Proceedings of RIMS Workshop on NACA 2015 Kyoto University

INVERSE PROBLEM ON ISOMORPHISM THEOREM OF $A^p(G)$ -ALGEBRAS $1 \le p \le 2$

CHENG-TE LIU , JIN-CHIRNG LEE AND HANG-CHIN LAI*

Abstract

Let G_1 and G_2 be locally compact Hausdorff groups, $E(G_1)$ and $E(G_2)$ the function spaces (Banach algebras or Banach spaces) on G_1 and G_2 respectively. Then it is known that if $G_1 \simeq G_2$, implies $E(G_1)$ and $E(G_2)$ are isomorphic. Naturally, an inverse problem arises that

(P) Whether an algebraic isomorphism $\Phi: E(G_1) \longrightarrow E(G_2)$ could deduce $G_1 \simeq G_2$?

In this paper, we would solve Problem (P) for $A^p(G)$ -algebras, $1 \le p \le 2$.

1. Preliminaries

(1) 1948, Y. Kawada [7] solved this problem under bipositive isomorphism

 $\Phi: L^1(G_1) \longrightarrow L^1(G_2).$

- (2) 1952, Wendel [13] proved (P) under the isomorphism Φ from the algebra L¹(G₁) onto L¹(G₂) by assuming Φ is a norm nonincreasing.
- (3) 1965, Edwards [2] considered the groups $G_i(i = 1, 2)$ are <u>compact</u>, and if there exists a <u>bipositive</u> isomorphism of $L^p(G_1)$ onto $L^p(G_2)$ to get ,then $G_1 \simeq G_2$. He asked whether the compact groups G_1 and G_2 are necessarily homeomorphic, if bipositive is replaced by isometry?
- (4) 1966, The <u>affirmative answer</u> to this question in [2] by positive replaced isometry was given by Strichartz [12].
- (5) 1968, Further, Parrott [11] proved the question in Edwards [2] for general locally compact groups G₁ and G₂ if there is an isomertic transformation of L^p(G₁) onto L^p(G₂) (1 ≤ p < ∞, p ≠ 2).</p>

<u>Remark</u>: The Lebesgue space $L^{p}(G)$ need <u>not</u> be an algebra if G is not compact.

- (6) 1973, Lai/Lien [10] solved the problem (P) by assume that if there exists an <u>injective bipositive</u> linear mapping from the Banach space L^p(G₁) onto Banach space L^p(G₂), then G₁ ≃ G₂ is deduced.
- (7) Some other isomorphism problems were solved by Johnson [6], Gaudry [4] and Figa Talamanca [3] in different view points.
- (8) In this article we would solve problem (P) on the Banach algebra $A^p(G)$, $1 \le p \le 2$.

2. $A^p(G)$ -Algebras, $1 \le p < \infty$

In this paper, we would consider the isomorphism theorem for $\underline{A^p(G) - algebras}$. Let G be a LCA group with dual group \widehat{G} . The space $A^p(G)$ is defined by

$$A^{p}(G) = \{ f \in L^{1}(G) ; \text{ Fourier transform } \widehat{f} \in L^{p}(\widehat{G}) \}, 1 \le p < \infty.$$
(1)

Then $A^{p}(G)$ is a commutative Banach algebra under convolution product with the norm given by

$$|| f ||^{p} = || f ||_{1} + || \widehat{f} ||_{p}$$
, for each $p, 1 \le p < \infty$ for $f \in A^{p}(G)$. (2)

The norm $\| \|^p$ is equivalent to $\max(\| f \|_1, \| \widehat{f} \|_p)$.

Since $f \in A^p(G) \implies \widehat{f} \in L^p(\widehat{G}) \cap C_0(\widehat{G})$, thus $\widehat{f} \in L^r(\widehat{G})$ for r > p > 1, but such $f \notin A^r$ for $1 \le p \le 2 \le q < r < \infty$.

By this fact, we know that $A^{p}(G)$ can not include all Fourier transforms of $C_{c}(G) \cap A^{r}$. And $A^{1}(G) \supset A^{p}(G) \supset A^{2}(G) \supset A^{q}(G) \supset C_{0}(G)$, where $A^{1}(G) = \bigcup_{1 is the closure of such union sets.$

We then conclude that

 $1 \leq p \leq 2, \ C_c \cap A^p(G)$ is dense in $A^p(G)$ with respect to the A^p -norm.

Thus,

if
$$f \in A^p(G)$$
, then $\widehat{f} \in L^p(\widehat{G})$ and $\widehat{f} \in L^q(\widehat{G})$ for $p \le 2 < q$, $f \notin A^q(G)$,
and so $\forall p, \ 1 \le p \le 2 \le q < \infty, \ \frac{1}{p} + \frac{1}{q} = 1, \ A^p(G) \cap A^q(G) = \emptyset$.

Hence the index p, only taken in the interval $1 \le p \le 2$ could get $T(A^p) \subset A^p$ by a continuous linear operator T. So we can discuss the multipliers T on $A^p(G)$ only taken

 $1 \le p \le 2$ which could get $T(A^p) \subset A^p$. Therefore in later part, all $A^p(G)$ we discuss will take $1 \le p \le 2$.

3. Multipliers of $A^p(G)$

A <u>multiplier</u> T of $A^{p}(G)$ is a <u>continuous linear mapping</u> of $A^{p}(G), 1 \leq p \leq 2$ into itself, such that

$$T(f * g) = T(f) * g = f * T(g)$$
, for all $f, g \in A^p(G)$.

In order to solve problem (P) on $A^p(G)$ -algebras. We use a technique by passing the multiplier of $A^p(G)$, thus we subscrip the definition of $A^p(G)$, as follows. Let $\mathfrak{L}(A^p)$ be the space of all bounded linear operator of $A^p(G)$, $1 \le p \le 2$ into itself.

Definition 1. An operator $T \in \mathfrak{L}(A^p(G))$ is said to be a multiplier of $A^p(G)$ if

$$T(f * g) = Tf * g = f * Tg \text{ for } f, g \in A^p(G).$$
(3)

The concept of multiplier T, one can consult Lai/ Lee / Liu [9, Theorem 1.1]. It deduces the space $\mathfrak{M}(A^p)$ of multipliers of $A^p(G)$ is isometrically isomorphic to M(G), the space of all regular measures of G, that is

$$\mathfrak{M}(A^p) \cong \mathfrak{M}(L^1) \cong M(G), \ 1 \le p \le 2.$$
(4)

On the other hand, it is known that $A^{p}(G)$ is essential $L^{1}(G)$ -module, since $L^{1}(G)$ has bounded approximate identity of norm 1 [9, Theorem 2.1]. It is remarkable that $A^{p}(G)$ has no A^{p} -uniform bounded approximate identity [8, p.574].

$$A^{p} * L^{1} = A^{p}$$
, and $||f * g||^{p} \le ||f||^{p} ||g||$, for $f \in A^{p}, g \in L^{1}$. (5)

Thus the space $\mathfrak{M}(A^p, L^1)$ of multiplier A^p into L^1 is identical to $\mathfrak{M}(A^p)$. Hence there exists a unique $\mu \in M(G)$ such that

$$Tf = \mu * f \text{ for all } f \in A^p(G) \tag{6}$$

for any $T \in \mathfrak{M}(A^p, L^1) \cong \mathfrak{M}(A^p)$. By the property of $A^p(G)$ -algebras, we will show the Isomorphism Theorem of $A^p(G)$ -algebras can be stated as the following: **Theorem 2.** Let G_1 and G_2 be locally compact abelian groups and Φ an algebraic isomorphism of $A^P(G_1)$ onto $A^p(G_2)$, $1 \le p \le 2$. Suppose that one of $\widehat{G_1}$ and $\widehat{G_2}$ is connected, then Φ induces a topological isomorphism τ carrying G_2 onto G_1 . Furthermore,

$$\Phi f(x) = c\widehat{x}(x)f(\tau x)$$
 for $f \in A^p(G_1)$, and $x \in G_2$,

where $\hat{x}(x)$ is a fixed character on G_2 and c a constant depending only on the choice of Haar measure in G_2 .

<u>Outline</u> of the proof for the main <u>Theorem</u> is given as follows: Since the isomorphism

AD(C) onto AD(C)

The reason of (7) is that since $A^p(G)$ is a semisimple commutative Banach algebra, then the space $\mathfrak{Mar}(A^p(G))$ is characterized by \widehat{G} .

Hence if one of $\widehat{G_1}$ and $\widehat{G_2}$ is connected, then both of $\widehat{G_1}$ and $\widehat{G_2}$ are <u>connected</u>. Therefore G_1 and G_2 are non-compact.

Since the theorem in [3] is applicable, we note that operator T commutes with convolution on $A^p(G_1)$ is represented uniquely by $\mu \in M(G_1)$

$$Tf = \mu * f = 0 \text{ for all } f \in A^p(G_1)$$
$$\implies \mu = 0. \tag{8}$$

Thus we take $\nu \in M(G_2)$ for any $f \in A^p(G_1)$, it can define this operator

 $T: A^p(G_1) \longrightarrow A^p(G_2)$

by

$$\mu * f = \Phi^{-1}(\nu * \Phi f) = Tf.$$
(9)

It is well-defined by (8) since $A^p(G_1)$ is semisimple, and by Loomis [book : p.76 Theorem], one sees that Φ is <u>bicontinuous</u> and hence T is a multiplier of $A^p(G_1)$, thus $\exists! \ \mu \in M(G_1)$ such that

$$\mu * f = \Phi^{-1}(\nu * \Phi f) = Tf.$$

This μ is uniquely determined by ν , we define a mapping Ψ of $M(G_2)$ into $M(G_1)$ by

$$\Psi\nu * f = \Phi^{-1}(\nu * \Phi f).$$

It is not hard to prove that Ψ is an isomorphism of $M(G_2)$ onto $M(G_1)$. Since both measure algebras $M(G_1)$ and $M(G_2)$ are semi-simple and commutative, Ψ is bicontinuous and one can show that

 $\Psi|_{A^p(G_2)}$ on the algebra $A^p(G_2)$ is dense in $L^1(G_2)$,

hence $\Psi|L^1(G_2)$ becomes an isomorphism of $L^1(G_2)$ onto $L^1(G_1)$ [See Rudin's book Theorem 6.6.4]. Hence by Helsen [5], the theorem is complete. \Box

The full paper about Isomorphism Theorem of $A^{p}(G)$ -algebras will appear in elsewhere.

References

- B. Brainerd and R. E. Edwards, Linear operator which commutes with translation, The Journal of Australian Math. Soc., 6 (1966), 289-327.
- [2] R. E. Edwards, Bipositive and isometric isomorphism of certain convolution algebras, Canad. J. Math., 17 (1965), 839-846.
- [3] A. Figa-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of L^p, Michigan Math. J., 17 (1970), 170-191.
- [4] G. I. Gaudry, Isomorphisms of Multipliers algebras, Canad. J. Math., 20 (1969), 1165-1172.
- [5] H. Helsen, Isomorphism of abelian group algebras, Ark. Math. Bd., 2 (1953), 475-487.
- [6] B. E. Johnson, Isometric isomorphisms of Measure algebras, Proc. Amer. Math. Soc., 15 (1964), 186-188.
- [7] Y. Kawada, On the group ring of a topological group, Math. Japonica., 1 (1948), 1-5.
- [8] Hang-Chin Lai, On some properties of $A^p(G)$ -algebras, Proc. Japan Acad., 45 (1969), 572-576.
- [9] Hang-Chin Lai, Jin-Chirng Lee and Cheng-Te Liu, Multipliers of Banach-valued function spaces on LCA group, J. Nonlinear Convex Anal., 16 (2015), 1949-1963.
- [10] Hang-Chin Lai and Ming-Chao Lien, Isomorphism of the spaces $L^p(G)$, Chinese J. Math. 1 (1973) 2, 167-173.
- [11] S. K. Parrott, Isometric multiplier, Pacific J. Math., 5 (1968), 158-166.
- [12] R. S. Strichartz, Isomorphism of group algebrasp, Proc. Amer. Math. Soc., 17 (1966), 858-862.
- [13] I. G. Wendel, Left centralizers and isomorphism of group algebras, Pacific J. Math., 2 (1952), 251-261.

[Cheng-Te Liu] Department of Applied Mathematics Chung Yuan Christian University Taoyuan 32023, TAIWAN E-mail address: ab30182001@yahoo.com.tw

[Jin-Chirng Lee] Department of Applied Mathematics Chung Yuan Christian University Taoyuan 32023, TAIWAN E-mail address: jclee@cycu.edu.tw

[Hang-Chin Lai] Department of Mathematics National Tsing Hua University Hsinchu 30013, TAIWAN E-mail address: laihc@math.nthu.edu.tw