The mean values of the Dirichlet L-functions

Takuya Okamoto

Department of Human Science and Common Educate,

Nippon Institute of Technology

Tomokazu Onozuka

Graduate School of Mathematics,

Nagoya University

1 Introduction

First, we recall the definition of the Dirichlet L-function.

Let χ be a Dirichlet character modulo $k \geq 2$ and

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

be the Dirichlet L-function for $\Re s > 1$.

In the present paper, we consider the following mean values of the Dirichlet L-functions for a positive integer r:

 $S_r(m_1,\ldots,m_{r+1})$

$$= \left(\frac{2}{\phi(k)}\right)^r \sum_{\chi_1(-1) = (-1)^{m_1}} \cdots \sum_{\chi_r(-1) = (-1)^{m_r}} \left(\prod_{i=1}^r L(m_i, \chi_i)\right) L(m_{r+1}, \overline{\chi_1 \cdots \chi_r}),$$

where $m_1, \ldots, m_{r+1} \in \mathbb{N}$ with $m_1 + \cdots + m_{r+1} \equiv 0 \pmod{2}$ and χ_1, \ldots, χ_r are the Dirichlet character modulo k. The aim of such studies is to express $S_r(m_1, \ldots, m_{r+1})$ in terms of the values of the Riemann zeta-function $\zeta(\ell)$ and Jordan's totient functions

$$J_{\ell}(k) = k^{\ell} \prod_{p|k} (1 - p^{-\ell}),$$

where ℓ is a positive integer.

In the case r=1, $m_1=m_2=1$ and k=p is a prime, Walum [8] studied $S_1(1,1)$, and Alkan [1], Qi [7], Louboutin [4] and Zhang [9] independently gave the following explicit formula

$$S_1(1,1) = \frac{\pi^2}{6k^2} \Big(J_2(k) - 3\phi(k) \Big),$$

in the case $k \geq 2$. Also Louboutin [5] studied $S_1(m, m)$ for a positive integer m and k > 2, and Liu and Zhang [3] studied $S_1(m,n)$ for positive integers $m, n \ge 1$ with the same parity (see [3] Theorem 1.1).

Moreover Alkan [2] considered the case r=2, and he gave the explicit formula

$$S_2(1,1,2) = \pi^4 \left(\frac{J_4(k)}{90k^4} - \frac{J_2(k)}{18k^4} \right)$$

for k > 2.

Main theorem 2

Now we give the main theorem, but first we have to prepare the following some notations which use in the main theorem:

Let $(b_{\alpha})_{\alpha=1}^m = (b_1, b_2, \dots, b_m)$ be an m-th row vector and $(c_{ij})_{1 \leq i,j \leq m}$ be an m-th square matrix. Then, for an even positive integern, we put the $\frac{n}{2}$ -th column vector

$$A_n = \left(\frac{(-1)^i i a_{i,j}}{2^{2i-1} B_{2i}}\right)_{1 \le i, j \le \frac{n}{2}}^{-1} \begin{pmatrix} J_2(k) \\ J_4(k) \\ \vdots \\ J_n(k) \end{pmatrix},$$

where B_m is the m-th Bernoulli number and

$$a_{i,j} = \begin{cases} (-1)^i 4^{i-1} & \text{if } j = 1, \\ 2(j-1)(2j-1)a_{i-1,j-1} - 4j^2 a_{i-1,j} & \text{if } 1 < j < i, \\ -(2i-1)! & \text{if } j = i, \\ 0 & \text{if } j > i. \end{cases}$$

Theorem 1. Let k > 2 be a positive integer and $m_1, \ldots, m_{r+1} \in \mathbb{N}$ with $m_1 + \cdots + m_{r+1} \equiv 0 \pmod{2}.$

In the case
$$r$$
 is odd and $m_1 = m_2 = \dots = m_{r+1} = 1$, we have
$$S_r(1,\dots,1) = \left(\frac{\pi}{2k}\right)^{r+1} \left\{ \left(\left(\frac{\frac{r+1}{2}}{2} - \alpha\right)(-1)^{\frac{r+1}{2} - \alpha}\right)_{\alpha=1}^{\frac{r+1}{2}} A_{r+1} + (-1)^{\frac{r+1}{2}} \phi(k) \right\}$$

and the otherwise,

$$S_{r}(m_{1}, \dots, m_{r+1}) = \frac{(-1)^{r+1} \pi^{m_{1} + \dots + m_{r+1}}}{2^{r+1} k^{m_{1} + \dots + m_{r+1}} \left\{ \prod_{i=1}^{r+1} (m_{i} - 1)! \right\}}$$

$$\times \left(\sum_{n=0}^{\left[\frac{t}{2}\right]} (-1)^{\left[\frac{t}{2}\right] - n} \binom{\left[\frac{t}{2}\right]}{\left[\frac{t}{2}\right] - n} \sum_{\substack{j_{1} + \dots + j_{r+1} = \alpha - n \\ 1 \le j_{1} \le \left[\frac{m_{1}}{2}\right], \dots, 1 \le j_{r+1} \le \left[\frac{m_{r+1}}{2}\right]}} \left\{ \prod_{v=1}^{r+1} f(m_{v}, j_{v}) \right\} \right)^{\frac{m_{1} + \dots + m_{r+1}}{2}}$$

 $A_{m_1+\cdots+m_{r+1}},$

where for $m_v \geq 2$, $f(m_v, j_v) = a_{\left[\frac{m_v}{2}\right], j_v} \rho(m_v, j_v)$,

$$ho(m_v; j_v) = egin{cases} -2j_v & \textit{if } m_v \in 2\mathbb{N}+1, \ 1 & \textit{otherwise}. \end{cases}$$

and we put

$$t = \# \{m_v \mid m_v \text{ is odd for } 1 \le v \le r+1\}.$$

Also, in the case $m_v = 1$, the sum and product corresponding v does not appear.

We note that this result is a generalization of results of [6].

3 Sketch of proof

The proof of Theorem 1 is similar to the proof of Theorem 1.1 and 1.2 of [6]. Therefore we give only the sketch of the proof of Theorem 1 in this paper.

The key of the proof is to use the following result of Louboutin ([5] Proposition 3 (1)):

Let $n \ge 1$ and k > 2 be positive integers. Let $\cot^{(n)} x$ denote the *n*-th derivative of $\cot x$. If χ is a Dirichlet character modulo k and if $\chi(-1) = (-1)^n$ then we have

$$L(n,\chi) = \frac{(-1)^{n-1}\pi^n}{2k^n(n-1)!} \sum_{j=1}^{k-1} \chi(j) \cot^{(n-1)}(\pi j/k).$$
 (1)

Then, by (1) and

$$\sum_{\chi(-1)=(-1)^n} \chi(j_1)\overline{\chi}(j_2) = \begin{cases} \frac{\phi(k)}{2} & \text{if } j_1 \equiv j_2 \mod k, \ (j_1,k) = 1, \\ (-1)^n \frac{\phi(k)}{2} & \text{if } j_1 \equiv -j_2 \mod k, \ (j_1,k) = 1, \\ 0 & \text{otherwise,} \end{cases}$$

we have

$$S_{r}(m_{1}, \dots, m_{r+1}) = \frac{(-1)^{r+1} \pi^{m_{1} + \dots + m_{r+1}}}{2k^{m_{1} + \dots + m_{r+1}} (\prod_{i=1}^{r+1} (m_{i} - 1)!)} \times \sum_{\substack{l=1 \ (l,k)=1}}^{k-1} \cot^{(m_{1}-1)} (\pi l/k) \cot^{(m_{2}-1)} (\pi l/k) \cdots \cot^{(m_{r+1}-1)} (\pi l/k).$$

Now, using the following formula:

For any positive integer n, we have

$$\cot^{(2n-1)} x = \sum_{j=1}^{n} a_{n,j} \sin^{-2j} x,$$
(2)

where $a_{i,j}$ is defined in Section 2, we can express $S_r(m_1, \ldots m_{r+1})$ to the terms of $\sum_{j=1}^n a_{n,j} \sin^{-2j}(\pi l/k)$ for $1 \leq j \leq (m_1 + \cdots + m_{r+1})2$.

On the other hand, applying (2) to (1), we have

$$L(2n,\chi_0) = \frac{-\pi^{2n}}{2k^{2n}(2n-1)!} \sum_{j=1}^n a_{n,j} \sum_{\substack{l=1\\(l,k)=1}}^{k-1} \sin^{-2j} \left(\frac{\pi l}{k}\right), \tag{3}$$

where χ_0 is a principal Dirichlet character modulo k. Also, by the Euler product expansion, we have

$$L(2n, \chi_0) = \zeta(2n)k^{-2n}J_{2n}(k). \tag{4}$$

Then, by (3) and (4), we can express $\sum_{i=1}^{n} a_{n,j} \sin^{-2j}(\pi l/k)$ to the terms of

 J_{2j} for $1 \leq j \leq (m_1 + \cdots + m_{r+1})/2$. Therefore we can express $S_r(m_1, \ldots, m_{r+1})$ to the terms of J_{2j} for $1 \leq j \leq (m_1 + \cdots + m_{r+1})/2$ and we can show Theorem 1.

4 Examples

Lastly we give the following several evaluation formulas for $S_r(m_1, \dots m_{r+1})$ in the case r=2:

$$S_2(1,1,4) = \frac{\pi^6}{12k^6} \left(\frac{4}{315} J_6(k) - \frac{4}{45} J_4(k) + \frac{8}{45} J_2(k) \right),$$

$$S_2(1,1,6) = \frac{\pi^8}{240k^8} \left(\frac{8}{315} J_8(k) - \frac{32}{189} J_6(k) + \frac{8}{45} J_4(k) + \frac{32}{63} J_2(k) \right).$$

References

- [1] E. Alkan, On the mean square average of special values of L-functions, J. Number Theory 131 (2011), 1470–1485.
- [2] E. Alkan, Averages of values of L-series, Proc. Amer. Math. Soc. 141 no. 4 (2013), 1161–1175.
- [3] H. Liu and W. Zhang, On the mean value of $L(m, \chi)L(n, \overline{\chi})$ at positive integers $m, n \geq 1$, Acta. Arith. 122 no. 1 (2006), 51–56.
- [4] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), 190–196; Addendum, ibid. 37 (1994), 89.
- [5] S. Louboutin, The mean value of $|L(k,\chi)|^2$ at positive rational integers $k \geq 1$, Colloq. Math. **90** no. 1 (2001), 69–76.
- [6] T. Okamoto and T. Onozuka, On the various mean values of the Dirichlet L-functions, Acta Arith, vol.167 (2015), No.2, pp.101-115.
- [7] M. G. Qi, A class of mean square formulas for L-functions, J. Ts-inghua Univ. 31 (1991), 34–41.
- [8] H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), 1–3.
- [9] W. P. Zhang, On the mean values of Dedekind sum, J. Théor. Nombres Bordeaux 8 (1996), 429–442.

Present Address:

Takuya Okamoto

Department of Human Science and Common Educate

Nippon Institute of Technology

4-1 Gakuendai Miyashiro-machi, Saitama-gun, Saitama 345-8501

Japan

E-mail: takuyaoka@nit.ac.jp,

Tomokazu Onozuka

Graduate School of Mathematics

Nagoya University

Chikusa-ku, Nagoya 464-8602

Japan

E-mail:m11022v@math.nagoya-u.ac.jp