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Abstract

In this article, we consider certain descending filtrations of the \mathrm{S}\mathrm{L}(m, \mathrm{C})-
representation algebras of free groups and free abelian groups. By using it, we

introduce analogs of the Johnson homomorphisms of the automorphism groups

of free groups. We show that the first homomorphisms are extended to the au‐

tomorphism groups of free groups as crossed homomorphisms. Furthermore we

show that the extended crossed homomorphisms induce Kawazumi�s cocycles and

Morita�s cocycles. This works are generalization of our previous results [31] and

[32] for the \mathrm{S}\mathrm{L}(2, \mathrm{C}) ‐representation algebras.

For any m\geq 2 and any group G , let R^{m}(G) be the set \mathrm{H}\mathrm{o}\mathrm{m}(G, \mathrm{S}\mathrm{L}(m, \mathrm{C})) of

all \mathrm{S}\mathrm{L}(m, \mathrm{C}) ‐representations of G . Let \mathcal{F}(R^{m}(G), \mathrm{C}) be the set \{ $\chi$ : R^{m}(G)\rightarrow \mathrm{C}\}
of all complex‐valued functions on R^{m}(G) . Then \mathcal{F}(R^{m}(G), \mathrm{C}) naturally has the C‐

algebra structure coming from the pointwise sum and product. For any x\in G and any

1\leq i, j\leq m , we define an element a_{ij}(x) of \mathcal{F}(R^{m}(G), \mathrm{C}) to be

(a_{ij}(x))( $\rho$) :=(i,j) ‐component of  $\rho$(x)

for any  $\rho$\in R^{m}(G) . We call the map a_{ij}(x) the (i, j)‐component function of x , or

simply a component function of x . Let \Re_{\mathrm{Q}}^{m}(G) be the \mathrm{Q}‐subalgebra of \mathcal{F} ( R^{m}(G) , C)
generated by all a_{ij}(x) for x\in G and 1\leq i, j\leq m . We call \Re_{\mathrm{Q}}^{m}(G) the \mathrm{S}\mathrm{L}(m, \mathrm{C})-
representation rings of G over Q. In this article, we introduce a descending filtration

of \Re_{\mathrm{Q}}^{m}(G) consisting of Aut G‐invariant ideals, and study the graded quotients of it.

To the best of our knowledge, the study of the algebra \Re_{\mathrm{Q}}^{m}(G) has a not so long
history. Classically, the \mathrm{Q}‐subalgebra of \Re_{\mathrm{Q}}^{2}(F_{n}) generated by characters of F_{n} was

actively studied. For any x\in F_{n} ,
the map tr x :=a_{11}(x)+a_{22}(x) is called the Fricke

character of x . Fricke and Klein [6] used the Flricke characters for the study of the

classification of Riemann surfaces. In the 1970\mathrm{s} , Horowitz [11] and [12] investigated
several algebraic properties of the ring of Frricke characters by using the combinatorial
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group theory. In 1980, Magnus [19] studied some relations among Fricke characters of

free groups systematically. As is found in Acuna Maria Montesinos�s paper [1], today
Magnus�s research has been developed to the study of the \mathrm{S}\mathrm{L}(2, \mathrm{C}) ‐character varieties

of free groups by quite many authors. Let \mathfrak{X}_{\mathrm{Q}}^{2}(F_{n}) be the \mathrm{Q}‐subalgebra of \Re_{\mathrm{Q}}^{2}(F_{n})
generated by all tr x for x\in F_{n} . The ring \mathfrak{X}_{\mathrm{Q}}^{2}(F_{n}) is called the ring of Fricke characters

of F_{n} . Let \mathrm{C} be the ideal of X_{\mathrm{Q}}^{2}(F_{n}) generated by trx-2 for any x\in F_{n} . In our

previous papers [9] and [30] , we considered an application of the theory of the Johnson

homomorphisms of Aut F_{n} by using the Fricke characters. In particular, we determined

the structure of the graded quotients \mathrm{g}\mathrm{r}^{k}(\mathrm{C}) :=\mathrm{C}^{k}/C^{k+1} for 1\leq k\leq 2 , introduced

analogs of the Johnson homomorphisms, and showed that the first homomorphism
extends to Aut F_{n} as a crossed homomorphism.

We briefly review the history of the Johnson homomorphisms. In 1965, Andreadakis

[2] introduced a certain descending central filtration of Aut F_{n} by using the natural ac‐

tion of Aut F_{n} on the nilpotent quotients of F_{n} . We call this filtration the Andreadakis‐

Johnson filtration of Aut F_{n} . In the 1980\mathrm{s} , Johnson studied such filtration for mapping
class groups of surfaces in order to investigate the group structure of the Torelli groups in

a series of works [13], [14], [15] and [16]. In particular, he determined the abelianization

of the Torelli group by introducing a certain homomorphism. Today, his homomorphism
is called the first Johnson homomorphism, and it is generalized to higher degrees. Over

the last two decades, the Johnson homomorphisms of the mapping class groups have

been actively studied from various viewpoints by many authors including Morita [21],
Hain [8] and others.

The Johnson homomorphisms are naturally defined for Aut F_{n} :

\tilde{ $\tau$}_{k} : \mathcal{A}_{F_{n}}(k)\mapsto \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(H, \mathcal{L}_{F_{n}}(k+1))

where H :=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Z}}(H, \mathrm{Z}) . So far, we concentrate on the study of the cokernels of

Johnson homomorphisms of Aut F_{n} in a series of our works [25], [26], [28] and [5] with

combinatorial group theory and representation theory. Since each of the Johnson homo‐

morphisms is \mathrm{G}\mathrm{L}(n, \mathrm{Z})‐equivariant injective, it is an important problem to determine

its images and cokernels. On the other hand, the study of the extendability of the

Johnson homomorphisms have been received attentions. Morita [22] showed that the

first Johnson homomorphism of the mapping class group, which initial domain is the

Torelli group, can be extended to the mapping class group as a crossed homomorphism
by using the extension theory of groups. Inspired by Morita�s work, Kawazumi [17]
obtained a corresponding results for Aut F_{n} by using the Magnus expansion of F_{n}.
Furthermore, he constructed higher twisted cohomology classes with the extended first

Johnson homomorphism and the cup product. By restricting them to the mapping class

group, he investigated relations between the higher cocycles and the Morita‐Mumford

classes. Recently, Day [4] showed that each of Johnson homomorphisms of Aut F_{n} can

be extended to a crossed homomorphism from Aut F_{n} into a certain finitely generated
free abelian group.

As mentioned above, we [9] constructed analogs of the Johnson homomorphisms with

the ring \mathfrak{X}_{\mathrm{Q}}^{2}(F_{n}) of Fricke characters, and showed that the first homomorphism can be
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extended to Aut F_{n} in [30]. It is, however, difficult to push forward with our research

since the structures of the graded quotients \mathrm{g}\mathrm{r}^{k}(C) are too complicated to handle. In

[31] , we considered a similar situation for the \mathrm{S}\mathrm{L}(2, \mathrm{C}) ‐representation algebra \Re_{\mathrm{Q}}^{2} (Fn).
In this article, we generalize our previous works to the \mathrm{S}\mathrm{L}(m, \mathrm{C}) ‐representation case.

Set s_{ij}(x) :=a_{ij}(x)-$\delta$_{ij} for any 1\leq i,j\leq m and x\in F_{n} where  $\delta$ means Kronecker�s

delta. Let \mathrm{J}_{F_{n}} be the ideal of \Re_{\mathrm{Q}}^{m}(F_{n}) generated by s_{ij}(x_{l}) for any 1\leq i,j\leq m and

1\leq l\leq n . Then the products of \mathrm{J}_{F_{n}} define a descending filtration of \Re_{\mathrm{Q}}^{m} (Fn):

\mathrm{J}_{F_{n}}\supset \mathrm{J}_{F_{n}}^{2}\supset \mathrm{J}_{F_{n}}^{3}\supset\cdots,
which consists of Aut F_{n}‐invariant ideals. Set \mathrm{g}\mathrm{r}^{k}(\mathrm{J}_{F_{n}}) :=\mathrm{J}_{F_{n}}^{k}/\mathrm{J}_{F_{n}}^{k+1} for any k\geq 1 . Set

T_{k}:=\displaystyle \{ \prod_{1\leq i,j\leq m,(i,j)\neq(m,m)}\prod_{ $\iota$=1}^{n}s_{i\hat{g}}(x_{l})^{e_{ij,l}}|e_{ij,l}\geq 0, (i,j)\neq(m,m)\sum_{1\leq i,j\leq m}\sum_{l=1}^{n}e_{i\dot{},l}=k\}\subset_{1}\tilde{\int}_{F_{n}}^{k}.
Theorem 1. For each k\geq 1 ,

the set T_{k} (mod \mathrm{J}_{F_{n}}^{k+1} ) forms a basis of \mathrm{g}\mathrm{r}^{k}(\mathrm{J}_{F_{n}}) as a

\mathrm{Q} ‐vector space. Furthermore, for any n\geq 2 and k\geq 1 , we have

\displaystyle \mathrm{g}\mathrm{r}^{k}(\mathrm{J}_{F_{n}})\cong\oplus' \bigotimes_{1\leq i,\dot{}\leq m,(i,j)\neq(mm)},S^{\mathrm{e}_{ij}}H_{\mathrm{Q}}
as a \mathrm{G}\mathrm{L}(n, \mathrm{Z}) ‐module. Here the sum runs over all tuples (e_{ij}) for 1\leq i, j\leq m and

(i,j)\neq(m, m) such that the sum of the e_{ij} is equal to k.

This theorem is a generalization of our previous result for the case where k=2 in [31].

Now, set

D_{F_{n}}^{m}(k) :=\mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{A}\mathrm{u}\mathrm{t}F_{n}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{J}_{F_{n}}/\mathrm{J}_{F_{n}}^{k+1})) .

The groups \mathcal{D}_{F_{n}}^{m}(k) define a descending central filtration of Aut F_{n} . Let \mathcal{A}_{F_{n}}(1)\supset
\mathcal{A}_{F_{n}}(2)\supset\cdots be the Andreadakis‐Johnson filtration of Aut  F_{n} . We show a relation

between \mathcal{A}_{F_{n}}(k) and \mathcal{D}_{F_{n}}^{m}(k) , and among \mathcal{D}_{F_{n}}^{m}(k)\mathrm{s} as follows.

Theorem 2.

(1) For any k\geq 1, \mathcal{A}_{F_{n}}(k)\subset \mathcal{D}_{F_{n}}^{m}(k) .

(2) For any k\geq 1 and m\geq 2 , we have D_{F_{n}}^{m+1}(k)\subset \mathcal{D}_{F_{n}}^{m}(k) .

In [31], we showed that \mathcal{D}_{F_{n}}^{2}(k)=\mathcal{A}_{F_{n}}(k) for 1\leq k\leq 4 . Hence, we have \mathcal{D}_{F_{n}}^{m}(k)=
\mathcal{A}_{F_{n}}(k) for any 1\leq k\leq 4 . By referring to the theory of the Johnson homomorphisms,
we can construct analogs of them:

\tilde{ $\eta$}_{k} : D_{F_{n}}^{m}(k)\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Q}} (grl (\mathrm{J}_{F_{n}}), \mathrm{g}\mathrm{r}^{k+1}(\mathrm{J}_{F_{n}}) ).

defined by the corresponding f\mapsto f^{ $\sigma$}-f for any f\in \mathrm{J}_{F_{n}} . In this article, we consider

an extension of the first homomorphism \tilde{ $\eta$}_{1} , and study some relations to the extension

of \tilde{ $\tau$}_{1}.
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Set H_{\mathrm{Q}} :=H\otimes \mathrm{z} Q. In [24], we computed H^{1}(\mathrm{A}\mathrm{u}\mathrm{t}F_{n}, H_{\mathrm{Q}})=\mathrm{Q} , and showed that

it is generated by Morita�s cocycle f_{M} . On the other hand, we [27] also computed
H^{1} (Aut F_{n}, H_{\mathrm{Q}}^{*}\otimes_{\mathrm{Q}}$\Lambda$^{2}H_{\mathrm{Q}} ) =\mathrm{Q}^{\oplus 2} , and showed that it is generated by Kawazumi�s

cocycle f_{K} and the cocycle induced from f_{M} . Kawazumi�s cocycle f_{K} is an extension

of \tilde{ $\tau$}_{1} . Then we can construct the crossed homomorphism

$\theta$_{F_{n}} : Aut F_{n}\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Q}} (grl (\mathrm{J}_{F_{n}}), \mathrm{g}\mathrm{r}^{2}(\mathrm{J}_{F_{n}}) )

which is an extension of \tilde{ $\eta$}_{1} . By taking suitable reductions of the target of $\theta$_{F_{n}} , we obtain

the crossed homomorphisms

f_{1} : Aut F_{n}\rightarrow H_{\mathrm{Q}}^{*}\otimes_{\mathrm{Q}}$\Lambda$^{2}H_{\mathrm{Q}}, f_{2} : Aut F_{n}\rightarrow H_{\mathrm{Q}}.

Then we show the following.

Theorem 3. For any n\geq 2,

f_{K}=f_{1}, f_{M}=-f_{2}+$\delta$_{x}

for x=x_{1}+x_{2}+\cdots+x_{n}\in H_{\mathrm{Q}} as crossed homomorphisms.

This shows that our crossed homomorphism induces both of Kawazumi�s cocycle and

Morita�s cocycle, and that $\theta$_{F_{n}} defines the non‐trivial cohomology class in H^{1} (Aut F_{n},
\mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Q}} (grl (\mathrm{J}_{F_{n}}), \mathrm{g}\mathrm{r}^{2}(\mathrm{J}_{F_{n}}) ) ) .

In [10] and [32], we studied \mathrm{X}_{\mathrm{Q}}^{2}(H) and \Re_{\mathrm{Q}}^{2}(H) . In this paper, we generalize the

results in [32] to the \mathrm{S}\mathrm{L}(m, \mathrm{C})‐representation cases. By using a parallel argument, we

can define a descending filtration \mathrm{J}_{H}\supset \mathrm{J}_{H}^{2}\supset \mathrm{J}_{H}^{3}\supset\cdots of ideals in \Re_{\mathrm{Q}}^{2}(H) . In contrast

with the free group case, however, it is a quite hard to determine the structure of the

graded quotients \mathrm{g}\mathrm{r}^{k}(\mathrm{J}_{H}) . Here, we gave basis of \mathrm{g}\mathrm{r}^{k}(\mathrm{J}_{H}) for 1\leq k\leq 2 . In particular,
we see

\mathrm{g}\mathrm{r}^{1}(\mathrm{J}_{H})\cong H_{\mathrm{Q}}^{\oplus m^{2}-1}, \mathrm{g}\mathrm{r}^{2}(\mathrm{J}_{H})\cong(S^{2}H_{\mathrm{Q}})^{\oplus\frac{1}{2}m^{2}(m^{2}-1)}\oplus($\Lambda$^{2}H_{\mathrm{Q}})^{\{\oplus\frac{1}{2}(m^{2}-1)(m^{2}-4)\}}.
We remark that for a general m\geq 3 ,

the situation of the \mathrm{S}\mathrm{L}(m, \mathrm{C})‐representation case

is much more different and complicated than those of the \mathrm{S}\mathrm{L}(2, \mathrm{C}) ‐representation case.

At the present stage, we have no idea to give a result for a general k\geq 3 . By using the

above results, we construct the crossed homomorphism

$\theta$_{H} : Aut F_{n}\rightarrow \mathrm{H}\mathrm{o}\mathrm{m}_{\mathrm{Q}} (grl (\mathrm{J}_{H}) , \mathrm{g}\mathrm{r}^{2}(\mathrm{J}_{H}) ),

and show that it induces Morita�s cocycle f_{M}.
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