.

(7) Some other isomorphism problems were solved by Johnson [6], Gaudry [4] and Figa

Talamanca [3] in different view points.

(8) In this article we would solve problem (P) on the Banach algebra A^{\mathrm{p}}(G) , 1\leq p\leq 2.

2. A^{p}(G) —ALGEBRAS,  1\leq p<\infty

In this paper, we would consider the isomorphism theorem for  A^{p}(G) —algebras.

Let G be a LCA group with dual group \hat{G} . The space A^{p}(G) is defined by

A^{p}(G)= { f\in L^{1}(G) ; Fourier transform \hat{f}\in L^{p}(\hat{G}) },  1\leq p<\infty . (1)

Then  A^{p}(G) is a commutative Banach algebra under convolution product with the norm

given by

\Vert f\Vert^{p}=\Vert f\Vert_{1}+\Vert\hat{f}\Vert_{\mathrm{p}} , for each p,  1\leq p<\infty for  f\in A^{p}(G) . (2)

The norm \Vert\Vert^{p} is equivalent to \displaystyle \max  f\Vert_{1}, \Vert\hat{f}\Vert_{p} ).
Since f\in A^{p}(G)\Rightarrow\hat{f}\in L^{P}(\hat{G})\cap C_{0}(\hat{G}) , thus \hat{f}\in L^{r}(\hat{G}) for r>p>1 , but

such f\not\in A^{r} for 1\leq p\leq 2\leq q<r<\infty.

By this fact, we know that A^{p}(G) can not include all Fourier transforms of C_{\mathrm{c}}(G)\cap A^{r}.

And A^{1}(G)\supset A^{p}(G)\supset A^{2}(G)\supset A^{q}(G)\supset C_{0}(G) , where A^{1}(G)=\displaystyle \bigcup_{1<p\leq 2}A^{p}(G) is the

closure of such union sets.

We then conclude that

1\leq p\leq 2, C_{c}\cap A^{p}(G) is dense in A^{p}(G) with respect to the A^{p}‐norm.

Thus,

if f\in A^{p}(G) , then \hat{f}\in L^{p}(\hat{G}) and \hat{f}\in L^{q}(\hat{G}) for p\leq 2<q, f\not\in A^{q}(G) ,

and so \forall p, 1\leq p\leq 2\leq q<\infty, \displaystyle \frac{1}{p}+\frac{1}{\mathrm{q}}=1, A^{p}(G)\cap A^{q}(G)=\emptyset.

Hence the index p , only taken in the interval 1\leq p\leq 2 could get T(A^{p})\subset A^{p} by a

continuous linear operator T . So we can discuss the multipliers T on A^{p}(G) only taken
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 1\leq p\leq 2 which could get T(A^{p})\subset A^{p} . Therefore in later part, all A^{p}(G) we discuss will

take 1\leq p\leq 2.

3. MULTIPLIERS OF A^{p}(G)

A multiplier T of $\Lambda$^{p}(G) is a continuous linear mapping of A^{p}(G) , 1\leq p\leq 2 into itself,

such that

T(f*g)=T(f)*g=f*T(g) , for all f, g\in A^{p}(G) .

In order to solve problem (P) on A^{p}(G) ‐algebras. We use a technique by passing the

multiplier of A^{p}(G) , thus we subscrip the definition of A^{p}(G) , as follows. Let \mathfrak{L}(A^{p}) be

the space of all bounded linear operator of A^{p}(G) , 1\leq p\leq 2 into itself.

Definition 1. An operator T\in \mathfrak{L}(A^{p}(G)) is said to be a multiplier of A^{p}(G) if

T(f*g)=Tf*g=f*Tg for f, g\in A^{\mathrm{p}}(G) . (3)

The concept of multiplier T
, one can consult \mathrm{L}\mathrm{a}\mathrm{i}/\mathrm{L}\mathrm{e}\mathrm{e}/ Liu [9, Theorem 1.1]. It deduces

the space \mathfrak{M}(A^{\mathrm{p}}) of multipliers of A^{p}(G) is isometrically isomorphic to M(G) , the space

of all regular measures of G , that is

\mathfrak{M}(A^{p})\cong \mathfrak{M}(L^{1})\cong M(G) , 1\leq p\leq 2 . (4)

On the other hand, it is known that A^{p}(G) is essential L^{1}(G)‐module, since L^{1}(G) has

bounded approximate identity of norm 1 [9, Theorem 2.1]. It is remarkable that A^{p}(G)

has no A^{p}‐uniform bounded approximate identity [8, p.574].

A^{p}*L^{1}=A^{p}
, and ||f*g||^{p}\leq||f||^{p}||g|| , for f\in A^{p}, g\in L^{1} . (5)

Thus the space \mathfrak{M}(A^{p}, L^{1}) of multiplier A^{p} into L^{1} is identical to \mathfrak{M}(A^{p}) . Hence there

exists a unique  $\mu$\in M(G) such that

Tf= $\mu$*f for all f\in A^{p}(G) (6)

for any T\in \mathfrak{M}(A^{p}, L^{1})\cong \mathfrak{M}(A^{p}) . By the property of A^{p}(G) ‐algebras, we will show the

Isomorphism Theorem of A^{p}(G) ‐algebras can be stated as the following:
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Theorem 2. Let G_{1} and G_{2} be locally compact abelian groups and  $\Phi$ an algebaic isomor‐

phism of  A^{P}(G_{1}) onto A^{p}(G_{2}) , 1\leq p\leq 2 . Suppose that one of \hat{G_{1}} and \hat{G_{2}} is connected,

then  $\Phi$ induces a topological isomorphism  $\tau$ carrying  G_{2} onto G_{1} . Furthermore,

 $\Phi$ f(x)=c\hat{x}(x)f( $\tau$ x) for f\in A^{p}(G_{1}) , and x\in G_{2},

where \hat{x}(x) is a fixed character on G_{2} and c a constant depending only on the choice of

Haar measure in G_{2}.

Outline of the proof for the main Theorem is given as follows:

Since the isomorphism

 $\Phi$:A^{p}(G_{1})\rightarrow^{onto}A^{p}(G_{2}) ,

\Rightarrow  $\Phi$ maps the Maximal ideal spaces \mathfrak{M}at(A^{p}(G_{1})) of A^{p}(G_{1})

on to \mathfrak{M}a\mathfrak{x}(A^{p}(G_{2})) of A^{p}(G_{2}) ,

\Rightarrow  $\Phi$ : \mathfrak{M}at(A^{p}(G_{1}))\rightarrow \mathfrak{M}a\mathfrak{x}(A^{p}(G_{2}))

\Vert 1 (7)

=  $\Phi$ : \hat{G_{1}} onto \hat{G_{2}}

The reason of (7) is that since A^{p}(G) is a semisimple commutative Banach algebra, then

the space \mathfrak{M}\mathfrak{a}\mathfrak{x}(A^{p}(G)) is characterized by \hat{G}.

Hence if one of \hat{G_{1}} and \hat{G_{2}} is connected, then both of \hat{G_{1}} and \hat{G_{2}} are connected. There‐

fore G_{1} and G_{2} are non‐compact.

Since the theorem in [3] is applicable, we note that operator T commutes with convo‐

lution on A^{p}(G_{1}) is represented uniquely by  $\mu$\in M(G_{1})

Tf= $\mu$*f=0 for all f\in A^{p}(G_{1})

\Rightarrow $\mu$=0 . (8)

Thus we take \mathrm{v}\in M(G_{2}) for any f\in A^{p}(G_{1}) , it can define this operator

T:A^{p}(G_{1})\rightarrow A^{p}(G_{2})

by

 $\mu$*f=$\Phi$^{-1}( $\nu$* $\Phi$ f)=Tf . (9)
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It is well‐defined by (8) since  A^{p}(G_{1}) is semisimple, and by Loomis [book: p.76 Theorem],

one sees that  $\Phi$ is bicontinuous and hence  T is a multiplier of A^{p}(G_{1}) , thus \exists! $\mu$\in M(G_{1})

such that

 $\mu$*f=$\Phi$^{-1}( $\nu$* $\Phi$ f)=Tf.

This  $\mu$ is uniquely determined by  $\nu$ , we define a mapping  $\Psi$ of  M(G_{2}) into M(G_{1}) by

 $\Psi \nu$*f=$\Phi$^{-1}( $\nu$* $\Phi$ f) .

It is not hard to prove that  $\Psi$ is an isomorphism of  M(G_{2}) onto M(G_{1}) . Since both

measure algebras M(G_{1}) and M(G_{2}) are semi‐simple and commutative,  $\Psi$ is bicontinuous

and one can show that

 $\Psi$|_{A^{p}(G_{2})} on the algebra A^{p}(G_{2}) is dense in L^{1} (G2),

hence  $\Psi$|L^{1}(G_{2}) becomes an isomorphism of L^{1}(G_{2}) onto L^{1}(G_{1}) [See Rudin�s book The‐

orem 6.6.4]. Hence by Helsen [5], the theorem is complete. \square 

The full paper about Isomorphism Theorem of A^{p}(G) ‐algebras will appear in elsewhere.
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