Proceedings of RIMS Workshop on NACA 2015 Kyoto University

INVERSE PROBLEM ON ISOMORPHISM THEOREM OF $A^{p}(G)$－ALGEBRAS $1 \leq p \leq 2$

CHENG－TE LIU ，JIN－CHIRNG LEE AND HANG－CHIN LAI＊

Abstract

Let G_{1} and G_{2} be locally compact Hausdorff groups，$E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ the function spaces（Banach algebras or Banach spaces ）on G_{1} and G_{2} respectively．Then it is known that if $G_{1} \simeq G_{2}$ ，implies $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ are isomorphic．Naturally，an inverse problem arises that

$(\mathrm{P}) \quad$ Whether an algebaic isomorphism $\Phi: E\left(G_{1}\right) \longrightarrow E\left(G_{2}\right)$
could deduce $G_{1} \simeq G_{2}$ ？
In this paper，we would solve Problem（ P ）for $A^{p}(G)$－algebras， $1 \leq p \leq 2$ ．

1．Preliminaries

（1）1948，Y．Kawada［7］solved this problem under bipositive isomorphism $\Phi: L^{1}\left(G_{1}\right) \longrightarrow L^{1}\left(G_{2}\right)$.
（2）1952，Wendel［13］proved（P）under the isomorphism Φ from the algebra $L^{1}\left(G_{1}\right)$ onto $L^{1}\left(G_{2}\right)$ by assuming Φ is a norm nonincreasing．
（3） 1965 ，Edwards［2］considered the groups $G_{i}(i=1,2)$ are compact，and if there exists a bipositive isomorphism of $L^{p}\left(G_{1}\right)$ onto $L^{p}\left(G_{2}\right)$ to get ，then $G_{1} \simeq G_{2}$ ．He asked whether the compact groups G_{1} and G_{2} are necessarily homeomorphic，if bipositive is replaced by isometry？
（4）1966，The affirmative answer to this question in［2］by positive replaced isometry was given by Strichartz［12］．
（5）1968，Further，Parrott［11］proved the question in Edwards［2］for general locally compact groups G_{1} and G_{2} if there is an isomertic transformation of $L^{p}\left(G_{1}\right)$ onto $L^{p}\left(G_{2}\right)(1 \leq p<\infty, p \neq 2)$.

Remark ：The Lebesgue space $L^{p}(G)$ need not be an algebra if G is not compact．
(6) 1973, Lai/Lien [10] solved the problem (P) by assume that if there exists an injective bipositive linear mapping from the Banach space $L^{p}\left(G_{1}\right)$ onto Banach space $L^{p}\left(G_{2}\right)$, then $G_{1} \simeq G_{2}$ is deduced.
(7) Some other isomorphism problems were solved by Johnson [6], Gaudry [4] and Figa Talamanca [3] in different view points.
(8) In this article we would solve problem (P) on the Banach algebra $A^{p}(G), 1 \leq p \leq 2$.

$$
\text { 2. } A^{p}(G) \text {-AlGEBRAS, } 1 \leq p<\infty
$$

In this paper, we would consider the isomorphism theorem for $A^{p}(G)$-algebras.
Let G be a $L C A$ group with dual group \widehat{G}. The space $A^{p}(G)$ is defined by

$$
\begin{equation*}
A^{p}(G)=\left\{f \in L^{1}(G) ; \text { Fourier transform } \widehat{f} \in L^{p}(\widehat{G})\right\}, 1 \leq p<\infty \tag{1}
\end{equation*}
$$

Then $A^{p}(G)$ is a commutative Banach algebra under convolution product with the norm given by

$$
\begin{equation*}
\|f\|^{p}=\|f\|_{1}+\|\widehat{f}\|_{p}, \text { for each } \quad p, 1 \leq p<\infty \text { for } f \in A^{p}(G) \tag{2}
\end{equation*}
$$

The norm $\left\|\|^{p}\right.$ is equivalent to $\max \left(\|f\|_{1},\|\widehat{f}\|_{p}\right)$.
Since $f \in A^{p}(G) \Longrightarrow \widehat{f} \in L^{P}(\widehat{G}) \cap C_{0}(\widehat{G})$, thus $\widehat{f} \in L^{r}(\widehat{G})$ for $r>p>1$, but such $f \notin A^{r}$ for $1 \leq p \leq 2 \leq q<r<\infty$.

By this fact, we know that $A^{p}(G)$ can not include all Fourier transforms of $C_{c}(G) \cap A^{r}$. And $A^{1}(G) \supset A^{p}(G) \supset A^{2}(G) \supset A^{q}(G) \supset C_{0}(G)$, where $A^{1}(G)=\bigcup_{1<p \leq 2} A^{p}(G)$ is the closure of such union sets.

We then conclude that
$1 \leq p \leq 2, C_{c} \cap A^{p}(G)$ is dense in $A^{p}(G)$ with respect to the A^{p}-norm.
Thus,
if $f \in A^{p}(G)$, then $\widehat{f} \in L^{p}(\widehat{G})$ and $\widehat{f} \in L^{q}(\widehat{G})$ for $p \leq 2<q, f \notin A^{q}(G)$,
and so $\forall p, 1 \leq p \leq 2 \leq q<\infty, \frac{1}{p}+\frac{1}{q}=1, A^{p}(G) \cap A^{q}(G)=\emptyset$.
Hence the index p, only taken in the interval $1 \leq p \leq 2$ could get $T\left(A^{p}\right) \subset A^{p}$ by a continuous linear operator T. So we can discuss the multipliers T on $A^{p}(G)$ only taken

INVERSE PROBLEM ON ISOMORPHISM THEOREM OF $A^{p}(G)$-ALGEBRAS $1 \leq p<\infty$
$1 \leq p \leq 2$ which could get $T\left(A^{p}\right) \subset A^{p}$. Therefore in later part, all $A^{p}(G)$ we discuss will take $1 \leq p \leq 2$.

3. Multipliers of $A^{p}(G)$

A multiplier T of $A^{p}(G)$ is a continuous linear mapping of $A^{p}(G), 1 \leq p \leq 2$ into itself, such that

$$
T(f * g)=T(f) * g=f * T(g), \text { for all } f, g \in A^{p}(G)
$$

In order to solve problem (P) on $A^{p}(G)$-algebras. We use a technique by passing the multiplier of $A^{p}(G)$, thus we subscrip the definition of $A^{p}(G)$, as follows. Let $\mathfrak{L}\left(A^{p}\right)$ be the space of all bounded linear operator of $A^{p}(G), 1 \leq p \leq 2$ into itself.

Definition 1. An operator $T \in \mathfrak{L}\left(A^{p}(G)\right)$ is said to be a multiplier of $A^{p}(G)$ if

$$
\begin{equation*}
T(f * g)=T f * g=f * T g \text { for } f, g \in A^{p}(G) \tag{3}
\end{equation*}
$$

The concept of multiplier T, one can consult Lai/ Lee / Liu [9, Theorem 1.1]. It deduces the space $\mathfrak{M}\left(A^{p}\right)$ of multipliers of $A^{p}(G)$ is isometrically isomorphic to $M(G)$, the space of all regular measures of G, that is

$$
\begin{equation*}
\mathfrak{M}\left(A^{p}\right) \cong \mathfrak{M}\left(L^{1}\right) \cong M(G), 1 \leq p \leq 2 \tag{4}
\end{equation*}
$$

On the other hand, it is known that $A^{p}(G)$ is essential $L^{1}(G)$-module, since $L^{1}(G)$ has bounded approximate identity of norm 1 [9, Theorem 2.1]. It is remarkable that $A^{p}(G)$ has no A^{p}-uniform bounded approximate identity [8, p.574].

$$
\begin{equation*}
A^{p} * L^{1}=A^{p}, \text { and }\|f * g\|^{p} \leq\|f\|^{p}\|g\|, \text { for } f \in A^{p}, g \in L^{1} \tag{5}
\end{equation*}
$$

Thus the space $\mathfrak{M}\left(A^{p}, L^{1}\right)$ of multiplier A^{p} into L^{1} is identical to $\mathfrak{M}\left(A^{p}\right)$. Hence there exists a unique $\mu \in M(G)$ such that

$$
\begin{equation*}
T f=\mu * f \text { for all } f \in A^{p}(G) \tag{6}
\end{equation*}
$$

for any $T \in \mathfrak{M}\left(A^{p}, L^{1}\right) \cong \mathfrak{M}\left(A^{p}\right)$. By the property of $A^{p}(G)$-algebras, we will show the Isomorphism Theorem of $A^{p}(G)$-algebras can be stated as the following:

Theorem 2. Let G_{1} and G_{2} be locally compact abelian groups and Φ an algebaic isomorphism of $A^{P}\left(G_{1}\right)$ onto $A^{p}\left(G_{2}\right), 1 \leq p \leq 2$. Suppose that one of $\widehat{G_{1}}$ and $\widehat{G_{2}}$ is connected, then Φ induces a topological isomorphism τ carrying G_{2} onto G_{1}. Furthermore,

$$
\Phi f(x)=c \widehat{x}(x) f(\tau x) \text { for } f \in A^{p}\left(G_{1}\right), \text { and } x \in G_{2}
$$

where $\widehat{x}(x)$ is a fixed character on G_{2} and c a constant depending only on the choice of Haar measure in G_{2}.

Outline of the proof for the main Theorem is given as follows:
Since the isomorphism

$$
\begin{align*}
& \Phi: A^{p}\left(G_{1}\right) \xrightarrow{\text { onto }} A^{p}\left(G_{2}\right), \\
& \Longrightarrow \Phi \text { maps the Maximal ideal spaces } \mathfrak{M a x}\left(A^{p}\left(G_{1}\right)\right) \text { of } A^{p}\left(G_{1}\right) \\
& \text { on to } \mathfrak{M a x}\left(A^{p}\left(G_{2}\right)\right) \text { of } A^{p}\left(G_{2}\right) \text {, } \\
& \Longrightarrow \Phi: \mathfrak{M a x}\left(A^{p}\left(G_{1}\right)\right) \longrightarrow \mathfrak{M a x}\left(A^{p}\left(G_{2}\right)\right) \\
& \| \text { || } \tag{7}\\
& \Longrightarrow \Phi: \quad \widehat{G_{1}} \quad \xrightarrow{\text { onto }} \widehat{G_{2}}
\end{align*}
$$

The reason of (7) is that since $A^{p}(G)$ is a semisimple commutative Banach algebra, then the space $\mathfrak{M a x}\left(A^{p}(G)\right)$ is characterized by \widehat{G}.

Hence if one of $\widehat{G_{1}}$ and $\widehat{G_{2}}$ is connected, then both of $\widehat{G_{1}}$ and $\widehat{G_{2}}$ are connected. Therefore G_{1} and G_{2} are non-compact.

Since the theorem in [3] is applicable, we note that operator T commutes with convolution on $A^{p}\left(G_{1}\right)$ is represented uniquely by $\mu \in M\left(G_{1}\right)$

$$
\begin{align*}
& T f=\mu * f=0 \text { for all } f \in A^{p}\left(G_{1}\right) \\
& \Longrightarrow \mu=0 . \tag{8}
\end{align*}
$$

Thus we take $\nu \in M\left(G_{2}\right)$ for any $f \in A^{p}\left(G_{1}\right)$, it can define this operator

$$
T: A^{p}\left(G_{1}\right) \longrightarrow A^{p}\left(G_{2}\right)
$$

by

$$
\begin{equation*}
\mu * f=\Phi^{-1}(\nu * \Phi f)=T f \tag{9}
\end{equation*}
$$

INVERSE PROBLEM ON ISOMORPHISM THEOREM OF $A^{p}(G)$-ALGEBRAS $1 \leq p<\infty$
It is well-defined by (8) since $A^{p}\left(G_{1}\right)$ is semisimple, and by Loomis [book : p. 76 Theorem], one sees that Φ is bicontinuous and hence T is a multiplier of $A^{p}\left(G_{1}\right)$, thus $\exists!\mu \in M\left(G_{1}\right)$ such that

$$
\mu * f=\Phi^{-1}(\nu * \Phi f)=T f
$$

This μ is uniquely determined by ν, we define a mapping Ψ of $M\left(G_{2}\right)$ into $M\left(G_{1}\right)$ by

$$
\Psi \nu * f=\Phi^{-1}(\nu * \Phi f)
$$

It is not hard to prove that Ψ is an isomorphism of $M\left(G_{2}\right)$ onto $M\left(G_{1}\right)$. Since both measure algebras $M\left(G_{1}\right)$ and $M\left(G_{2}\right)$ are semi-simple and commutative, Ψ is bicontinuous and one can show that
$\left.\Psi\right|_{A^{p}\left(G_{2}\right)}$ on the algebra $A^{p}\left(G_{2}\right)$ is dense in $L^{1}\left(G_{2}\right)$,
hence $\Psi \mid L^{1}\left(G_{2}\right)$ becomes an isomorphism of $L^{1}\left(G_{2}\right)$ onto $L^{1}\left(G_{1}\right)$ [See Rudin's book Theorem 6.6.4]. Hence by Helsen [5], the theorem is complete.

The full paper about Isomorphism Theorem of $A^{p}(G)$-algebras will appear in elsewhere.

References

[1] B. Brainerd and R. E. Edwards, Linear operator which commutes with translation, The Journal of Australian Math. Soc., 6 (1966), 289-327.
[2] R. E. Edwards, Bipositive and isometric isomorphism of certain convolution algebras, Canad. J. Math., 17 (1965), 839-846.
[3] A. Figa-Talamanca and G. I. Gaudry, Multipliers and sets of uniqueness of L^{p}, Michigan Math. J., 17 (1970), 170-191.
[4] G. I. Gaudry, Isomorphisms of Multipliers algebras, Canad. J. Math., 20 (1969), 1165-1172.
[5] H. Helsen, Isomorphism of abelian group algebras, Ark. Math. Bd., 2 (1953), 475-487.
[6] B. E. Johnson, Isometric isomorphisms of Measure algebras, Proc. Amer. Math. Soc., 15 (1964), 186-188.
[7] Y. Kawada, On the group ring of a topological group, Math. Japonica., 1 (1948), 1-5.
[8] Hang-Chin Lai, On some properties of $A^{p}(G)$-algebras, Proc. Japan Acad., 45 (1969), 572-576.
[9] Hang-Chin Lai, Jin-Chirng Lee and Cheng-Te Liu, Multipliers of Banach-valued function spaces on LCA group, J. Nonlinear Convex Anal., 16 (2015), 1949-1963.
[10] Hang-Chin Lai and Ming-Chao Lien, Isomorphism of the spaces $L^{p}(G)$, Chinese J. Math. 1 (1973) 2, 167-173.
[11] S. K. Parrott, Isometric multiplier, Pacific J. Math., 5 (1968), 158-166.
[12] R. S. Strichartz, Isomorphism of group algebrasp, Proc. Amer. Math. Soc., 17 (1966), 858-862.
[13] I. G. Wendel, Left centralizers and isomorphism of group algebras, Pacific J. Math., 2 (1952), 251-261.

[Cheng-Te Liu]
Department of Applied Mathematics
Chung Yuan Christian University
Taoyuan 32023, TAIWAN
E-mail address: ab30182001@yahoo.com.tw
[Jin-Chirng Lee]
Department of Applied Mathematics
Chung Yuan Christian University
Taoyuan 32023, TAIWAN
E-mail address: jclee@cycu.edu.tw
[Hang-Chin Lai]
Department of Mathematics
National Tsing Hua University
Hsinchu 30013, TAIWAN
E-mail address: laihc@math.nthu.edu.tw

