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Abstract

This is a summary of our previous work on relation between torsion

points and bad reduction primes of an elliptic curve E over a number

field. We mainly introduce some results on the non‐existence of a torsion

points of E of prime order p if E has bad reduction only at certain primes
related with p.

1 Introduction

Let E be an elliptic curve over a number field K . For a prime p , the K‐rational

p‐‐torsion points of E are the points of exact order p.in the Mordell‐Weil group

E(K) . In 1975, A. Ogg [Ogg75] first conjectured which groups can be \mathbb{Q}‐rational

torsion subgroups of an elliptic curve over \mathbb{Q} . In 1977, Mazur [Maz77, Maz78]
proved Ogg�s conjecture and showed that any elliptic curve over \mathbb{Q} cannot have a

\mathbb{Q}‐rational p\ovalbox{\tt\small REJECT}‐torsion point for the primes p\geq 11 . For quadratic fields, Kamienny
[Kam92] and Kenku‐Momose [KM88] classified the possible torsion subgroups
and showed that any elliptic curve over a quadratic field K has no K‐rational

p‐‐torsion points for the primes p\geq 17 . For cubic fields, Parent [Par00, Par03]
proved the same result on the non‐existence of  p\mapsto‐torsion points as in the case of

quadratic fields. Moreover, it was announced at the 2010 Algorithmic Number

Theory Symposium (ANTS‐IX) [StolO] that Kamienny, Stein and Stoll proved
that 17 is the largest prime dividing the order of the  K‐rational torsion subgroup
of an elliptic curve over any quartic field K.

In addition to the above development on classification of possible p‐‐torsion
points, the notion of reduction plays an important role in the theory of elliptic
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curves. In this paper, we are interested in relation between the (non‐)existence of

a K‐rational  p\leftrightarrow‐torsion point of  E and the primes at which E has bad reduction.

To investigate the relation, it is helpful to study the ramification of the extension

K(E\lceil p]) over K($\zeta$_{p}) , where let K(E[p]) denote the field generated by the p‐
torsion subgroup E[p] and $\zeta$_{p} a fixed primitive p‐th root of unity. Note that this

extension gives a Kummer extension of degree dividing p if E has a K‐rational

p‐‐torsion point. Then the motivation of this paper is to study the relation

among the following three mathematical objects:

1. (Non‐)existence of a K‐rational p‐‐torsion point of E

2. The primes of K at which E has bad reduction

3. Ramification of the extension K(E\lceil p]) over K($\zeta$_{p})

Agashe [Aga08] studied a part of the above relations. Specifically, he showed

that if an elliptic curve over \mathbb{Q} of square‐free conductor N (namely, a semi‐stable

elliptic curve) has a \mathbb{Q}‐rational p‐‐torsion point, for p\geq 5 , then p divides either

6N or the order of the cuspidal subgroup of J_{0}(N)(\mathbb{C}) , where let J_{0}(N) denote

the Jacobian variety determined by the congruence subgroup $\Gamma$_{0}(N)\subset \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) .

T. Takagi [Tak12] gave an explicit formula for the order of cuspidal subgroups,
and he combined his result with Agashe�s one to obtain a non‐existence result

of a \mathbb{Q}‐rational p‐‐torsion point of semi‐stable elliptic curves over \mathbb{Q} with certain

conductor N . This paper basically gives a summary of the author�s previous
work [Yas08, \mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}2\mathrm{a}, \mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}3\mathrm{a}, \mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}3\mathrm{b}]. Especially, in this paper, we introduce

an extension of Agashe‐Takagi�s non‐existence result.

Notation The symbols \mathbb{Z}, \mathbb{Q}, \mathbb{R} , and \mathbb{C} denote, respectively, the ring of in‐

tegers, the field of rational numbers, the field of real numbers, and the field of

complex numbers. For a prime p , the finite field with p elements is denoted by
\mathbb{F}_{p} . Let $\zeta$_{p} denote a fixed primitive p‐th root of unity, and \dot{ $\mu$}_{p} the set of p‐th
roots of unity. By \mathbb{Z}_{p} and \mathbb{Q}_{p} , we denote the p‐‐adic integers and the p‐‐adic
rational numbers, respectively. For a number field K , let \mathcal{O}_{K} denote its ring of

integers, and U_{K} the group of units in the ring \mathcal{O}_{K} . For a prime \mathfrak{p} of K , let \mathcal{O}_{\mathfrak{p}}
be the completion of the ring \mathcal{O}_{K} at \mathfrak{p} , and U_{\mathrm{p}} denote the group of units in \mathcal{O}_{\mathfrak{p}}.
We also define a filtration \{U_{\mathfrak{p}}^{(i)}\}_{i\geq 1} of the group U_{\mathfrak{p}} given by U_{\mathfrak{p}}^{(i)}=1+\mathfrak{p}^{i} (e.g.
see [Ser79, Chapter IV and we have \mathcal{O}_{\mathfrak{p}}\supset U_{\mathfrak{p}}\supset U_{\mathfrak{p}}^{(1)}\supset\cdots\supset U_{\mathfrak{p}}^{(i)}\supset\cdots
We denote by  e_{\mathfrak{p}} and f_{\mathfrak{p}} the ramification index and the residue degree of \mathfrak{p},

respectively. Let v_{\mathfrak{p}} be the normalized discrete valuation determined by \mathfrak{p} (then
we have v_{\mathfrak{p}}(p)=e_{\mathfrak{p}} ).
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2 Preliminaries

In this section, we give some basic results on elliptic curves, which shall be

needed for our later discussions.

2.1 Elliptic curves with a ‐torsion point
Given a number field K and a prime number p , fix an elliptic curve E over K

having a K‐rational 1 torsion point P . Using the Weil‐pairing

e_{p}:E\lceil p]\times E\lceil p]\rightarrow$\mu$_{p},

we can define a map  $\psi$ :  E\lceil p] \rightarrow$\mu$_{p} by Q\mapsto e_{p}(P, Q) . Let G_{K} denote the

absolute Galois group \mathrm{G}\mathrm{a}1(\overline{K}/K) . Since the point P is rational over K , the

map  $\psi$ gives an exact sequence of  G_{K}‐modules

0\rightarrow \mathbb{Z}/p\mathbb{Z}\rightarrow E\lceil p]\rightarrow^{ $\psi$}$\mu$_{p}\rightarrow 0 , (1)

where \mathbb{Z}/p\mathbb{Z} is the constant G_{K}‐module generated by P . Take Q\in E\lceil p] satisfy‐
ing e_{p}(P, Q)=$\zeta$_{p} , and.then the set \{P, Q\} forms a basis of E\lceil p] as an \mathrm{F}_{p}‐vector

space.

Lemma 2.1. Let L=K(E\lceil p]) denote the extension field over K generated by
the p‐torsion points of E. Then L contains the field F=K($\zeta$_{p}) .

Proof. Since  $\sigma$($\zeta$_{p})=e_{p}( $\sigma$(P),  $\sigma$(Q))=e_{p}(P, Q)=$\zeta$_{p} for any element  $\sigma$\in

\mathrm{G}\mathrm{a}1(\overline{K}/L) , the element $\zeta$_{\dot{p}} is stable under the Galois group \mathrm{G}\mathrm{a}1(\overline{K}/L) . Then L

contains $\zeta$_{p} , and hence we have F\subseteq L. \square 

The action of G_{K} on E[p] gives its associated Galois modulo p representation

\overline{ $\rho$}_{E,p}:G_{K}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(E\lceil p])\simeq \mathrm{G}\mathrm{L}_{2}(\mathbb{F}_{p}) . (2)

Given an element  $\tau$\in G_{K} , we have \overline{ $\rho$}_{E,p}( $\tau$)\left(\begin{array}{l}
P\\
Q
\end{array}\right)=(_{ $\tau$(Q)}^{ $\tau$(P)}) This represen‐

tation induces the faithful representation p : \mathrm{G}\mathrm{a}1(L/K)\rightarrow \mathrm{G}\mathrm{L}_{2}(\mathbb{F}_{p}) . By the

exact sequence (1), the representation  $\rho$ has the form \left(\begin{array}{ll}
1 & *\\
0 &  $\omega$
\end{array}\right) , where we let

 $\omega$:\triangle=\mathrm{G}\mathrm{a}1(F/K)\rightarrow \mathbb{F}_{p}^{\times} (3)

denote the cyclotomic character defined by  $\sigma$($\zeta$_{p})=$\zeta$_{p}^{ $\omega$( $\sigma$)} for every  $\sigma$\in\triangle.
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Proposition 2.2. The field L is a Kummer extension over F of degree either

1 or p.

Proof. The group \mathrm{G}\mathrm{a}1(L/F) is isomorphic to the subgroup of \mathrm{G}\mathrm{L}_{2}(\mathbb{F}_{p}) consisting

of all matrices of the form \left(\begin{array}{ll}
1 & *\\
0 & 1
\end{array}\right) under  $\rho$ . Therefore the field  L is an extension

field over F of degree dividing p , and hence L/F is a Kummer extension. \square 

We further consider the action of \triangle on \mathrm{G}\mathrm{a}1(L/F) by conjugation in \mathrm{G}\mathrm{a}1(L/K) .

Let us consider \triangle as a subgroup of \mathbb{F}_{p}^{\times} under the cyclotomic character  $\omega$ . Fix

 a\in\triangle\subset \mathbb{F}_{p}^{\times} . Since conjugating \left(\begin{array}{ll}
1 & k\\
0 & 1
\end{array}\right) by a\in \mathbb{F}_{p}^{\times} gives (_{0}^{1} k/a1) , we see

that a\in\triangle\subset \mathbb{F}_{p}^{\times} acts on \mathrm{G}\mathrm{a}1(L/F) as multiplication by a^{-1} . Then we can

obtain the following result on the p‐‐part of the ideal class group of F :

Proposition 2.3. Let A_{F} denote the p‐part of the ideal class group of F. If
the extension L/F is non‐trivial and unramified, then A_{F}^{$\omega$^{-1}}\neq 0 , where let R^{$\omega$^{ $\iota$}}
denote the $\omega$^{i} ‐eigenspace of a \mathbb{Z}_{p}[\triangle] ‐module R.

2.2 Families of elliptic curves with a p‐torsion point

Here we give some facts on elliptic curves having a K‐rational p‐‐torsion point
only for p=5 and 7. Let E be an elliptic curve over a number field K with a

K‐rational p‐‐torsion point P . For p=5 and 7, there exists an element t\in K

such that E is isomorphic to the elliptic curve given by the Weierstrass equation

E_{t}^{(5)} : y^{2}+(1-t)xy -- ty=x^{3} — tx
2

(if p=5), or (4)

E_{t}^{(7)} : y^{2}+(1+t-t^{2})xy+(t^{2}-t^{3})y=x^{3}+(t^{2}-t^{3})x^{2} (if p=7), (5)

where the point P\in E corresponds to (0,0)\in E_{t}^{(p)} (see [Kub76, Table 3] or

[Si186, Appendix \mathrm{C} ] for details). Then the discriminant of E_{t}^{(p)} is given by

\triangle(E_{t}^{(p)})=\left\{\begin{array}{ll}
t^{5}. Q5 (t) & \mathrm{f}\mathrm{o}\mathrm{r} p=5,\\
t^{7}(t-1)^{7}\cdot Q_{7}(t) & \mathrm{f}\mathrm{o}\mathrm{r} p=7,
\end{array}\right.
where we set

\left\{\begin{array}{l}
Q_{5}(X)=X^{2}-11X-1,\\
Q7(X) =X^{3}-8X^{2}+5X+1.
\end{array}\right.
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2.2.1 Modular Interpretation

For an odd prime number p , let X_{1}(p) denote the modular curve associated to

the congruence subgroup $\Gamma$_{1}(p)\subset \mathrm{S}\mathrm{L}_{2}(\mathbb{Z}) . According to [Si186, Appendix \mathrm{C}],
the modular curve X_{1}(p) is a smooth projective curve over \mathbb{Q} , and it has (p-1)
cusps. More specifically, only half of the cusps are defined over \mathbb{Q} , but the other

\displaystyle \frac{1}{2}(p-1) cusps are defined over the maximal real subfield \mathbb{Q}($\zeta$_{p})\cap \mathbb{R} of \mathbb{Q}($\zeta$_{p}) .

In terms of modular curves, one elliptic curve over K having a K‐rational p‐
torsion point corresponds to one K‐rational point of X_{1}(p) . In particular, the

curve X_{1}(p) is isomorphic to the projective line \mathbb{P}^{1} for cases p=5 and 7. In the

two cases, each point [t, 1]\in \mathbb{P}^{1} maps to the pair (E_{t}^{(p)}, P)\in X_{1}(p) defined over

the function field \mathbb{Q}(t) where P is the K‐rational p\overline{-}torsion point (0,0) of E_{t}^{(p)}
(in this setting, we consider t as an indeterminate element), namely, we have

the correspondence

\mathbb{P}^{1}\ni[t, 1]\mapsto(E_{t}^{(p)}, P)\in X_{1}(p) . (6)

Furthermore, the result in [Fis00, Chapter 1] tells us that we have

(E_{t}^{(5)}, 2P)\simeq(E_{-1/t}^{(5)}, P) and (E_{t}^{(7)}, 2P)\simeq(E_{(t-1)/t}^{(7)}, P) . (7)

Fkom the correspondence (6), the cusps of the curve X_{1}(p) correspond to the

values t satisfying either \triangle(E_{t}^{(p)})=0 or  t=\infty . Therefore all the cusps of  X_{1}(p)
for p=5 and 7 are computable and shown in the below table:

2.2.2 Verdure�s Kummer generators

For any Kummer extension L/K($\zeta$_{p}) of degree p , there exists an element  $\kappa$\in L

satisfying both $\kappa$^{p}=a\in K($\zeta$_{p}) and L=K($\zeta$_{p},  $\kappa$)=K($\zeta$_{\mathrm{p}}, $\varphi$_{\overline{a}}) .

Definition 2.4. We call such an element  $\kappa$\in L (resp. $\kappa$^{p}=a\in K($\zeta$_{\mathrm{p}}) ) \mathrm{a}

Kummer element (resp. Kummer generator) for the extension L/K($\zeta$_{p}) .
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Given an elliptic curve E over K having a K‐rational p‐‐torsion point, Verdure

[Ver06] directly computed Kummer generators for the extension L=K(E[p])
over F=K($\zeta$_{p}) in cases p=3 , 5 and 7. His main idea for obtaining such

a Kummer generator is to make use of Lagrange resolvents for the p‐th divi‐

sion polynomial associated to E . For explicit Kummer generators obtained by
Verdure, let us give the roots of the equation Q_{p}(X)=0 for p=5 and 7.

The case p=5

\left\{\begin{array}{ll}
Qs(X) & =\\
$\alpha$_{5} & =\\
$\beta$_{5} & =
\end{array}\right.
The case p=7

(X -\mathrm{a}_{5})(X-$\beta$_{5}) ,

8+5$\zeta$_{5}+5$\zeta$_{5}^{4},
3-5$\zeta$_{5}-5$\zeta$_{5}^{4}.

\left\{\begin{array}{ll}
Q_{7}(X) & = (X-$\alpha$_{7})(X-$\beta$_{7})(X-$\gamma$_{7}) ,\\
$\alpha$_{7} & = 1-2$\zeta$_{7}-3$\zeta$_{7}^{2}-3$\zeta$_{7}^{5}-2$\zeta$_{7}^{6},\\
$\beta$_{7} & = 1-2$\zeta$_{7}^{2}-3$\zeta$_{7}^{3}-3$\zeta$_{7}^{4}-2$\zeta$_{7}^{5},\\
$\gamma$_{7} & = 1-3$\zeta$_{7}-2$\zeta$_{7}^{3}-2$\zeta$_{7}^{4}-3$\zeta$_{7}^{6}.
\end{array}\right.
Then we are ready to introduce explicit Kummer generators directly computed
by Verdure (note that in [Ver06, Theorem 5 and 6] he merely gives a criterion

to decide whether all the  p\leftrightarrow‐torsion points are rational or not):

Proposition 2.5 (see Theorem 5 and 6 of [Ver06]). Let  K be the function field
\mathbb{Q}(t) of variable t . For p=5 , set

a_{5}(t)=\displaystyle \frac{t-$\alpha$_{5}}{t-$\beta$_{5}}\in K($\zeta$_{5}) .

For p=7 , set

a_{7}(t)=\displaystyle \frac{(t-$\alpha$_{7})(t-$\beta$_{7})^{2}}{(t-$\gamma$_{7})^{3}}\in K($\zeta$_{7}) .

Then, for E=E_{t}^{(\mathrm{p})} , the element a_{p}(t) gives a Kummer generator for the exten‐

sion L=K(E\lceil p]) over F=K($\zeta$_{p}) , namely, we have L=F(\sqrt{a_{p}(t)}) .

Proof. See the computational results in the proof of [Ver06, Theorem 5 and 6]
for details. Note that all the computations in [Ver06] are performed using the

software package MAGMA for arithmetic computations. Here we give only a
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sketch of his strategy; Let L=K(E\lceil p]) and F=K($\zeta$_{p}) . By factoring the p‐th
division polynomial associated to E into the product of irreducible polynomials,
we first find a point Q\in E\lceil p] such that \{P, Q\} forms a basis of Ep\lceil J] as an \mathbb{F}_{p^{-}}
vector space, where P=(0,0) denotes the p‐‐torsion point of E . Next we find a

generator  $\sigma$ in the group \mathrm{G}\mathrm{a}1(L/F) satisfying  $\sigma$(Q)=Q+P (see also [Ver06,
Corollary 3 Then, for a fixed number i\in\{1, 2, . . . , p-1\} , we compute

\mathrm{r}\mathrm{c} =\displaystyle \sum_{k=0}^{\mathrm{p}-1}$\zeta$_{p}^{ik}$\sigma$^{k}(x_{Q})=\sum_{k=0}^{p-1}$\zeta$_{p}^{ik}x_{Q+kP}\in L,
where x_{R} denotes the x‐coordinate of a point R of E . Specifically, in the proof
of [Ver06, Theorem 5 and 6], Verdure takes i=1 for p=5 and i=3 for p=7.
By the above construction, the element  $\kappa$ clearly satisfies

 $\sigma$( $\kappa$)=\displaystyle \sum_{k=0}^{p-1}$\zeta$_{p}^{ik}x_{Q+(k+1)P}=$\zeta$_{p}^{-i}\sum_{k=0}^{p-1}$\zeta$_{p}^{i(k+1)}x_{Q+(k+1)P}=$\zeta$_{p}^{-i} $\kappa$.
Therefore we have  $\sigma$($\kappa$^{p})=$\kappa$^{p} and hence $\kappa$^{p}\in F , which can give a Kummer

generator for the extension L/F. \square 

3 Non‐existence of a rational p‐torsion point
Given a number field K and a prime number p\geq 5 , we study the relation

between the non‐existence of a K‐rational p‐‐torsion point of E over K and the

primes at which E has bad reduction.

Definition 3.1. For any set S of primes of K
, we say that an elliptic curve E

over K has S‐reduction if E has bad reduction only at the primes of S , in other

words, if E has good reduction outside the primes of S.

In the below, we first give a main result (cf. [Yas08, Theorem 0.1] for a

result on p\overline{-}torsion points of an elliptic curve with everywhere good reduction):

Theorem 3.2 (Theorem 1.2 of [\mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}2\mathrm{a}] ). Let K be a number field having a

real place. Let p\geq 5 be a prime number such that e_{\mathfrak{p}}<p-1 for the primes \mathfrak{p}

of K over p . Set

S_{K,p}= { \mathrm{q} : prime of K over a prime \ell|\ell\neq p and pf_{\mathfrak{q}}\not\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} p}.
Let E be an elliptic curve over K with S_{K,p} ‐reduction. If p does not divide the

class number h_{F} of F=K($\zeta$_{p}) , then E has no K ‐rational p‐torsion points.
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The result of Theorem 3.2 in the case K=\mathbb{Q} shows the following result:

Theorem 3.3 (The case K=\mathbb{Q} of Theorem 3.2). Let p=5 or 7. Let E be an

elliptic curve over \mathbb{Q} . IfE has bad reduction only at the primes P\not\equiv 0, \pm 1\mathrm{m}\mathrm{o}\mathrm{d} p,
then E has no \mathbb{Q} ‐rational p‐torsion points.

The result of Theorem 3.3 includes Agashe‐Takagi�s non‐existence result

[Aga08, Tak12], which enforces us to restrict the case where E is semi‐stable

(see also Remark 3.7 below). Here we begin to prove Theorem 3.3. Specifically,
we present the following two ways to prove Theorem 3.3:

1. Let E be an elliptic curve over \mathbb{Q} with a \mathbb{Q}‐rational p‐‐torsion point. The

first way is to examine the finite�flat group scheme generated by the p‐

torsion subgroup E\lceil p] over the ring \mathbb{Z}[1/N] , where N is the product of the

primes at which E has bad reduction. This proof mainly relies on a part
of Schoof�s papers [Sch03, Sch05].

2. In contrast, given an elliptic curve E over \mathbb{Q} with a \mathbb{Q}‐rational p‐‐torsion
point, the second way is to study the ramified primes of the Kummer

extension L=\mathbb{Q}(E\lceil p]) over F=\mathbb{Q}($\zeta$_{p}) . In particular, we make use of the

theory of Tate curves to study such the ramification.

Compared to Agashe‐Takagi�s way, our proofs are so elementary and fundamen‐

tal that it does not require any knowledge about modular curves and forms.

3.1 The first proof of Theorem 3.3

Here we give the first proof of Theorem 3.3, which basically taken from [\mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}2\mathrm{a},
Section 2]. Let us start with the following well‐known lemma:

Lemma 3.4. Let E be an elliptic curve over a number field K. Suppose E has

a K ‐rational p‐torsion point for p\geq 5 . Let \mathrm{q} be a prime of K with \mathrm{q}  $\dagger$  p . Then

E has semi‐staule reduction at \mathrm{q}.

Proof. See the proof of [Fis00, Lemma 1.3] for details. Here we only consider

the case K=\mathbb{Q} ; Suppose E has additive reduction at a prime q\neq p . Consider

the filtration E(\mathbb{Q}_{q})\supset E_{0}(\mathbb{Q}_{q})\supset E_{1}(\mathbb{Q}_{q}) as described in [Si186, Chapter VII].
By the theory of formal groups, the multiplication by p is invertible on the

group E_{1}(\mathbb{Q}_{q}) . The additive reduction tells us E_{0}(\mathbb{Q}_{q})/E_{1}(\mathbb{Q}_{q})\simeq \mathbb{F}_{q}^{+} and the

Tamagawa number [E(\mathbb{Q}_{q}) : E_{1}(\mathbb{Q}_{q})] is at most 4. Therefore the p‐‐torsion
subgroup E(\mathbb{Q}_{q})[p] is trivial. This gives a contradiction to the assumption that

E has a \mathbb{Q}‐rational p‐‐torsion point. This completes the proof. \square 
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Let p\geq 5 be a prime number and N a square‐free integer with p  $\dagger$  N . Let E

be an elliptic curve over \mathbb{Q} . Assume that E has bad reduction only at the primes
dividing N and E has a \mathbb{Q}‐rational p‐torsion point P . Let \mathcal{E} be the Néron model

of E over \mathbb{Z} . By Lemma 3.4 and Grothendieck�s semi‐stable reduction [Gro71,
Theorem in Exp. IX], we see that \mathcal{E}[p] is a finite flat group scheme over the

ring \mathbb{Z}[1/N] , where let Glp] denote the kernel of multiplication by p for a group
scheme G . By [Maz77, Step 1 in Section 3], we have \mathbb{Z}/p\mathbb{Z}\subset \mathcal{E} , where \mathbb{Z}/p\mathbb{Z}
denotes the constant group scheme over \mathbb{Z}[1/N] generated by the point P.

Lemma 3.5. The exact sequence (1) of G_{\mathbb{Q}} ‐modules induces an exact sequence

0\rightarrow \mathbb{Z}/p\mathbb{Z}\rightarrow \mathcal{E}\lceil p]\rightarrow$\mu$_{p}\rightarrow 0

of finite flat group schemes over \mathbb{Z}[1/N] , where \mathbb{Z}/p\mathbb{Z} (resp. $\mu$_{p} ) is a constant

(resp. diagonalizable) group scheme over \mathbb{Z}[1/N].

Proof. Let G be a finite flat group scheme over the ring \mathbb{Z}[1/N] defined by
coker ( \mathbb{Z}/p\mathbb{Z}\rightarrow \mathcal{E}\lceil p]) . It suffices to show that G is isomorphic to the diagonal‐
izable group scheme $\mu$_{p} over \mathbb{Z}[1/N] . Since the group scheme G is étale over

\mathbb{Z}[1/pN] , we can consider the group scheme G over \mathbb{Z}[1/pN] in terms of Ga‐

lois modules, and hence G is isomorphic to the diagonalizable scheme $\mu$_{p} over

\mathbb{Z}[1/pN] by the exact sequence (1). Next we consider the group scheme G over

the ring \mathbb{Z}_{p} . Since any group scheme over \mathbb{Z}_{p} is uniquely determined up to iso‐

morphism Uy its isomorphism type over \mathbb{Q}_{p} (e.g., see [Tat97]), the group scheme

G is isomorphic to the diagonalizable group scheme $\mu$_{p} over \mathbb{Z}_{p} . This shows that

G is isomorphic to $\mu$_{p} over \mathbb{Z}[1/N] by [Sch03, Proposition 2.3]. \square 

Let \mathrm{E}\mathrm{x}\mathrm{t}_{\mathbb{Z}[1/N]}^{1}($\mu$_{p}, \mathbb{Z}/p\mathbb{Z}) denote the group of extensions of $\mu$_{p} by \mathbb{Z}/p\mathbb{Z} over

the ring \mathbb{Z}[1/N] . By the above lemma, we clearly have \mathcal{E}\lceil p] \in \mathrm{E}\mathrm{x}\mathrm{t}_{\mathbb{Z}[1/N]}^{1}($\mu$_{p}, \mathbb{Z}/p\mathbb{Z}) .

In the case where  N=\ell is a prime with \ell\neq p , Schoof clarified the group

\mathrm{E}\mathrm{x}\mathrm{t}_{\mathbb{Z}[1/l]}^{1}($\mu$_{p}, \mathbb{Z}/p\mathbb{Z}) [Sch05, Corollary 4.2]. Based on [Sch05, Corollary 4.2], we

shall give a key result to prove Theorem 3.3 as follows:

Proposition 3.6. Let p\geq 5 be a prime number and N a product of primes
P\neq p with P\not\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} p . Then the group \mathrm{E}\mathrm{x}\mathrm{t}_{\mathbb{Z}[1/N]}^{1}($\mu$_{p}, \mathbb{Z}/p\mathbb{Z}) is trivial.

Proof. The idea is based on the proof of [Sch05, Corollary 4.2]. Let \triangle=

\mathrm{G}\mathrm{a}1(\mathbb{Q}($\zeta$_{p})/\mathbb{Q}) and let  $\omega$ : \triangle\rightarrow \mathbb{F}_{p}^{\times} denote the cyclotomic character (3). For

any \mathbb{F}_{p}[ $\Delta$] ‐module M
, let M^{$\omega$^{i}} denote the $\omega$^{i} ‐eigenspace of M as in Proposition
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2.3. By a similar proof of [Sch05, Proposition 4.1], we get an exact sequence

0\rightarrow \mathrm{E}\mathrm{x}\mathrm{t}_{\mathbb{Z}[1/N]}^{1}($\mu$_{p}, \mathbb{Z}/p\mathbb{Z}) \rightarrow (\mathbb{Z}[1/pN, $\zeta$_{p}]^{\times}/(\mathbb{Z}[1/pN, $\zeta$_{p}]^{\times})^{p})^{$\omega$^{2}}
\rightarrow (\mathbb{Q}_{p}($\zeta$_{p})^{\times}/(\mathbb{Q}_{p}($\zeta$_{p})^{\times})^{p})^{$\omega$^{2}} (8)

We shall compute the group in the middle of the exact sequence (8). By the proof
of [Sch05, Corollary 4.2], we get the following exact sequence of $\omega$^{2} ‐eigenspaces

0 \rightarrow (\mathbb{Z}[1/p, $\zeta$_{p}]^{\times}/(\mathbb{Z}[1/p, $\zeta$_{p}]^{\times})^{p})^{$\omega$^{2}}

\displaystyle \rightarrow (\mathbb{Z}[1/pN, $\zeta$_{p}]^{\times}/(\mathbb{Z}[1/pN, $\zeta$_{p}]^{\times})^{p})^{$\omega$^{2}}\rightarrow(\bigoplus_{\mathrm{t}|N}\mathbb{F}_{p})^{$\omega$^{2}}\rightarrow 0 , (9)

where [ runs over the set of the primes of \mathbb{Z}[$\zeta$_{p}] lying over N . We identify the Ga‐

lois group  $\Delta$ with \mathbb{F}_{p}^{\times} via the cyclotomic character  $\omega$ . By [Was82, Theorem 8.13],
the \mathbb{F}_{p}[\triangle] ‐module \mathbb{Z}[1/p, $\zeta$_{p}]^{\times}/(\mathbb{Z}[1/p, $\zeta$_{p}]^{\times})^{p} is isomorphic to $\mu$_{p}\times \mathbb{F}_{p}[ $\Delta$/\{-1\rangle ].
So its $\omega$^{2} ‐eigenspace has \mathbb{F}_{p}‐dimension 1. The module \oplus_{1|N}\mathbb{F}_{p} is a permutation
module isomorphic to \oplus_{l|N}\mathbb{F}_{p}[ $\Delta$/\langle P\rangle] , where \ell runs over the set of the primes

dividing  N . The $\omega$^{2} ‐eigenspace of \mathbb{F}_{p}[\triangle/\langle P\}] is trivial for which $\omega$^{2}(\ell)\neq 1 . By
assumption, the $\omega$^{2} ‐eigenspace of \oplus_{\ell|N}\mathbb{F}_{p}[\triangle/(P\rangle ] is trivial. This shows that

the group in the middle of the sequence (9) has dimension 1 over \mathbb{F}_{p} . Fur‐

thèrmore, since p\geq 5 , the $\omega$^{2} ‐eigenspace of \mathbb{Q}_{p}($\zeta$_{p})^{\times}/(\mathbb{Q}_{p}($\zeta$_{p})^{\times})^{p} has dimension

1. By [Was82, Theorem 8.25], the $\omega$^{2} ‐eigenspace of the cyclotomic units is

equal to the $\omega$^{2}‐eigenspace of the local units. Therefore the $\omega$^{2}‐eigenspace of

the cyclotomic units in \mathbb{Z}[1/p, $\zeta$_{p}]^{\times} maps surjectively onto the $\omega$^{2} ‐eigenspace of

\mathbb{Q}_{p}($\zeta$_{p})^{\times}/(\mathbb{Q}_{p}($\zeta$_{p})^{\times})^{p} . It follows that the rightmost arrow in the sequence (8) is

surjective. This completes the proof. \square 

Here we are ready to prove Theorem 3.3. The idea is mainly based on the

proof of [Maz77, Section 3]. Let p=5 or 7. Let E bè an elliptic curve over

\mathbb{Q} as in Theorem 3.3. Suppose E has a \mathbb{Q}‐rational  p\leftrightarrow‐torsion point  P . Set

E_{1}=E . Since the exact sequence (1) of G_{\mathbb{Q}}‐modules is split by Lemma 3.5

and Proposition 3.6, there exists an elliptic curve E_{2} over \mathbb{Q} and a \mathbb{Q}‐isogeny
E_{1}\rightarrow E_{2} with kernel $\mu$_{p} . Then the image of the Galois submodule \mathbb{Z}/p\mathbb{Z} of

E_{1}[p] gives a \mathbb{Q}‐rational p‐‐torsion point in the elliptic curve E_{2} . Continuing in

this fashion, we obtain a sequence of \mathbb{Q}‐isogenies  E_{1}\rightarrow E_{2}\rightarrow\cdots , where

each isogeny has kernel $\mu$_{p} and each curve E_{i} has a \mathbb{Q}‐rational p‐‐torsion point.
By Shafarevich�s Theorem [Si186, Theorem 6.1], we see that E_{i_{0}}\simeq E_{j\mathrm{o}} for some
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i_{0}<j_{0} . Composing the above \mathbb{Q}‐isogenies gives an endomorphism f :  E_{i_{0}}\rightarrow
 E_{i_{0}} defined over \mathbb{Q} . If P_{i_{0}}\in E_{i_{0}}(\mathbb{Q}) is the image of the starting p‐‐torsion point
P\in E(\mathbb{Q}) , then by construction we have P_{i_{0}}\not\in \mathrm{k}\mathrm{e}\mathrm{r}f . Since \deg f is a power of

p , we see that f is a non‐scalar endomorphism. Therefore the elliptic curve E_{i_{0}}
has complex multiplication. But this contradicts to Lemma 3.4 since any elliptic
curve with complex multiplication cannot have semi‐staule reduction (e.g., see

[Si186, Proposition 5.4 and 5.5] and [Si194, Corollary 6.4] )^{1} . This completes the

first proof of Theorem 3.3. \square 

3.2 The second proof of Theorem 3.3

Here we give the second proof of Theorem 3.3, which is taken from [\mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}2\mathrm{a},
Section 3]. Let E be an elliptic curve over \mathbb{Q} with a \mathbb{Q}‐rational r‐torsion point
P for p=5 or 7. To prove Theorem 3.3, it suffices to show that E has bad

reduction at p , or a prime \ell\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} p . We note that E is isogeneous to an

elliptic curve E�
over \mathbb{Q} with a \mathbb{Q}‐rational p‐‐torsion point such that \mathbb{Q}(E`\lceil p])

is a ramified extension of \mathbb{Q}($\zeta$_{p}) of degree p . Since both E and E have bad

reduction at the same primes, we may assume that L=\mathbb{Q}(E\lceil p]) is a ramified

Kummer extension of F=\mathbb{Q}($\zeta$_{p}) of degree p.

Since the cyclotomic field F has class number 1, the extension L/F is rami‐

fied at some primes over a prime P . By the proof of [Maz77, Step 3 in Section 3],
we have \mathbb{Q}_{p}(E\lceil p])=\mathbb{Q}_{p}($\zeta$_{p}) if E has good reduction at p . Hence we may assume

P\neq p . By the criterion of Néron‐Ogg‐Shafarevich [Si186, Theorem 7.1], we see

that P is a prime of bad reduction for E . Since E has semi‐stable reduction at

P by Lemma 3.4, there exists an extension of M of degree 1 or 2 over \mathbb{Q}_{\ell} such

that E is isomorphic to the Tate curve E_{q} over M , where q denotes the Tate

parameter (e.g., [Si194, Chapter V] for details). By the theory of Tate curves,

we have

 $\phi$:E(\overline{\mathbb{Q}}_{\ell})\simeq\overline{\mathbb{Q}}_{\ell}^{\times}/q^{\mathbb{Z}}.
With this  $\phi$ , we also have  $\phi$ :  E\lceil p] \simeq($\zeta$_{p}^{\mathbb{Z}}\cdot R^{\mathbb{Z}})/q^{\mathbb{Z}} , where R=q^{1/p}\in\overline{\mathbb{Q}}_{\ell} is a fixed

primitive pth root of q . Then we have M(E[p])=M(q^{1/p}, $\zeta$_{p}) . Since M(E|p])
is a ramified extension of M($\zeta$_{p}) of degree p , we see that q^{1/p}$\zeta$_{p}^{i}\not\in M for any i.

On the other hand, we have $\zeta$_{p}\in M since the ptorsion point P is defined over

M . Therefore we have [\mathbb{Q}_{\ell}($\zeta$_{p}) : \mathbb{Q}_{l}]=1 or 2, which means \ell\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} p. \square 

1In order to lead this contradiction, we further need the well‐known fact proved by Tate

[Tat74] that there is no elliptic curve over \mathbb{Q} with good reduction everywhere. In other words,
any elliptic curve over \mathbb{Q} with complex multiplication has always bad reduction somewhere.
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Remark 3.7. Here we briefly introduce the key result in Agashe‐Takagi�s way

[Aga08, Tak12] to prove Theorem 3.3 under the condition that E has semi‐

stable. The key in their proof is the result of Theorem 1.1 proved by Agashe
[Aga08]. For the sake of simplicity, we here give an informal statement of his

result (see [Aga08, Theorem 1.1] for details): �Given an elliptic curve E over \mathbb{Q}
of square‐free conductor N . Let r be a prime dividing the order of the \mathbb{Q}‐rational

torsion subgroup E(\mathbb{Q})_{\mathrm{t}\mathrm{o}\mathrm{r}} . Then the prime r divides either 6N or the order of

the cuspidal subgroup C , where C is defined as the group of zero divisors on

the modular curve X_{0}(N)(\mathbb{C}) that supported on the cusps Compared to our

two proofs, his proof is considerably tricky and it requires a lot of knowledge
about the theory of modular forms. However, his proof is important in the

literature, and it gives an interesting relation among torsion subgroups and

cuspidal subgroups. In other words,, the (non‐)existence of a rational torsion

point of an elliptic curve may be explained in terms of cuspidal subgroups. In

fact, as mentioned in [Aga08, Section 1], he suspects E(\mathbb{Q})_{\mathrm{t}\mathrm{o}\mathrm{r}}\underline{\subseteq}C as long as

N is square‐free. In particular, when N^{\mathrm{s}} is prime, Mazur [\mathrm{M}\mathrm{a}\mathrm{z}77]\wedge proved that

 C=J_{0}(N)(\mathbb{Q}) and hence the above relation holds in this case.

3.3 Proof of Theorem 3.2

By a similar argument of the second proof of Theorem 3.3, we can prove the

result of Theorem 3.2 as a generalization of Theorem 3.3 for a general number

field K . Let p\geq 5 be a prime number and K a number field such that the

following two conditions are satisfied:

(a) p does not divide the class number h_{F} of F=K($\zeta$_{p}) , and

(b) e_{\mathfrak{p}}<p-1 for all primes \mathfrak{p} of K over p.

Let E be an elliptic curve over K with a K‐rational  p\leftrightarrow‐torsion point. By a

similar argument as in Section 3.2, we may assume that  L=K(E\lceil p]) is a

ramified extension over F òf degree p . By the assumption (a), the extension

L/F is ramified at some primes over a prime \mathrm{q} of K . Let \mathfrak{p} be a prime of K

over p . By the assumption (b), any finite flat group scheme over K_{\mathfrak{p}} of p‐‐power

order admits a prolongation over the ring of integers of K_{\mathfrak{p}} [Fon77, Théoreme

3.3.3]. Therefore it follows from the proof of [Maz77, Step 3 in Section 3] that we

have K_{\mathfrak{p}}(E\lceil p])=K_{\mathrm{p}}($\zeta$_{p}) if E has good reduction at \mathfrak{p} . Hence we may assume

\mathrm{q}|p . Let P be the prime number satisfying \mathrm{q} \ell . By a similar argument
as in the previous subsection, we have [K_{\mathrm{q}}($\zeta$_{p}) : K_{\mathrm{q}}]=1 or 2, which means

pf_{\mathrm{q}}\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} p. \square 
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4 Elliptic curves having both S_{K,p}‐reduction and

a p‐torsion point
Given a prime number p\geq 5 and a number field K such that e_{\mathfrak{p}}<p-1 for the

primes \mathfrak{p} of K over p . Set F=K($\zeta$_{\mathrm{p}}) . It follows from Theorem 3.2 that the

class number h_{F} of F is divisible by p if there exists an elliptic curve E over

K having both S_{K,p}‐reduction and a K‐rational p‐‐torsion point. This means

that the existence of such a pair (E, K) tells us the p‐divisibility of the class

number h_{F} (note that there exist no such elliptic curves over \mathbb{Q} since the class

number of \mathbb{Q}($\zeta$_{p}) is equal to 1 for p=5 and 7). Here we give several examples
of such pairs (E, K) only for p=5 and 7. 0urstrategy to construct such pairs
is to start with taking an elliptic curve E=E_{t}^{(p)} for p=5 or 7, which has a

K‐rational p‐‐torsion point P=(0,0) .

Proposition 4.1. Let p=5 or 7. Let E=E_{t}^{(p)}, t\in \mathcal{O}_{K} be an elliptic curve over

K defined as in Section 2.2. Assume that the Weierstrass equation (4) (resp.
the equation (5)) for E in the case p=5 (resp. the case p=7) is minimal. If
E has S_{K,p} ‐reduction, then Q_{p}(t)\in U_{K} where the polynomial Q_{p}(X)\in \mathbb{Z}[X] is

already defin ed in Subsection 2.2.

Proof. We consider only the case p=7 . Assume that Q_{7}(t)\not\in U_{K} and E has

S_{K,p}‐reduction. Then there exists a prime P dividing the value Q_{7}(t)=t^{3}-8t^{2}+
5t+1\in \mathcal{O}_{K} . Since \ell divides the minimal discriminant \triangle(E)=t^{7}(t-1)^{7}\cdot Q_{7}(t)
of E

, the curve E has bad reduction at a certain prime \mathrm{q} of K over P (it requires
the assumption that \triangle(E) is minimal). Since E has S_{K,p}‐reduction, we may

assume P\neq 7 . The solutions of the equation Q7(X) =X^{3}-8X^{2}+5X+1=0
define the extension field K($\zeta$_{7}+$\zeta$_{7}^{-1}) over K . Now consider the diagram

\mathrm{G}\mathrm{a}1(K($\zeta$_{7})/K)
 $\sigma$\downarrow

\mathrm{G}\mathrm{a}1(K($\zeta$_{7}+$\zeta$_{7}^{-1})/K)

\llcorner+ $\omega$ (\mathbb{Z}/7\mathbb{Z})^{\times}
\downarrow

\mathrm{e}\rightarrow (\mathbb{Z}/7\mathbb{Z})^{\times}/\{\pm 1\},

where  $\omega$ is the cyclotomic character defined by (3) and  $\sigma$ is the restriction map.

Let  s\in \mathrm{G}\mathrm{a}1(K($\zeta$_{7})/K) denote the Frobenius map satisfying \mathrm{G}\mathrm{a}1(K_{\mathrm{q}}($\zeta$_{7})/K_{\mathrm{q}})=
\{s\} . Note that we have  $\omega$(s)=\ell f_{\mathrm{q}}\in(\mathbb{Z}/7\mathbb{Z})^{\times} Then we obtain

Q_{7}(X)\equiv 0 mod \mathrm{q} has a solution X=t\in \mathcal{O}_{K},
\Rightarrow  Q_{7}(X)=0 has a solution X=t\in \mathcal{O}_{\mathrm{q}} by Hensel�s lemma,

\Rightarrow  $\sigma$(s)=1\in \mathrm{G}\mathrm{a}1(K($\zeta$_{7}+$\zeta$_{7}^{-1})/K)\Leftrightarrow\ell f_{\mathrm{q}}\equiv\pm 1\mathrm{m}\mathrm{o}\mathrm{d} 7.
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This is.a contradiction to the assumption that E has S_{K,p^{\leftrightarrow}}reduction. \square 

We are ready to construct our desired pairs (E, K) . Given a number field

K and a prime p=5 or 7, we only need to find t\in \mathcal{O}_{K} satisfying Q_{p}(t)\in U_{K}.
Here we consider only the case of quadratic fields K=\mathbb{Q}(\sqrt{m}) , where m is a

square‐free integer. In this case, the assumption in Theorem 3.2 that e_{\mathrm{P}}<p-1
for the primes \mathfrak{p} of K over p is satisfied for p=5 and 7. Set  t\cdot=a+b\sqrt{m}\in
\mathcal{O}_{K} with 2a, 2b\in \mathbb{Z} . Let 0\neq u=a^{2}-mb^{2}=\mathrm{N}\mathrm{m}_{K/\mathbb{Q}}(t)\in \mathbb{Z} denote the norm

of t\in \mathcal{O}_{K} . We consider each of the two cases p=5 and 7 as follows:

4.1 The case p=5

As described above, consider the condition

Q5 (t)=t^{2}-11t-1\in U_{K}\Leftarrow\Rightarrow \mathrm{N}\mathrm{m}_{K/\mathbb{Q}}(t^{2}-11t-1)=\pm 1 . (10)

Since \mathrm{N}\mathrm{m}_{K/\mathbb{Q}}(t^{2}-11t-1)=-4a^{2}-22(u-1)a+u^{2}+123u+1 , the condition

(10) is equivalent to the condition

X^{2}+11(u-1)X-u^{2}-123u-1=\pm 1 (11)

with X=2a\in \mathbb{Z} . Furthermore, the equation (11) can be transformed to the

Pell equation
A^{2}-5B^{2}=\pm 4 (12)

with

\left\{\begin{array}{l}
A=2X+11(u-1)\in \mathbb{Z},\\
B=5(u+1)\in \mathbb{Z}.
\end{array}\right.
Let  $\epsilon$=\displaystyle \frac{1+\sqrt{5}}{2} be a fundamental unit of \mathbb{Q}(\sqrt{5}) . It is well known that the

integral solutions of the Pell equation (12) are given by the elements \pm$\epsilon$^{n} for

n=0 , 1, 2, \cdots

. Since  B\in 5\mathbb{Z} , we note that the solutions of (11) corresponds to

the elements \pm$\epsilon$^{5n} for n=0 , 1, 2, \cdots

, namely, we have a correspondence

\{t\in \mathcal{O}_{K}| Q5(t)\in U_{K}\}\leftrightarrow {Solutions of (12) given by \pm$\epsilon$^{5n} }. (13)

Therefore we can construct infinitely many elements t\in \mathcal{O}_{K} satisfying  Q_{5}(t)\in
 U_{K} for p=5 . For example, we have that an integral solution (A, B)=(-11, -5)

Df the Pell equation (12) corresponds the element -$\epsilon$^{5}=-\displaystyle \frac{11+5\sqrt{5}}{2} . Then the
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solution (A, B)=(-11, -5) further corresponds to a pair (X, u)=(11, -2)
satisfying the condition (11).

An easy computation shows that only the pairs

(X, u)=\left\{\begin{array}{l}
(10, -1) , (12, -1) , (11, -2) , (22, -2) , (12,10),\\
(-111,10) , (10, -12) , (133, -12) , (22,121),\\
(-1342,121) , (0, -123) , (1364, -123)
\end{array}\right.
satisfy the condition (11) with |u|<1000 . For each pair (X, u) , we need to

compute a solution (a, b, m) and check whether the elliptic curve E_{t}^{(5)}, t=a+

b\sqrt{m}\in \mathcal{O}_{K} over K=\mathbb{Q}(\sqrt{m}) has S_{K,5}‐reduction as in the following examples:

Example 4.2. Here we give some examples of elliptic curves E_{t}^{(5)} over K=

\mathbb{Q}(\sqrt{m}) having both S_{K,5}‐reduction and a K‐rational 5‐torsion point.

For (X, u)=(10, -1) , we have a solution (a, b, m)=(5,1,26) . We see that

the elliptic curve E=E_{t}^{(5)}, t=a+b\sqrt{m} has good reduction everywhere
over K=\mathbb{Q}(\sqrt{26}) (in fact, this curve appears in Cremona�s table [Cre]).
Therefore E has S_{K,5}‐reduction.

For (X, u)=(11, -2) , we have a solution (a, b, m)=(\displaystyle \frac{11}{2}, \frac{1}{2},129) . We

see that the elliptic curve E=E_{t}^{(5)}, t=a+b\sqrt{m} has bad reduction only
at the primes of K=\mathbb{Q}(\sqrt{129}) over 2. Therefore E has S_{K,5}‐reduction.

For (X, u)=(12,10) , we have a solution (a, b, m)=(6,1,26) . Since the

elliptic curve E=E_{t}^{(5)}, t=a+b\sqrt{m} has bad reduction at the primes of

K=\mathbb{Q}(\sqrt{26}) over 5, the elliptic curve E does not have S_{K,5}‐reduction

unlike the above two curves.

In Table 2, we list triples (a, b, m) such that the elhptic curve E_{t}^{(5)}, t=
a+b\sqrt{m}\in \mathcal{O}_{K} over K=\mathbb{Q}(\sqrt{m}) has S_{K,5}‐reduction. Furthermore, for each

triple (a, b, m) , we also list the class number h_{F}.\mathrm{o}\mathrm{f}F=K($\zeta$_{p}) , which can

be easily computed by [PARI] (version 2.4.1) (it is a free software library for

arithmetic computations). As described in the first paragraph of Section 4, the

class number h_{F} is divisible by p for all the triples (a, b, m) in Table 2.

4.2 The case p=7

As in the case p=5 , consider the condition

Q_{7}(t)=t^{3}-8t^{2}+5t+1\in U_{K}\Leftrightarrow \mathrm{N}\mathrm{m}_{K/\mathbb{Q}}(t^{3}-8t^{2}+5t+1)=\pm 1 . (14)
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* These triples define elliptic curves with good reduction every‐
where (see Cremona�s table [Cre] for list of such elliptic curves)

A easy computation shows that \mathrm{N}\mathrm{m}_{K/\mathbb{Q}}(t^{3}-8t^{2}+5t+1) is equal to

8a^{3}+(20u-32)a^{2}+(-16u^{2}-86u+10)a+(u^{3}+54u^{2}+4u+1) .

Therefore the condition (14) is equivalent to the condition

X^{3}+(5u-8)X^{2}+(-8u^{2}-43u+5)X+(u^{3}+54u^{2}+4u+1)=\pm 1 (15)

with X=2a\in \mathbb{Z} . We see that only the pairs

(X, u)=(2,1) , (6, -1) , (7, -1) , (7, -2) , (8,5), (8,6), (9,7)

satisfy the condition (15) with |u|<1000 . In Table 2, we also list triples (a, b, m)
such that the elliptic curve E_{t}^{(7)}, t=a+b\sqrt{m}\in \mathcal{O}_{K} over K=\mathbb{Q}(\sqrt{m}) has S_{K,7^{-}}
reduction. As in the case p=5 , the class number h_{F} of F=K($\zeta$_{7}) is divisible

by 7 for all the triples (a, b, m) .
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Remark 4.3. The equation (15) defines a non‐singular projective curve C of

genus 1. It follows from Siegel�s Theorem [Si186, Section 3] that the set C(\mathbb{Z})
of integral solutions is finite. Therefore, unlike in the case p=5 , there are only
finitely many elements t\in \mathcal{O}_{K} satisfying Q_{7}(t)\in U_{K} for p=7 . Furthermore,
we note that data of Table 2 are summarized again in Table 3 below \mathrm{i}_{d}\mathrm{n} order

to show several unramified Kummer extensions over F=K($\zeta$_{p}) for p=5 , 7

(we also note that we don�t know whether the data of Table 2 can give all the

elements of C(\mathbb{Z}) ).

5 Ramification of Kummer extensions

In this section, we study the ramification of the Kummer extension L=K(E\lceil p])
over F=K($\zeta$_{p}) for an elliptic curve E over K having a K‐rational p‐‐torsion
point. The criterion of Néron‐Ogg‐Shafarevich [Si186, Theorem 7.1] implies that

the ramification of the extension L/F is deeply related with the bad reduction

primes of E . Moreover, Kummer generators of L/F help us to study the ram‐

ification in more detail. Here we focus on Kummer extensions given by the

p‐torsion subgroup. of E=E_{t}^{(p)} for p=5 and 7, as defined in Subsection 2.2.

We begin to introduce the following main result:

Theorem 5.1 (Theorem 1.1 of [\mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}3\mathrm{b}] ). For p=5 or 7, set E=E_{t}^{(p)}, t\in \mathcal{O}_{K}.
If the Kummer extension L=K(E\lceil p]) over F=K($\zeta$_{p}) has degree p , then the

extension L/F is unramified outside the set of primes dividing Q_{p}(t)\in \mathcal{O}_{K},
where the \dot{p}olynomial Q_{p}(X)\in \mathbb{Z}[X] is defined in Subsection 2.2.

Given an elliptic curve E=E_{t}^{(p)}, t\in \mathcal{O}_{K} over a number filed K , set L=

K(E[p]) and F=K($\zeta$_{p}) as in Theorem 5.1. By the criterion of Néron‐Ogg‐
Shafarevich, the extension L/F must be unramified outside the primes dividing
p, t and Q_{p}(t) (resp. p, t, t-1 and Q_{p}(t) ) in the case p=5 (resp. the case p=7)
since the discriminant \triangle(E) of E is equal to t^{5} . Q5 (t) (resp. t^{7}(t-1)^{7}\cdot Q_{7}(t) )
as described in Section 2.2. In contrast, Theorem 5.1 further tells us that the

extension L/F is unramified outside only the primes dividing Q_{p}(t)\in \mathcal{O}_{K} for

p=5 and 7.

5.1 Proof of Theorem 5.1

Here we shall give a proof of Theorem 5.1. Given an elliptic curve E=E_{t}^{(p)},  t\in

\mathcal{O}_{K} for p=5 or 7, our method is to study the ramification of the Kummer
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extension L=K(E[p]) over F=K($\zeta$_{p}) usíng Verdure�s explicit Kummer gen‐

erators a_{p}(t) given in Proposition 2.5. To prove Theorem 5.1, it only suffices

to show that the Kummer extension L/F is unramified at the primes \mathfrak{P} of F

satisfying v_{i}\mathrm{p}(Q_{p}(t))=0 ; this condition means that the value Q_{p}(t) is not di‐

visible by \mathfrak{P} . Before giving a proof, we give the following well‐known result of

ramification in Kummer extensions of prime degree.

Lemma 5.2. Let F be a number field containing the p‐th roots of unity, and

let L=F($\varphi$_{X}) be a Kummer extension field for some x\in F.

(i) If \mathfrak{Q} is a prime of F not dividing p, then L/F is unramífied at \mathfrak{Q} if and

only if v_{\mathfrak{Q}}(x)\equiv 0\mathrm{m}\mathrm{o}\mathrm{d} p.

(ii) Let \mathfrak{P} be a prime of F dividing p with the ramification index e=e_{\mathfrak{P}}.
Assume x\in U_{\mathfrak{P}} . Then L/F is unramified at \mathfrak{P} if and only if the Kummer

generator x is congruent to a p‐th power modulo \mathfrak{P}^{ep/(p-1)} , namely, there

exists an element y\in U_{\mathfrak{P}} such that

x\equiv y^{p}\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{P}^{ep/(p-1)}\Leftarrow\Rightarrow x\cdot y^{-p}\equiv 1\mathrm{m}\mathrm{o}\mathrm{d} \mathfrak{P}^{ep/(p-1)}.

Proof. See [CF67, Exercise 2.12] for a proof of (i), and also [Was82, Lemma 9.1

and Exercise 9.3] or [Sai97, Theorem 8.38] for a proof of (ii). \square 

Then let us prove Theorem 5.1 for each of the two cases p=5 and 7 in the

below (the proof is basically taken from [\mathrm{Y}\mathrm{a}\mathrm{s}\mathrm{l}3\mathrm{b} , Section 3

5.1.1 The case p=5

Let \mathfrak{Q} be a prime of F not dividing 5, and assume v_{\mathfrak{Q}}(Q_{5}(t))= O. In this

case, we have v_{\mathfrak{Q}}(a_{5}(t))=v\mathfrak{Q}(t-$\alpha$_{5})-v_{\mathfrak{Q}}(t-$\beta$_{5})=0 since the prime \mathfrak{Q}
divides neither t-$\alpha$_{5} nor t-$\beta$_{5} due to the assumption v_{\mathfrak{Q}}(Q_{5}(t))=0 (we
remark that two elements t-$\alpha$_{5} and t-$\beta$_{5} are in the ring \mathcal{O}_{F} and we have

v_{5\supset}(t-$\alpha$_{5}) , v\mathfrak{Q}(t-$\beta$_{5})\geq 0 due to the assumption t\in \mathcal{O}_{K} ). Since the Kummer

generator a_{5}(t) is not divisible by \mathfrak{Q} , it follows from Lemma 5.2 (i) that the

Kummer extension L=F (\sqrt[5]{}a5 (t)) over F is unramified at any prime \mathfrak{Q} of F

not dividing 5 with v_{\mathfrak{Q}}(Q_{5}(t))=0.
Then it only suffices to consider the primes \mathfrak{P} of F dividing 5. As in the

above, assume v_{\mathfrak{P}}(Q_{5}(t))= O. In this case, the prime \mathfrak{P} is over the prime
\mathfrak{P}0=(1-$\zeta$_{5}) of the cyclotomic field \mathbb{Q}($\zeta$_{5})\subset F , which is the only one prime over

5. The assumption v_{\mathfrak{P}}(Q5(t))=0 shows v_{i}\mathrm{p}(a5(t))=0 by the same argument as
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in the above paragraph, and hence we have a5 (t)\in U_{\mathfrak{P}} . To study the ramification

of the Kummer extension L/F for the prime \mathfrak{P} over 5, we further need to

consider which subgroup U^{(i)}, of U_{\mathrm{a}\mathrm{s}} contains the Kummer generator a_{5}(t). . For

that purpose, we consider

a5 (t)-1=\displaystyle \frac{$\beta$_{5}-$\alpha$_{5}}{t-$\beta$_{5}}=\frac{-5(1+2$\zeta$_{5}+2$\zeta$_{5}^{4})}{t-$\beta$_{5}}=\frac{-5(1-$\zeta$_{5})^{2}($\zeta$_{5}+$\zeta$_{5}^{2})}{t-$\beta$_{5}} . (16)

From this equation, we clearly have v_{i}\displaystyle \mathrm{p}(a_{5}(t)-1)=e\prime \mathrm{p}+\frac{e_{\mathfrak{P}}}{2}=\frac{3e_{\mathfrak{P}}}{2} since the

element $\zeta$_{5}+$\zeta$_{5}^{2} of the field \mathbb{Q}($\zeta$_{5}) is not divisible by \mathfrak{P}0=(1-$\zeta$_{5}) and v_{i}\mathrm{p}(t-$\beta$_{5})=
0 due to the assumption v_{\mathfrak{P}}(Q_{5}(t))=0 (we also note that v_{\mathfrak{P}}(5)=e_{\mathfrak{P}} ). Hence

the Kummer generator a5 (t) is included in the subgroup U_{\mathfrak{P}}^{(i_{0})} for i_{0}=\displaystyle \frac{3e_{\mathfrak{P}}}{2}.
Since i_{0}>\displaystyle \frac{pe_{\mathfrak{P}}}{p-1} for p=5 , the Kummer extension L/F is unramified at any

prime \mathfrak{P} dividing 5 with v_{\mathfrak{P}}(Q_{5}(t))=0 by Lemma 5.2 (ii). This completes the

proof of Theorem 5.1 in the case p=5. \square 

5.1.2 The case p=7

By a similar argument in the case p=5 , it only suffices to consider the primes
\mathfrak{P} dividing 7. Assume v_{\mathfrak{P}}(Q_{7}(t))= O. Then the prime \mathfrak{P} is over the prime
\mathfrak{P}0= (1—  $\zeta$7) of the cyclotomic field \mathbb{Q}($\zeta$_{7}) , which is the only one prime over

7. The assumption v_{ $\zeta$}\mathrm{p}(Q_{7}(t))=0 tells us that we have v_{\mathfrak{P}}(a_{7}(t))=0 , and

hence a_{7}(t)\in U_{i}\mathrm{p} (the assumption t\in \mathcal{O}_{K} is necessary for this fact). As in the

argument of the case p=5 ,
we need to consider which subgroup U_{\mathfrak{P}}^{(i)} of U_{i}\mathrm{p}

contains the Kummer generator a_{7}(t) . By using the software library [PARI], we

can easily compute the following:

a_{7}(t)-1 = \displaystyle \frac{(t-$\alpha$_{7})(t-$\beta$_{7})^{2}-(t-$\gamma$_{7})^{3}}{(t-$\gamma$_{7})^{3}}=\frac{A(t^{2}+Bt+C)}{(t-$\gamma$_{7})^{3}} (17)

where

\left\{\begin{array}{ll}
A = & 7(1+2$\zeta$_{7}^{2}+$\zeta$_{7}^{3}+$\zeta$_{7}^{4}+2$\zeta$_{7}^{5}) \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} v_{\mathfrak{P}0}(A)=8,\\
B = & -5-2$\zeta$_{7}^{2}-2$\zeta$_{7}^{5},\\
C = & 10+8$\zeta$_{7}^{2}+4$\zeta$_{7}^{3}+4$\zeta$_{7}^{4}+8$\zeta$_{7}^{5}.
\end{array}\right.
Note that we have v_{\mathfrak{P}}(t-$\gamma$_{7})=0 by the assumption v_{\mathfrak{P}}(Q_{7}(t))=0 , and

v_{\mathfrak{P}}(t^{2}+Bt+C)\geq 0 since t^{2}+Bt+C\in \mathcal{O}_{F} (it also requires the assumption
t\in \mathcal{O}_{K}) . From the above consideration, we have

v_{\mathfrak{P}} (a7(t)-1) \displaystyle \geq Vap(A)=\frac{8e_{\mathfrak{P}}}{6}=\frac{4e_{\mathfrak{P}}}{3} (18)
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since v_{\mathfrak{P}}(\displaystyle \mathfrak{P}_{0})=\frac{e_{\mathfrak{P}}}{6} due to that the extension degree of \mathbb{Q}($\zeta$_{7}) over \mathbb{Q} is equal
to 6. Hence the Kummer generator a_{7}(t) is included in the subgroup  U_{\mathfrak{P}}^{(i_{0})}\sim for

 i_{0}=\displaystyle \frac{4e_{\mathfrak{P}}}{3} . Since i_{0}>\displaystyle \frac{pe_{\mathfrak{P}}}{p-1} for p=7 , the Kummer extension L=F(\sqrt[7]{a_{7}(t)})
over F is unramified at any prime \mathfrak{P} dividing 7 with v_{\mathfrak{P}}(Q_{7}(t))=0 by Lemma

5.2 (ii). This completes the proof of Theorem 5.1 in the case p=7. \square 

5.2 Unramified Kummer extensions generated from a_{p}(t)
Let K=\mathbb{Q}(\sqrt{m}) be a quadratic field, where m is a square‐free integer. In

his papers [Nak89, Nak91], Nakagoshi gives an explicit condition for when a

fundamental unit of quadratic fields gives an unramified Kummer extension

over F=K($\zeta$_{p}) of degree p , and he also gives some examples of such unramified

Kummer extensions for p=3 , 5, 7 and 13 in [Nak89, Table 2 and 3]. In contrast

to his examples, we give unramified Kummer extensions over the same field F

generated from the Kummer generators a_{p}(t) given in Proposition 2.5 for p=5
and 7. For that purpose, we need to find elements t\in \mathcal{O}_{K} with Q_{p}(t)\in U_{K} by
Theorem 5.1. These elements t\in \mathcal{O}_{K} have already been found in Section 4 (see
also Proposition 4.1). In fact, some pairs (m, t) satisfying our desired condition

for K=\mathbb{Q}(\sqrt{m}) are shown in Table 2. Hence we can give several unramified

Kummer extensions over F generated from the Kummer generators a_{p}(t) for

p=5 and 7, which we summarize in Table 3.

As in Table 2, the class number h_{F} of F in Table 3 is divisible by p and hence

the  p\leftrightarrow part A of the ideal class group of  F is not equal to zero (the class numbers

h_{K} and h_{F} in Table 3 are computed by using [PARI]). Furthermore, since these

fields F are constructed by the r‐torsion subgroup of elliptic curves, we have

A_{F}^{$\omega$^{-1}}\neq 0 by Proposition 2.3 (cf. only the content in Section 4 cannot show such

the result because we cannot determine by Theorem 3.2 whether the Kummer

extension generated from E_{t}^{(p)} is unramified or not). Furthermore, Herbrand�s

Theorem shows that A_{F}^{$\omega$^{-1}}=0 in the case K=\mathbb{Q} for the primes p\geq 5 since

the Bernoulli number B_{2} is equal to \displaystyle \frac{1}{6} (see [Was82, Section 6.3] for details). On

the other hand, the data in Table 3 give quadratic fields K=\mathbb{Q}(\sqrt{m}) satisfying
A_{F}^{$\omega$^{-1}}\neq 0 for p=5 and 7.

Our method to construct unramified Kummer extensions is quite different

from Nakagoshi�s one. In fact, he uses fundamental units of quadratic fields

\mathbb{Q}(\sqrt{m}) and \mathbb{Q}(\sqrt{mp^{*}}) with p^{*}=(-1)^{(p-1)/2}\cdot p
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Table 3: List of pairs (m, t) such that the Kummer extension L=F(\sqrt{a_{p}(t)})
over F=K($\zeta$_{p}) is unramified for the quadratic field K=\mathbb{Q}(\sqrt{m}) and p=5
and 7

tThese quadratic fields K=\mathbb{Q}(\sqrt{m}) do not appear in [Nak89,
Table 2 and 3].

as Kummer generators for unramified extensions of degree p over F=K($\zeta$_{p})=
\mathbb{Q}($\zeta$_{p}, \sqrt{m}) (see [Nak89, Theorem 2 and Proposition 3], or [Nak91, Theorem| ).
In contrast to his method, we use elements a_{p}(t) of K($\zeta$_{p}+$\zeta$_{p}^{-1})\subset F as Kummer

generators, which are induced by the p‐‐torsion subgroup E\lceil p] of elliptic curves

E=E_{t}^{(p)} over K having a K‐rational rtorsion point. Due to such the difference

of two methods, many unramified Kummer extensions constructed by the pairs
(m, t) in Table 3 do not appear in [Nak89, Table 2 and 3].

Example 5.3. In the following, we describe some typical examples of unrami‐

fied Kummer extensions constructed by our method:

For p=5 , we take (m, t)=(37,6+\sqrt{37}) from Table 3. Then the element

6+\sqrt{37} is the fundamental unit of the quadratic field K=\mathbb{Q}(\sqrt{37}) , which

we denote by  $\epsilon$ . Then the Weierstrass equation (4) of the elliptic curve

 E=E_{t}^{(5)} for  t= $\epsilon$ is given by (note that we have  $\epsilon$^{2}=12 $\epsilon$+1 )

y^{2}+(1- $\epsilon$)xy- $\epsilon$ y=x^{3}- $\epsilon$ x^{2},
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and this curve has good reduction everywhere over \mathbb{Q}(\sqrt{37}) since its dis‐

criminant is equal to $\epsilon$^{6} (the curve E is isomorphic over \mathbb{Q}(\sqrt{37}) to Shimura�s

curve B37 given in [Kag98] since the j‐invariant of E is equal to 2^{12} ). This

curve is alsó included in Cremona�s table [Cre]. Furthermore, the Kummer

generator a5(t) for  t= $\epsilon$ is easily computed as

 a_{5}(t)=$\epsilon$^{-1}(10 $\epsilon \eta$-4 $\epsilon$+55 $\eta$+90)

where  $\eta$ denotes the fundamental unit \displaystyle \frac{-1+\sqrt{5}}{2} of \mathbb{Q}(\sqrt{5}) . The element

a_{5}(t) is in the quartic field \mathbb{Q}(\sqrt{5};\sqrt{37}) , and it gives a Kummer generator
for the unramified Kummer extension L=K(E[5]) over F=K($\zeta$_{5}) .

For p=7 , we take (m, t)=(10,3+\sqrt{10}) from Table 3. As in the above

example, the element 3+\sqrt{10} is the fundamental unit of the quadratic
field K=\mathbb{Q}(\sqrt{10}) , which we denote by  $\epsilon$ . Then the Weierstrass equation

(5) of the elliptic curve  E=E_{t}^{(7)} for  t= $\epsilon$ is given by (note that we have

 $\epsilon$^{2}=6 $\epsilon$+1)

y^{2}-5 $\epsilon$ xy-(31 $\epsilon$+5)y=x^{3}-(31 $\epsilon$+5)x^{2},

and this curve has good reduction over \mathbb{Q}(\sqrt{10}) outside the primes over

2 and 3 since its discriminant is equal to -$\epsilon$^{9}( $\epsilon$-1)^{7}=-$\epsilon$^{9}(2+\sqrt{10}) .

Then we can see that the element a_{7}(t) for  t= $\epsilon$ is included in the field

\mathbb{Q}($\zeta$_{7}+$\zeta$_{7}^{-1}, \sqrt{10}) , and it gives a Kummer generator for the unramified

Kummer extension L=K(E[7]) over F=K($\zeta$_{7}) .
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