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ABSTRACT. In the previous article [4] , we introduced the isovariant Borsuk‐Ulam con‐

stant of a compact Lie group and provided an estimate of this constant for the unitary
group \mathrm{U}(n) . In this article, we shall continue the study of the isovariant Borsuk‐Ulam

constants for simple compact Lie groups and announce some results of [5].

1. REVIEW OF THE ISOVARIANT BORSUK−ULAM CONSTANT

Let G be a compact Lie group. \mathrm{A} (continuos) G‐map f : X\rightarrow Y between G‐spaces

is called G ‐isovariant if f preserves the isotropy groups; i.e., G_{f(x)}=G_{x} for every  x\in

X. The isovariant Borsuk‐Ulam theorem was first studied by A. G. Wasserman [9]. In

particular, the following result is deduced from Wasserman�s results.

Theorem 1.1 (Isovariant Borsuk‐Ulam theorem). Let  G be a solvable compact Lie group.

If there exists a G‐isovariant map f : S(V)\rightarrow S(W) between linear G ‐spheres, then

\dim V-\dim V^{G}\leq\dim W-\dim W^{G}

holds.

We call G a Borsuk‐ Ulam group (BUG for short) if the isovariant Borsuk‐Ulam theorem

holds for G . Therefore solvable G is a Borsuk‐Ulam group. A fundamental problem is:

Which groups are Borsuk‐Ulam groups? This is not completely solved; however, several

examples are known, see [6, 7, 9]. Wasserman also conjectures that all finite groups

are Borsuk‐Ulam groups. On the other hand, a connected compact Lie group being a

Borsuk‐Ulam group other than a torus is not known.

In [4], we introduced the isovariant Borsuk‐Ulam constant c_{G} as follows.
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Definition. The isovariant Borsuk‐Ulam constant c_{G} of G is defined to be the supremum

of c\in \mathbb{R} such that:

If there is a G‐isovariant map f : S(V)\rightarrow S(W) , then

c(\dim V-\dim V^{G})\leq\dim W-\dim W^{G}
holds. (If G=1 , then set c_{G}=1 as convention.)

Clearly c_{G}=1 if and only if G is a Borsuk‐Ulam group.

In equivariant case, the (equivariant) Borsuk‐Ulam constant a_{G} is introduced and stud‐

ied by Bartsch [2]. In particular, if G is not a p‐‐toral group, then a_{G}=0 . Contrary to

this, in section 3, we present the positivity of c_{G} for any compact Lie group G.

We here recall some properties of c_{G} that are generalization of Wasserman�s results.

The detail is described in [5].

Proposition 1.2. (1) If 1\rightarrow K\rightarrow G\rightarrow Q\rightarrow 1 is an exact sequence of compact Lie

groups, then

\displaystyle \min\{c_{K}, c_{Q}\}\leq c_{G}\leq c_{Q}.
In particular, if c_{K}=1 , then c_{G}=c_{Q}.

(2) If 1=H_{0}\triangleleft H_{1}\triangleleft H_{2}\triangleleft\cdots\triangleleft H_{r}=G , then

\displaystyle \min_{1\leq i\leq r}\{c_{H_{i}/H_{i-1}}\}\leq c_{G}.
Using this proposition, we have

CorollarY 1.3. c_{G_{1}\mathrm{x}\cdots\times G_{r}}=\displaystyle \min_{i}\{c_{G_{i}}\}.

Corollary 1.4. Let G be a connected compact Lie group. Then c_{G}=\displaystyle \min_{\dot{ $\tau$}}\{G_{i}\} , where G_{i}
are simple factors of G.

2. MAIN RESULTS — ESTIMATES OF c_{G}

Let G be a simple compact Lie group. Let T denote the maximal torus T of G . We set

d_{G}=\displaystyle \sup\{\frac{\dim U^{T}}{\dim U}|U : nontrivial irreducible G‐representation \},
called the zero weight ratio of G . The following is a key result for estimation of c_{G}.

Proposition 2.1 ([5]). c_{G}\geq K_{G}:=1-d_{G}.

By representation theory, d_{G} can be determined, see [5] for the proof.

Theorem 2.2. The zero weight ratios are given in the following table.
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TABLE 1. Classical case

TABLE 2. Exceptional case

This implies the following isovariant Borsuk‐Ulam type result. Set

d(V, W)=\displaystyle \frac{\dim W-\dim W^{G}}{\dim V-\dim V^{G}}.
Corollary 2.3. If d(V, W)<K_{G} for G simple, then there is no G‐isovariant map f :

S(V)\rightarrow S(W) .

3. REMARKS AND APPLICATIONS

As a consequence of Theorem 2.2, c_{G}>0 for connected G . In [3], we also see that

c_{G}>0 for finite G . Therefore we obtain a positivity result on c_{G} by Proposition 1.2.

Corollary 3.1. c_{G}>0 for any compact Lie group G.

This implies that the weak isovariant Borsuk‐Ulam theorem holds for any G which was

first proved in [3]. We recall the weak isovariant Borsuk‐Ulam theorem.

Definition (Isovariant Borsuk‐Ulam function $\varphi$_{G} : \mathrm{N}\rightarrow \mathbb{N}). $\varphi$_{G}(n) is defined as the mini‐

mum of \dim W-\dim W^{G} such that there exists a G‐isovariant maps f : S(V)\rightarrow S(W)
with \dim V-\dim V^{G}\geq n.

Proposition 3.2. (1) If n\leq m , then $\varphi$_{G}(n)\leq$\varphi$_{G}(m) .
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(2) $\varphi$_{G}(n+m)\leq$\varphi$_{G}(n)+$\varphi$_{G}(m) (subadditivity).
(3) $\varphi$_{G}(n)\leq n for n\in \mathcal{D}_{G} :=\{\dim V|V^{G}=0\}.

From the definition of c_{G} , one can see

Proposition 3.3. (1)

c_{G}=\displaystyle \lim_{n\rightarrow\infty}\frac{$\varphi$_{G}(n)}{n}=\inf_{n}\frac{$\varphi$_{G}(n)}{n}.
(2)

 $\varphi$(n)\geq c_{G}n for n\in \mathcal{D}_{G}.

Definition. We say that the weak isovariant Borsuk‐Ulam theorem holds for G if

\displaystyle \lim_{n\rightarrow\infty}$\varphi$_{G}(n)=\infty.

Clearly the positivity of c_{G} shows

Corollary 3.4 ([3]). The weak isovariant Borsuk‐ Ulam theorem holds for any G.

Bartsch [1] showed that when G is finite, the weak Borsuk‐Ulam theorem holds for G

if and only if G is a finite p‐‐group. Our result is an isovariant version of Bartsch�s result.

As an application of the positivity of c_{G} , one can see another isovariant Borsuk‐Ulam

type theorem using by a similar argument of [1].

Corollary 3.5. Let G be a compact Lie group. Then there is no G‐isovariant map f :

S(V)\rightarrow S(W) for W_{\neq}^{\subset}V(V^{G}=0) .

Remark. This is an isovariant version of Bartsch�s result that there is no G‐map f :

S(V)\rightarrow S(W) for W\neq\subset V(V^{G}=0) if and only if G is a p‐‐toral, where G is called a

p‐‐toral if G has an exact sequence 1\rightarrow T\rightarrow G\rightarrow P\rightarrow 1, T : torus, P : finite ‐group.

Also, an isovariant version of an infinite Borsuk‐Ulam type theorem holds.

Corollary 3.6. Let G be a compact Lie group. Suppose that \dim V=\infty and \dim V^{G}<

\infty . If there exists a  G‐isovariant map f : S(V)\rightarrow S(W) , then \dim W=\infty.

Proof. Suppose \dim W<\infty . The Peter‐Weyl theorem [8] shows that there exists a finite‐

dimensional subrepresentation  V' of V with arbitrary higher dimension. Then there exists

a G‐isovariant map f' :=f_{|S(V')} : S(V')\rightarrow S(W) ; however, this contradicts c_{G}>0. \square 
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