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A mean value on the sum of two primes
in arithmetic progressions

Yuta Suzuki
1 Introduction

In this note, we consider the sum of two primes in arithmetic progressions,
which is a generalization of the Goldbach problem. Although it is somewhat an
indirect way, we shall consider this problem in some average sense as Riippel
did in [12, 13]. For this additive problem, we use the representation function
given by :

R(n,q,a) = R(n,q1,a1,q2,02) == ). A(ma)A(mg),
mi+mao=n
m,‘Ea,‘, (mod qi)
where A(n) is the von Mangoldt function, a1, as, g1, g2, n are positive integers

satisfying (a1,91) = (a2,¢2) = 1 and q = (q1,42),a = (a1,a2). Let us also
introduce
R(n,q,a,b) := R(n,q,a,q,b)

for positive integers a, b, ¢ satisfying (ab,q) = 1. In 2009, Riippel [12] studied
the mean value of this representation function, i.e.

Z R(n,q,a,b). (1)

n<X

In particular, she obtained, under a weakened variant of the Generalized Rie-
mann Hypothesis (GRH), an asymptotic formula for the mean value (1). More
precisely, she assumed GRH except the existence of real zeros. In this note, we
assume a hypothesis similar to, but even weaker than, Riippel’s one.

Hypothesis (GRH with real zeros). Every complex non-trivial zero of Dirichlet
L functions in the strip 0 < o <'1 lies on the critical line ¢ = 1/2.

We call this hypothesis GRHR as an abbreviation.
Assuming this hypothesis GRHR, Riippel [12] proved

2
z R(n,q,a,b) = 5(—;%;)—2- + 0 (X**(log q)?), (2)

n<X

where § = 1/2 unless real zeros exist for the modulus g, in which case we let §
be the largest one among these real zeros. She considered the mean value (1),



but we can also obtain the corresponding result for the mean value

Z R(n,q1,a1,q2,a2) 3)

n<X

by the same method. Moreover, her method can be used to prove

X(@) +X(b) = X<+
1;( R(n,q,a, b) (Q)"’ . (2 5 e’ ,32 Px(Bx +1)
: @
a b 1'\ P Xﬂx+ﬂ 3
S e S o ().

x, ¥ (mod q)

where B, runs through all real zeros of L(s, x) with 8, > 1/2.
These results correspond to the result of Fujii [4] for the ordinary Goldbach
Problem. Fujii [4] proved, for the representation function

Rin)= Y A(m1)A(my)
m)+me=n
of the ordinary Goldbach problem, an asymptotic formula

3" R(n =————+O(X3/2)

n<X
under the Riemann Hypothesis (RH). This was improved by Fujii [5] himself to
X2 D Cas
Rn)= "% -2 ———+0((XlogX)*/? 5
S Rm =23 ((x10gx)%2) (5)

under RH, where p runs through all non-trivial zeros of the Riemann zeta func-
tion. After this pioneering work of Fujii, the error term on the right-hand side
of (5) was improved to

<« X(log X)® (by Bhowmik and Schlage-Puchta [1]),
< X(log X)® (by Languasco and Zaccagnini [9]).

Of course we assume RH in all of these results. We note that Bhowmik and
Schlage-Puchta proved also the omega result :

= Q(X loglog X) (6)

for this error term. This omega result is independent from RH or GRH.

In [17], we improved Riippel’s result (2) up to the accuracy of the result of
Languasco and Zaccagnini [9]. For a given Dirichlet character x (mod g), we
introduce the set of “non-trivial zeros” of L(s, x)

Z(x) = {p=B+i17|0<B <1, ((p)=0}uU{l} (whenxispﬁncipal),
X)=1 {p=B+iv|0<B<1, L(p,x) =0}  (otherwise)
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and Z5(x) = Z(x) N (1/2,1]. For p € Z(x), we let
‘ . 1 (when p = 1),
A@)*{—m@)ﬁmmp¢n

where m(p) is the multiplicity of p as a zero of L(s,x). For Rx, Ry > 0 and
X > 2, we let

T(k)T(4) X+

T(k+p) k+p’

and for p; € Z(x1), p2 € Z(x2) and X > 2, we let

_ W(p1,p2) = W(X, p1, p2) := A(p1)A(p2)Wo(X, p1, p2)-
Throughout this note, E(X) denotes error terms which can be estimated as

E(X) < X(log X)(log g1 X)(log g2 X).
Then the main result in [17] is:
Theorem 1. Assume GRHR. For X > 2, we have

Z R(n,q,a) = ZZ X1(M)X2(az) ZZ W(pl,p2)+E(X),

W()(K., [.l:) = WO(Xr K, H') =

= o i) “o(a)e(e) fperiro
X2 (mod g2) pP2€Z(x2)
: B1+B2>1

where the implicit constant in the error term is absolute.

The main aim of this note is to give an alternative proof of Theorem 1.

We remark that the main term of Riippel’s result (2) appears in Theorem
1 as the term corresponding to the pair (1,1) € Z(xo) X Z(x0).- Note that
W(1,1) = X?2/2. Moreover, the main and oscillating terms on the right-hand
side of (4) correspond to the pairs of “real non-trivial zeros” in Z5(x1) %X Zo(Xx2)-
The other terms in Theorem 1 was included in the error terms of (2) and (4).
Hence Theorem 1 is an improvement of these results (2) and (4) of Riippel.

Our previous proof [17] of Theorem 1 follows the argument of Languasco and
Zaccagnini [9], which uses the circle method with power series. Recently, Gold-
ston and Yang succeeded in obtaining the result of Languasco and Zaccagnini
even via finite trigonometric polynomials. The key point of their argument is a
quite neat preliminary averaging which will be carried out in (8). This prelimi-
nary averaging enables us to save some logarithms from the estimate of K (U, h)
defined by (19). See the proof of Lemma 3. In this note, we sketch an alternative
proof of Theorem 1 by using this technique of Goldston and Yang [7].

2 The circle method and the Goldston-Yang trick

Instead of the original representation function R(n,q,a), we use the twisted
representation function

R(n, x1,x2) = Z Xl(ml)A(ml)X2(m2)A(m2)

my+ma=n



for Dirichlet characters x; (mod ¢1), x2 (mod g2). We use two trigonometric
polynomials

S(@,U,x) := Y x(n)A(n)e(na),

n<U

Tg(a,U) :== Z nf~le(na), T(a):=Ti(a,X),
n<U

where e(a) := exp(27ia), U > X and x (mod q) is a Dirichlet character. Clearly,
1/2

Z R(na X1, X2) = / S(O{, U: Xl)S(aa Ua X2)T(~a)da. (7)
<X -1/2

Here we note that this equation (7) holds for any U > X. Hence we can take
an average over X < U < 2X. Then we have

2X p1/2
> R(nx,xe) = / S(a U, x1)8(0 U, x)T(~)derdl.  (8)
n<X

‘We introduce the approximation

S Ux)= Y. AB)Ts(e,U)+ R(a, U, x).
BEZo(X)

Then the integral in (8) can be expanded as

= Y ABms+ Y, AB)ps

B1€20(x1) B2€2Z0(x2)
- Z Z IBI)A(IB2)I5152 + IR,
B1€20(x1)
B2€Z0(x2)
where
2X ,1/2
Ins, =% / T 0)S (0, U, )T (~e)dadU )
2X 1/2
Inm =% / / Ty, (0, U)Ts, (o, U)T(—a)dex U, (10)
2X 172 .
/ / R(a,U, x1)R(a, U, x2)T(—a)da dU. (11)
X 1/2

3 The estimate of Bhowmik and Schlage-Puchta

We first estimate the integral (11). This kind of estimate without characters was
obtained by Bhowmik and Schlage-Puchta [1] and improved by Languasco and
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Zaccagnini [9]. We have to generalize their result to the case of the integral with
Dirichlet characters. Originally, the improvement of Languasco and Zaccagnini
[9] was based on the circle method with power series, which is also applicable
to our integral with characters. However, as we mentioned in Section 1, our
exposition follows an alternative method of Goldston and Yang [7], which uses

only finite trigonometric polynomials instead of power series.
By the Cauchy-Schwarz inequality, we have

Ir < J(x1)Y2J(x2) /2,
where

1/2
J(x) = , E(o, x) |T()| da

and
1 2X 2
Bax) =% [ R UnP
X

Note that T'(a) < min (X, 1/|al) for |a| < 1/2. Hence we obtain

J(x) <X E(a,x)da +/ E(a, x)%.

la|<1/X 1/X<|al<1/2

The latter integral is

1/2 dE
= E(a,x) | 2 = |d
/1/X<|a]g1/2 (e X)< +/la| 52) “
dg

<</ E(a,x)da+/ / E(a,x)da | -
lal<1/2 1/x<€<1/2 \Jlal<é 3

Thus we have

1
J(x) < (logX) sup = E(o, x)da.
1/x<¢<1/2 § Jjal<e

~ As a result our estimate is reduced to the estimate of the integral

12X
/ E(a,x)da = —/ / |R(a, U, x)>dadU.
lal<é X Jx  Jelze

By Gallagher’s lemma [6, Lemma 1], we have
' 2

[ _Reuxta<e [T] 3 xmaw)| .
|af<¢ ] .

z<n<z+(26) 7}
n<U

where

S A = xmAm - Y A no

BE€Zo(x) n

(12)

(13)

(14)

(15)

(16)

(17)
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Now we separate some irregular parts of the integral on the right-hand of (17):

2

i i
/ S xmAm)| de .

TP lz<n<a+(26) !
n<U

< I((20)7H) + J(U, (2)7Y) + K(U, (267,

where
" 2 . 2
10) = [ | S xmam)| o, JOR)= [ | 3 xmam) da,
0 n<z z<n<z+h
2
v #
K(U,h) := (n)A(n)| dz, (19)
/U —h U<ﬂZSa:+hX ’

and we assume 1 < h < X/2 in what follows. We estimate these integrals. First
we recall the follwoing explicit formula which can be derived from Theorem 12.5
and Theorem 12.10 of [10]:

Ve = 3 A@Z + 3130 +0(ogex), (20)

PEZ(X)
VLT

where 2 < z < X, T = X(log¢X) and x is primitive. Moreover, we need the
following lemma:

Lemma 1. For any non-principal character x (mod q), we have

L, . 1
7 (LX) = -3 O(logq), (21)
T iyl ciogg (22)
B ‘1-p4 ’
pr1-B  p#h
1 1/2 2
-5 < (log ¢)°, (23)

where 8 runs thorough all real zeros of L(s,x) counted with multiplicity and B
is the possible ezceptional zero for x (mod g).

Proof. For the assertion (21), see Theorem 11.4 [10]. Note that

1 1
— < ——— .
_I—B‘Z%(l—p)
B#B p#B

Then the estimate (22) can be obtained via the proof of (11.13) of [10]. The last
estimate (23) is the famous estimate of Page, see Corollary 11.12 of [10]. O
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The estimate for the integral I(h) is essentially the famous result of Cramér.
For the original result of Cramér, see [2] or [10, Theorem 13.5].

Lemma 2. Assume GRHR. Then we have I(h) < h?(log 2q)>.
Proof. (Sketch) Combining (20) with Lemma 1, we have
t xz?
Y ixmam= Y T 4o (h1/2 1og2q),
n<a o<pi<r P
where 2 < z < h and T = hloggh. Hence it is sufficient to estimate the integral
2

h p
[ 2w
2 o<y P
By expanding square and using GRHR, we have this integral is
h? 1
<K
Z Z A+ DA+ 1+n -

0<{“/1 ‘ <T 0<I"Yz | <T

log(1 2
< h*(log2g) Y {og(L+ )" +|712|)) < h3(log 2q)>.
0<ir|<T + Il

This proves the lemma. O

The integral K (U, h), although it seems to be not so important at first sight,

is quite annoying part to estimate, which was a main obstacle to reduce the

logarithms from the final error term as Languasco and Zaccagnini [9] did. This
is exactly the place where we launch the weapon of Goldston and Yang [7].

Lemma 3. Assume GRHR. Then we have

— K(U,h)dU < hX(logq)?.
X Jx
Proof. The left-hand side of the assertion is
2
2X pU+h
- / / x(WA®)| dedU

U<n.<:x:
2
2X 3X
< —/ x(n (n) dU + —/ x(n)A(n) dz.
n<U n<z

Therefore the lemma immediately follows from Lemma 2 O

The estimate of the “main-part” integral J(U, h) is classical. Actually, the
special case without Dirichlet characters was already obtained by Selberg [15].
The estimate necessary for Theorem 1 is obtained via the techniques of Saffari
and Vaughan [14]. See also Prachar [11] or Yuan and Zun [16].
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Lemma 4. Assume GRHR. Then we have J (U, h) < hU(log qU)2.
Proof. (Sketch) We first decompose the integral as

h U
J(U,h) = / +/ = Ji + Jo, say.
0 h
The first integral J; is estimated by Lemma 2 as
J1 < h?(log 2q)% <« hU(log qU)?,

which is admissible. The integral J> can be estimated by the techniques of
Saffari and Vaughan [14] as

Jo < hU(log qU)>.
For the details, see Lemma 5 and Lemma 6 of [14]. This completes the proof. [

Applying (18), Lemma 2 and Lemma 4 to (17), we have
[ IR, 0Pda < X(0gaX)? + €K (U, 207,
le|<€ '

Hence by (15), (16) and Lemma 3, we have
J(x) < X (log X)(log gX)*.
‘Substituting this estimate into (12), we arrive at
Ir < E(X). (24)

This completes the estimate of Ig.

4 Detection of main and oscillating terms

We next calculate the integral I, s, defined by (9). Clearly,

1/2
Ips, = Tp, (0, X)S(o, X, x;))T(~)da = > xj(m)A(m)nf?
-1/2 m+n<X

We now calculate this last sum explicitly. The result is

Lemma 5. Assume GRHR. For any real numbers X > 2 and 1/2 < p <1, we
have

Y xmAmnt~t =" A(p)Wo(p, u) + O(XQ(x)(log 29)(log X)),

m+n<X PEZ(X)
B+pu>1

where

Q(x) = ¢*/*(log2q) (when x (mod q) is an ezceptional character),
) -1 (otherwise).
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Proof. Recalling 1/2 < < 1, we have

Y xmAmntt = Y x(m)A(m) Y et

m+n<X m<X n<X-m
X—m
= Z X(m)A(m)/ u*~du + O(X)
m<X v Y

X
- /0 W(w, %)(X — w)h~1du+ O(X).

Now we use the explicit formula (20). We can remove the restriction that
x (mod gq) is primitive with the error of the size (log 2q)(log X). By (20), we
have

Alp) [* xh I
Z Yu(m, x) = Z M/ “p(X—u)”—ldu-i-——~-E-(1,X)+E1(X)
m<X ez P 0 p
IyI<T

= 3 AW+ L0+ Bi(X),

PEZ(X)
[vILT

where E;(X) < X(log2g)(log X). Now we remove the restriction |y| < T from
the above sum over Z(x). Note that Stirling’s formula implies

DT@ X XP (1
Tt e < e ()

where we have to care about the pole p = 0 of the factor I'(p). Then we can
estimate the extended part of the sum by

1 Xhpt+l
T XKt Z T <=5 (log ¢T') < X(log 2q)(log X).
p

>T

WO(p1 “) =

Hence we obtain

> wmx= Y AWl + o Zap+ B0, @)

m<X - pEZ(x)
By (21) and (23), we have
Xk . _
o ALY X*Q(x)(log 2q) < XQ(x)(log2g). (27)

By using (22), (23), (25) and GRHR, we have

1 1
Z A(p)Wo(p, p) < X (zﬂ: 3 + Ep: W)

PEZ(X)
B+p<Ll

(28)

< XQ(x)(log 2q).



Substituting (27) and (28) into (26), we obtain the lemma. ]

Finally, the integral I, g, (10) is obviously

1/2
I = / (6, X) sy (0, X)T(-a)dr

' (29)
= Y mPInfTl = Wy(By, B2) + O(X).

m+n<X

5 Completion of the proof

By Lemma 5 and (29), we have

Yo ABgs,+ Y., AB)ss, — .Y, A(B)A(B2)Iss,

B1€20(x1) B2€20(x2) B1€20(x1)
' B2€Zo(x2)
= ZZ W(:B11P2)+ ZZ W(plaﬁ?)
"~ Br1€Z0(x1) P1E€E2(x1)
P2€2(x2) B2€Z0(x2)
B1+B2>1 Br+B2>1
— Y W(B1,62) + (Qx1) + Qx2)) E(X).
B1€Z0(x1)
B2€20(x2)

Since the condition 8; + B2 > 1 implies that 8; > 1/2 or S > 1 / 2, we find that
{(p1,p2) € 2(x1) X Z(x2) | B+ B2 > 1}

C Zo(x1) x Z2(x2) U Z(x1) x Zo(x2)
and that

Zo(x1) x Z(x2) N Z(x1) x Zo(x2) = 20(x1) X Zo(x2)-

PIED VDI IED IPIE
Br1€Zo(x1)  p,EZ(x1) m,mEZ(x1) Br€Z0(x1)

p2€Z(x2) Ba€2o(x2) p2€2(x2) PB2€20(xz2)
B1+P2>1 Br+pB2>1 B1+B2>1 i

Therefore

Thus we have

Yo ABIss+ Y, AB)Igs, — DY AB)A(B2)Is,s,

B1€Z0(x1) B2€20(x2) Br1€20(x1)
) B2€20(x2)
=3 Wlpn,p2) + (Q(x) + Qx2) E(X).
P1EZ(x1)
p2€Z(x2)

B1+B2>1
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Substituting this equation and (24) into the result of Section 2, we obtain

> R(n,x1,x2) = Y Y Wie1,p2) + (Q(x1) + Q) E(X).

n<X P1EZ(x1)
p2€2(x2)
B1+B2>1

By the orthogonality of Dirichlet characters, we have

S Rnqa)= SOY XX Shsn gy, 4. B(X), (30)

n<X x1 (mod q1) tp(Q1)(p((I2) P1E€E2(x1)
X2 (mod g2) P2€Z(x2)
Bi+p2>1
where
Z Z Q1) + Qx2)
L, elaele)
X2 (mod g2)
This @ can be estimated as
: QK1 : (31)

by recalling Landau’s theorem on the exceptional characters. See Corollary 11.8
of [10]. Substituting (31) into (30), we arrive at Theorem 1. ’
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