
MANY TORIC IDEALS GENERATED BY QUADRATIC
BINOMIALS POSSESS NO QUADRATIC GROBNER BASES

(SUMMARY)

HIDEFUMI OHSUGI

DEPARTMENT OF MATHEMATICAL SCIENCES

SCHOOL OF SCIENCE AND TECHNOLOGY

KWANSEI GAKUIN UNIVERSITY

ABSTRACT. This is a brief summary of Hibi Nishiyama Ohsugi‐Shikama [6]. Let

G be a finite connected simple graph and I_{G} the toric ideal of the edge ring of

G . In the present paper, we study finite graphs G with the property that I_{G} is

generated by quadratic binomials and I_{G} possesses no quadratic Gröbner basis.

First, we give a nontrivial infinite series of finite graphs with the above property.

Second, we implement a combinatorial characterization for I_{G} to be generated by
quadratic binomials and, by means of the computer search, we classify the finite

graphs G with the above property, up to 8 vertices.

INTRODUCTION

Let G be a finite connected simple graph on the vertex set [n]=\{1, 2, . . . , n\}
with E(G)=\{e_{1}, . . . , e_{d}\} its edge set. (Recall that a finite graph is simple if ít

possesses no loop and no multiple edge.) Let K be a field and K[\mathrm{t}]=K[t_{1}, . . . , t_{n}]
the polynomial ring in n variables over K . If e=\{i, j\}\in E(G) ,

then \mathrm{t}^{e} stands

for the quadratic monomial t_{i}t_{j}\in K[\mathrm{t}] . The edge ring ([15]) of G is the subring
K[G]=K[\mathrm{t}^{e}1, . . . , \mathrm{t}^{\mathrm{e}}d] of K[\mathrm{t}] . Let K[\mathrm{x}]=K[x_{1}, . . . , x_{d}] denote the polynomial
ring in d variables over K with each \deg x_{i}=1 and define the surjective ring
homomorphism  $\pi$ :  K[\mathrm{x}]\rightarrow K[G] by setting  $\pi$(x_{i})=\mathrm{t}^{e_{i}} for each 1\leq i\leq d . The

toric ideal I_{G} of G is the kernel of  $\pi$ . It is known [17, Corollary 4.3] that  I_{G} is

generated by those binomials u-v ,
where u and v are monomials of K[\mathrm{x}] with

\deg u=\deg v ,
such that  $\pi$(u)= $\pi$(v) . The distinguished properties on K[G] and I_{G}

in which commutative algebraists are especially interested are as follows:

(i) I_{G} is generated by quadratic binomialsl;
(ii) K[G] is Koszul;

(iii) I_{G} possesses a quadratic Gröbner basis, i.e., a Gröbner basis consisting of

quadratic binomials.

The hierarchy (\mathrm{i}\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i})\Rightarrow(\mathrm{i}) is true. However, (\mathrm{i})\Rightarrow(\mathrm{i}\mathrm{i}) is false. We refer

the reader to [15] for the quick information together with basic literature on these
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properties. A Koszul toric ring whose toric ideal possesses no quadratic Gröbner

basis is given in [15, Example 2.2]. Moreover, consult, e.g., to [5, Chapter 2] for

fundamental materials on Gröbner bases.

We study finite connected simple graphs G satisfying the following condition:

(*)I_{G} is generated by quadratic binomials and possesses no quadratic Gröbner basis.

We say that a finite connected simple graphs G is (*) ‐minimal if G satisfies the

condition (*) and if no induced subgraph H(\neq G) satisfies the condition (*) . \mathrm{A}

(*)‐minimal graph is given in [15, Example 2.1].
In the present paper, after summarizing known results on I_{G} in Section 1, \mathrm{a}

nontrivial infinite series of (*)‐minimal finite graphs is given in Section 2. In Section

3, we implement a combinatorial characterization for I_{G} to be generated by quadratic
binomials ([15, Theorem 1.2]) and, by means of the computer search, we classify the

finite graphs G satisfying the condition (*) , up to 8 vertices.

1. KNOWN RESULTS ON TORIC IDEALS OF GRAPHS

In this section, we introduce graph theoretical terminology and known results.

Let G be a connected graph with the vertex set V(G)=[n]=\{1, 2, . . . , n\} and the

edge set E(G) . We assume that G has no loops and no multiple edges. A walk of

length q of G connecting v_{1}\in V(G) and v_{q+1}\in V(G) is a finite sequence of the form

(1)  $\Gamma$=(\{v_{1}, v_{2}\}, \{v_{2}, V3\}, . .., \{v_{q},v_{q+1}\})
with each \{v_{k}, v_{k+1}\}\in E(G) . An even (resp. odd) walk is a walk of even (resp. odd)
length. A walk  $\Gamma$ of the form (1) is called closed if  v_{q+1}=v_{1}. A cycle is a closed

walk

(2) C=(\{v_{1}, v_{2}\}, \{v_{2}, V3\}, . . . , \{v_{q}, v_{1}\})
with q\geq 3 and v_{i}\neq v_{j} for all 1\leq i<j\leq q. A chord of a cycle (2) is an edge
e\in E(G)\mathrm{o}\mathrm{f}\cdot \mathrm{t}\mathrm{h}\mathrm{e} form e=\{v_{i}, v_{j}\} for some 1\leq i<j\leq q with e\not\in E(C) . If a

cycle (2) is even, an even‐chord (resp. odd‐chord) of (2) is a chord e=\{v_{i}, v_{j}\} with

1\leq i<j\leq q such that j-i is odd (resp. even). If e=\{v_{i}, v_{j}\} and e'= \{v_{i'}, v_{j'}\}
are chords of a cycle (2) with 1\leq i<j\leq q and 1\leq i'<j\leq q , then we say that e

and e' cross in C if the following conditions are satisfied:

(i) Either i<i'<j<j' or i'<i<j'<j ;

(ii) Either \{\{v_{i}, v_{i} \{v_{j}, v_{j} \subset E(C) or \{\{v_{i}, v_{j} \{v_{j}, v_{i} \subset E(C) .

A minimal cycle of G is a cycle having no chords. If C_{1} and C_{2} are cycles of G

having no common vertices, then a bridge between C_{1} and C_{2} is an edge \{i,j\} of G

with i\in V(C_{1}) and j\in V(C_{2}) .

The toric ideal I_{G} is generated by the binomials associated with even closed walks.

Given an even closed walk  $\Gamma$=(e_{i_{1}}, e_{i_{2}}, \ldots, e_{i_{2q}}) of G , we write f_{ $\Gamma$} for the binomial

f_{ $\Gamma$}=\displaystyle \prod_{k=1}^{q}x_{i_{2k-1}}-\prod_{k=1}^{q}x_{i_{2k}}\in I_{G}.
It is known ([19, Proposition 3.1], [17, Chapter 9] and [15, Lemma 1.1]) that
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FIGURE 1. Wheel with 6 vertices.

Proposition 1.1. Let G be a connected graph. Then, I_{G} is generated by all the

binomials f_{ $\Gamma$;} where  $\Gamma$ is an even closed walk of G. In particular,  I_{G}=(0) if and

only if G has at most one cycle and the cycle is odd.

Note that, for a binomial f\in I_{G}, \deg(f)=2 if and only if there exists an even

cycle C of G of length 4 such that f=f_{C} . On the other hand, a criterion for the

existence of a quadratic binomial generators of I_{G} is given in [15, Theorem 1.2].

Proposition 1.2. Let G be a finite connected graph. Then, I_{G} is generated by
quadratic binomials if and only if the following conditions are satisfied:

(i) If C is an even cycle of G of length \geq 6 ,
then either C has an even‐chord or

C has three odd‐chords e, e
� and e' such that e and e' cross in C;

(ii) If C_{1} and C_{2} are minimal odd cycles having exactly one common vertex, then

there exists an edge \{i,j\}\not\in E(C_{1})\cup E(C_{2}) with i\in V(C_{1}) and j\in V(C_{2}) ;

(iii) If C_{1} and C_{2} are minimal odd cycles having no common vertex, then there

exist at least two bridges between C_{1} and C_{2}.

If G is bipartite, then the following is shown in [14]:

Proposition 1.3. Let G be a bipartite graph. Then the following conditions are

equivalent:

(i) Every cycle of G of length \geq 6 has a chord;
(ii) I_{G} possesses a quadratic Grobner basis;

(iii) K[G] is Koszul;
(iv) I_{G} is generated by quadratic binomials.

If G is not bipartite, then the conditions (ili) and (iv) are not equivalent.

Example 1.4. ([15, Example 2.1]) Let G be the graph in Figure 1. Then, I_{G} is

generated by quadratic binomials. On the other hand, K[G] is not Koszul and hence

I_{G} has no quadratic Gröbner bases.

If a graph G' on the vertex set V(G)\subset V(G) satisfies  E(G')=\{\{i,j\}\in
 E(G)|i, j\in V(G')\} ,

then G is called an induced subgraph of G . The following
proposition is a fundamental and important fact on the toric ideals of graphs.

Proposition 1.5 ([13]). Let G be an induced subgraph of a graph G. Thenf K[G']
is a combinatorial pure subring of K[G] . In particular,

(i) If I_{G} possesses a quadratic Gröbner basis, then so does I_{G'}.
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(ii) If K[G] is Koszul, then so is K[G'] ;

(iii) If I_{G} is generated by quadratic binomials, then so is I_{G'}.

2. TORIC IDEALS OF THE SUSPENSION OF GRAPHS

In this section, we study the existence of quadratic Gröbner bases of toric ideals

of the suspension of graphs. Let G be a graph with the vertex set V(G)=[n]=
\{1, 2, . . . , n\} and the edge set E(G) . The suspension of the graph G is the new

graph \hat{G} whose vertex set is [n+1]=V(G)\cup\{n+1\} and whose edge set is

E(G)\cup\{\{i, n+1\}|i\in V(G)\} . Note that, any graph G is an induced subgraph
of its suspension \hat{G} . We now characterize graphs G such that I_{\hat{G}} is generated by

quadratic binomials. The complementary graph \overline{G} of G is the graph whose vertex

set is [n] and whose edges are the non‐edges of G . A graph G is said to be chordal

if any cycle of length >3 has a chord. Moreover, a graph G is said to be co‐chordal

if \overline{G} is chordal. A graph G is called a 2K_{2}‐free graph if it is connected and does not

contain two ìndependent edges as an induced subgraph, For a connected graph G,

G is 2K_{2}-free \Leftrightarrow \mathrm{a}\mathrm{n}\mathrm{y} cycle of \overline{G} of length 4 has a chord in \overline{G} ;
G is \mathrm{c}\mathrm{o}-chordal \Rightarrow G is 2K_{2}‐free,

hold in general. Moreover, it is known (e.g., [1]) that

Lemma 2.1. Let G be a connected graph. Then,

(i) If G is co‐chordal, then any cycle of G of length \geq 5 has a chord;
(ii) If G is 2K_{2} ‐free, then any cycle of G of length \geq 6 has a chord.

The toric ideals I_{G} of 2K_{2}‐free graphs G are studied in [16]. (In [16], 2K_{2}‐free

graphs are called in a different name.) On the other hand, the edge ideals I(G) of

2K_{2}‐free graphs G are studied by many researchers. See, e.g., [10] and [11] together
with their references and comments. (In these papers, 2K_{2}‐free graphs are called

C_{4} ‐free graphs One can characterize the toric ideals I_{\hat{G}} of \hat{G} that4 are generated
by quadratic binomials in terms of 2K_{2}‐free graphs.

Theorem 2.2. Let G be a finite connected graph. Then the following conditions are

equivalent:

(i) I_{\hat{G}} is generated by quadratic binomials;
(ii) G is 2K_{2} ‐free and I_{G} is generated by quadratic binomials;

(iii) G is 2K_{2} ‐free and satisfies the condition (i) in Proposition 1.2.

Example 2.3. In general, there is no implication between the two conditions (1)
I_{G} is generated by quadratic binomials and (2) G is 2K_{2}‐free. In fact,

(a) Let G be the graph in Figure 2. Then, I_{G} is not generated by quadratic
binomials. On the other hand, G is co‐chordal (and hence 2K_{2}‐free).

(b) If G is a bipartite graph consisting of a cycle C of length 6 and a chord of

C , then I_{G} is generated by two quadratic binomials. On the other hand, G

is not 2K_{2}‐free.

Thus, both (1) \Rightarrow(2) and (2) \Rightarrow(1) are false.
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FIGURE 2. An even cycle with three odd chords.

By using the theory of the Rees ring of edge ideals (see, e.g., [5]), we have a

necessary condition for I_{\hat{G}} to possess a quadratic Gröbner basis.

Proposition 2.4. Let G be a connected graph. If I_{\hat{G}} possesses a quadratic Gröbner

basis, then G is co‐chordal.

The converse of Proposition 2.4 is false in general. See, e.g., Example 2.9. How‐

ever, if G is bipartite, then these conditions are equivalent:

Theorem 2.5. Let G be a bipartite graph. Then the following conditions are equiv‐
alent:

(i) I_{\hat{G}} is generated by quadratic binomials_{f}.

(ii) K[\hat{G}] is Koszul,

(iii) I_{\hat{G}} possesses a quadratic Gr\dot{o}bnerbasis_{f}.
(iv) G is 2K_{2} ‐free;
(v) G is co‐chordal.

Remark 2.6. Bipartite graphs satisfying one of the conditions in Theorem 2.5 are

called Ferrers graphs (by relabeling the vertices). The edge ideal I(G) of a Ferrers

graph G is well‐studied. See, e.g., [2]. and [3].

If G is not bipartite, then the conditions (i) and (ii) in Theorem 2.5 are not

equivalent. In fact,

Example 2.7. Let G be a cycle of length 5. Then \overline{G} is also a cycle of length 5.

Hence G is not \mathrm{c}\mathrm{c}\succ chordal but  2K_{2}‐free. By Theorem 2.2 and Proposition 2.4, I_{\hat{G}} is

generated by quadratic binomials and has no quadratic Gröbner bases. Note that

\hat{G} is the graph in Example 1.4 and that K[\hat{G}] is not Koszul.

Recall that a finite connected simple graph G is called (*) ‐minimal if G satisfies

(*)I_{G} is generated by quadratic binomials and possesses no quadratic Gröbner basis

and if no induced subgraph H(\neq G) satisfies the condition (*) . The suspension

graph \hat{G} given in Example 2.7 is \mathrm{a}(*) ‐minimal graph. We generalize this example
and give a nontrivial infinite series of (*)‐minimal graphs:

Theorem 2.8. Let G be the graph on the vertex set [n] whose complement is a cycle
of length n . If n\geq 5 , then \hat{G} is (*) ‐minimal, i. e., \hat{G} satisfies the following:
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(i) I_{\hat{G}} is generated by quadratic binomials;
(ii) I_{\hat{G}} has no quadratic Gröbner basis,

(iii) For any induced subgraph H(\neq\hat{G}) of \hat{G} , the toric ideal I_{H} of H possesses
a quadratic Gröbner basis.

Even if G is co‐chordal, \hat{G} may be (*)‐minimal:

Example 2.9. Let G be the graph whose complement is the chordal graph in Figure
2. Then, I_{\hat{G}} is generated by quadratic binomials since G is co‐chordal (and hence

2K_{2}‐free) and I_{G}=(0) . On the other hand, computational experiments in Section

3 show that \hat{G} is (*)‐minimal.

3. COMPUTATIONAL EXPERIMENTS

In this section, we enumerate all finite connected simple graphs G satisfying the

condition (*) up to 8 vertices by utilizing various software. Proposition 1.2 gives
an algorithm to determine if a toric ideal I_{G} is generated by quadratic binomials.

Since the criteria in Proposition 1.2 are characterized by cycles of G
,

we need to

enumerate all even cycles and minimal odd cycles of G in order to implement the

algorithm. We implement the algorithm by utilizing CyPath [18] which is a cycles
and paths enumeration program implemented by T. Uno. The algorithm is used at

step (2) of the following procedure to search for the graphs satisfying (*) .

(1) (generating step) We use nauty [9] as a generator of all connected simple
graphs with n vertices up to isomorphism.

(2) (criterion step) The criteria in Proposition 1.2 detect graphs G whose toric

ideals I_{G} are generated by quadratic binomials. These are candidates for

satisfying the condition (*) .

(3) (exclusion step) For each candidate G ,
we iterate the following computation.

(a) A new weight vector w is chosen randomly on each iteration.

(b) We compute a Gröbner basis of the toric ideal I_{G} with respect to the

chosen weight vector w with Risa/Asir[12].
(c) If the Gröbner basis is quadratic then G is excluded from candidates.

(4) (final check step) We check the Koszul property of K[G] with Macaulay2
[4]. If it is not Koszul then I_{G} possesses no quadratic Gröbner basis. If it is

indeter \acute{\min}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e} then we compute all Gröbner bases by using TiGERS [7] or

CaTS [8].
In our experimentation, we take 10000 to be the number of iterations at step (3)

in the case of 8 vertices. Then, there are 214 graphs as remaining candidates and we

can check that 213 graphs of these are not Koszul with Macaulay2. The last one is

indeterminable by computational methods in our environment. However, Theorem

2.8 tells us that it has no quadratic Gröbner basis, because it is the suspension
of the complement graph of a cycle whose length is 7. Therefore, we complete
classification of the finite graphs with 8 vertices. Table 1 shows numbers of (1)
the connected simple graphs, (2) the graphs whose toric ideals I_{G} are generated by
quadratic binomials (include number of zero ideals), (4) the graphs satisfying (*)
(include number of the graphs which have degree 1 vertices) respectively. We list
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TABLE 1

the 14 graphs (Figures 3−16) satisfying (*) with 7 vertices. Figure 15 belongs to the

infinite series in Theorem 2.8 and Figure 5 is the (*)‐minimal graph in Example 2.9.
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