Singularities of maximal Bonnet-type surfaces in Lorentz space*

神戸大学大学院理学研究科数学専攻 緒方 勇太 Yuta Ogata Department of Mathematics, Kobe University

1 背景

「平均曲率一定曲面 (CMC 曲面)」はシャボン玉の数学的モデルであり、CMC 曲面の構成方法 の研究は古くから行われてきた。1866 年に、K. T. Weierstrass により \mathbb{R}^3 内の平均曲率一定零曲 面 (極小曲面) に対して、積分型の公式が与えられた。また、 \mathbb{R}^3 内の平均曲率がゼロでない一定 曲面に関しては、J. Dorfmeister と F. Pedit、H. Wu によって、行列分解などを用いた構成理論 (DPW 法 [7]) が考案された。CMC 曲面の構成方法はユークリッド空間だけでなく、リーマン空間 形やセミリーマン空間形などでも研究が進んでいる。

一方、「平面的な曲率線をもつ CMC 曲面」は、有名な例を多く含んでいることが知られており、 H. Wente ([23]) によって発見されたコンパクト CMC 曲面の非自明な例 (Wente トーラス Figure 1) もこのクラスに含まれている。また、「平面的な曲率線をもつ極小曲面」は A. Enneper や L. P. Eisenhart、J. C. C. Nitsche などの先行研究 ([8], [9], [16]) により、すでに分類定理が存在し、平 面、Catenoid、 Enneper 曲面、Bonnet 曲面に限ることが知られている。

また、近年、Leite (see [14]) によって 3 次元ローレンツ空間 $\mathbb{R}^{2,1}$ 内の「平面的な曲率線をもつ 極大曲面」の分類が与えられた (see Fact 2.2)。Leite の分類によって 6 つのケースに分類されるこ とがわかるが、特異点については当論文内では全く触れられていなかった。本論文では、「平面的 な曲率線をもつ極大曲面」の特異点について解析を行うが、「極大 Bonnet 型曲面」以外のケース については既に先行研究が存在するため、「極大 Bonnet 型曲面の特異点」を主に考える。その際、 Theorem 3.1の結果を導出することにより、「極大 Bonnet 型曲面の特異点」の完全な型判定定理を 与えたことを報告する (see Theorem 3.2)。

Fig. 1: Wente トーラス、Delaunay 曲面 (Unduloid)、柱面的バブルトン (left to right)

^{*}この研究は、Joseph Cho 氏 (神戸大学) との共同研究 ([6]) と、寺本 圭佑氏 (神戸大学) との共同研究 ([17]) によるものである。

2 平面的な曲率線をもつ極大曲面

先行研究 [12] 内において、3 次元ローレンツ空間 ℝ^{2,1} 内の空間的な平均曲率零曲面(極大曲面) について Weierstrass 型の表現公式が構成された。その後、[21] 内において、ある種の特異点を許 容する形で一般化され、それらは「極大面」と呼ばれている:

Fact 2.1 (極大面 [21]). $\Sigma \subset (\mathbb{C}; z)$ を単連結領域とする。g を有理型関数、 $\omega = \hat{\omega} dz$ を正則 1 次 微分形式とし、 $(1 + |g|^2)^2 |\hat{\omega}|^2 \neq 0$ を満たすものとする。そのとき、

$$f = \operatorname{Re}\left[\int (-2g, 1 + g^2, i(1 - g^2))\omega\right]$$
(2.1)

は、ℝ^{2,1} 内の極大面を定める。また、任意の極大面は局所的にこの方法で与えることができる。

ここでは、Leite (see [14]) によって与えられた「平面的な曲率線をもつ極大曲面の分類定理」を 紹介する:

Fact 2.2 ([6], [14]). ℝ^{2,1} の等長変換と相似拡大の自由度を除いて、平面的な曲率線をもつ極大曲 面は、以下の6つのケースに限る。

- 空間的平面 (P) (0,1 dz),
- 極大 Enneper 曲面 (E) (z,1 dz),
- 光的な軸をもつ極大カテノイド (C_L) $(\frac{(1-z)}{(1+z)}, -\frac{(1+z)^2}{2} dz)$ と、その同伴族,
- 時間的な軸をもつ極大カテノイド (C_T) $(e^z, e^{-z} dz),$
- 空間的な軸をもつ極大カテノイド (C_S) $((1 e^z)/(1 + e^z), (-1 \cosh z) dz),$
- 極大 Bonnet 型曲面 $\{(-e^z + t, -\frac{e^{-z}}{2} dz), t > 0\}$ (B_S: $t > 1, B_L$: $t = 1, B_T$: 0 < t < 1).

Fig. 2: 空間的平面, 極大 Enneper 曲面, 光的な軸をもつ極大カテノイド (left to right)

Fig. 3: 時間的な軸をもつ極大カテノイド, 空間的な軸をもつ極大カテノイド, 極大 Bonnet 型曲面 (left to right)

また、[6] では、平面的な曲率線をもつ極大曲面が「連続変形による極大曲面の1変数族」になることを示した:

Theorem 2.1 ([6]). 平面的な曲率線をもつ極大曲面は、極大性と平面曲率線条件を保つ連続変形 により「極大曲面の1変数族」になる。

Fig. 4: 平面的な曲率線をもつ極大曲面と、その連続変形

3 極大 Bonnet 型曲面の特異点

先行研究 [21] 内では、極大面に対し、カスプ的曲面とツバメの尾の Weierstrass データによる判 定法が与えられた。一方で [10] 内では、極大面がジェネリックにフロンタルの特異点をもつことが 示され、カスプ的交叉帽子の Weierstrass データによる判定法が与えられた。

Fact 3.1 ([10], [21]). $\Sigma \subset (\mathbb{C}; z)$ を単連結領域とする。 $f : \Sigma \to \mathbb{R}^{2,1}$ を Weierstrass データ (g, ω) によって与えられる極大面とし、 $p \notin f$ の特異点とする。

(1) f:カスプ辺 $at p \iff \operatorname{Re}[\varphi] \neq 0$ and $\operatorname{Im}[\varphi] \neq 0$ at p.

(2) f: ヅバメの尾 at $p \iff \operatorname{Re}[\varphi] \neq 0$, $\operatorname{Im}[\varphi] = 0$ and $\operatorname{Re}[\phi] \neq 0$ at p.

(3) $f: カスプ的交叉帽子 at p \iff \operatorname{Re}[\varphi] = 0, \operatorname{Im}[\varphi] \neq 0 and \operatorname{Im}[\phi] \neq 0 at p.$ ただし、 q_z , $q \neq q_z$)

	${\rm Re}[\varphi]$	${ m Im}[arphi]$	$\operatorname{Re}[\phi]$	$\operatorname{Im}[\phi]$
カスプ辺 (CE)	$\neq 0$	$\neq 0$	×	×
ッバメの尾 (SW)	$\neq 0$	= 0	$\neq 0$	×
カスプ的交叉帽子 (CCR)	= 0	$\neq 0$	×	$\neq 0$

$$\varphi := rac{g_z}{g^2 \hat{\omega}}, \quad \phi := rac{g}{g_z} \left(rac{g_z}{g^2 \hat{\omega}}
ight)_z$$

Fig. 5: カスプ辺、ツバメの尾、カスプ的交叉帽子

Remark 3.1. Fact 3.1等を適用することで、Leite の分類結果のうち、「極大 Bonnet 型曲面」以 外の5つのケースは既に「特異点の型」が特定されている (see [10], [21], [13], etc): 空間的平面:特異点なし、極大 Enneper 曲面:カスプ辺とツバメの尾とカスプ的交叉帽子、 光的な軸をもつ極大カテノイドとその同伴族:錘状特異点と折り目特異点とカスプ辺、 時間的な軸をもつ極大カテノイド:錘状特異点、空間的な軸をもつ極大カテノイド:錘状特異点。

Remark 3.1より、以下では「極大 Bonnet 型曲面」のみを考え、特異点の型判定を考える。まず、 極大 Bonnet 型曲面の Weierstrass データは、

$$g(z) = -e^z + t, \ \hat{\omega}(z)dz = -\frac{e^{-z}}{2}dz$$

ただし、t > 0は定数。また、極大 Bonnet 型曲面は周期的な曲面になるとわかるので、定義域を $\{u \in \mathbb{R}, v \in (0, 2\pi)\}$ に制限する (ただし、z = u + iv とおいた)。このとき、Fact 3.1を適用する と、以下の"不完全な"結果が得られる:

Lemma 3.1. $f^t(u,v)$ を Weierstrass データ $\left(-e^z + t, -\frac{e^{-z}}{2}dz\right)$ で与えられる極大 Bonnet 型曲 面とする。定義域 $\{u \in \mathbb{R}, v \in (0, 2\pi)\}$ に制限した極大 Bonnet 型曲面の特異点は、以下の表の点 を除いて「カスプ辺」になる:

	# of ツバメの尾	# of カスプ的交叉帽子	# of 不明な特異点
$0 < t < \frac{1}{\sqrt{2}}$	2	0	0
$t = \frac{1}{\sqrt{2}}$	2	0	2
$\frac{1}{\sqrt{2}} < t < 1$	2	4	0
t = 1	1	2	0
1 < t	4	4	0

Fig. 6: $0 < t < \frac{1}{\sqrt{2}}$

Fig. 8: $\frac{1}{\sqrt{2}} < t < 1$

Lemma 3.1では、既存の判定法 Fact 3.1を適用して、特異点の型判定を試みたが、 $t = \frac{1}{\sqrt{2}}$ において判定不能になる点が2点存在してしまい、不完全な結果になってしまう。この課題の解決のため、寺本氏との共同研究による「カスプ的蝶々」と「カスプ的 S_1 特異点」の Weierstrass データによる判定法を述べる:

Theorem 3.1 ([17]). $\Sigma \subset (\mathbb{C}; z)$ を単連結領域とする。 $f : \Sigma \to \mathbb{R}^{2,1}$ を Weierstrass データ (g, ω) によって与えられる極大面とし、 $p \notin f$ の特異点とする。

(1) f: カスプ的蝶々 at p \iff Re[φ] \neq 0, Im[φ] = 0, Re[ϕ] = 0 and Im[Φ] \neq 0 at p.

(2) f:カスプ的 S_1^- 特異点 at $p \iff \operatorname{Re}[\varphi] = 0$, $\operatorname{Im}[\varphi] \neq 0$, $\operatorname{Im}[\phi] = 0$ and $\operatorname{Re}[\Phi] \neq 0$ at p.

ただし、

$$\varphi := \frac{g_z}{g^2 \hat{\omega}}, \quad \phi := \frac{g}{g_z} \left(\frac{g_z}{g^2 \hat{\omega}}\right)_z, \\ \Phi := \frac{g}{g_z} \left\{\frac{g}{g_z} \left(\frac{g_z}{g^2 \hat{\omega}}\right)_z\right\}_z.$$
(3.1)

さらに、*Weierstrass* データを (g, ω) から $(g, i\omega)$ に取り換える操作で、カスプ的蝶々とカスプ的 S_1^- 特異点は互いに移りあう。すなわち、ある極大面上のカスプ的蝶々とその共役極大面上のカス プ的 S_1^- 特異点は互いに対応し、双対性が存在する。

	${ m Re}[arphi]$	$\operatorname{Im}[\varphi]$	$\operatorname{Re}[\phi]$	$\operatorname{Im}[\phi]$	$\operatorname{Re}[\Phi]$	$\operatorname{Im}[\Phi]$
カスプ的蝶々	$\neq 0$	= 0	= 0	×	×	$\neq 0$
カスプ的 <i>S</i> ₁ ⁻ 特異点	= 0	$\neq 0$	×	= 0	$\neq 0$	×

Fig. 12: カスプ的 S₁⁻ 特異点

上の定理の証明より、以下の系を得る:

Corollary 3.1 ([17]). カスプ的 S_1^+ 特異点をもつ $\mathbb{R}^{2,1}$ 内の極大面は存在しない。

Fig. 13: カスプ的 S₁⁺ 特異点

Theorem 3.1の判定法を適用することで、以下の主定理を得る。

Theorem 3.2. $f^t(u,v)$ を Weierstrass データ $\left(-e^z + t, -\frac{e^{-z}}{2}dz\right)$ で与えられる極大 Bonnet 型 曲面とする。定義域 { $u \in \mathbb{R}, v \in (0, 2\pi)$ } に制限した極大 Bonnet 型曲面の特異点は、以下の表の 点を除いて「カスプ辺」になる:

	# of ツバメの尾	# of カスプ的交叉帽子	# of カスプ的 S ₁ 特異点
$0 < t < \frac{1}{\sqrt{2}}$	2	0	0
$t = \frac{1}{\sqrt{2}}$	2	0	2
$\frac{1}{\sqrt{2}} < t < 1$	2	4	0
t = 1	1	2	0
1 < t	4	4	0

Bibliography

- U. Abresch, Constant mean curvature tori in terms of elliptic functions, J. Reine Angew. Math. 374 (1987).
- [2] W. Barthel, R. Volkmer, and I. Haubitz, Thomsenche Minimalflächen analytisch und anschaulich, Resultate Math. 3(2), 129-154 (1980)
- W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II: Affine Differentialgeometrie, Springer, Berlin, 1923.
- [4] O. Bonnet, Observations sur les surfaces minima, C. R. Acad. Sci. Paris 41, 1057-1068 (1855).
- [5] J. Cho and Y. Ogata, Deformation of minimal surfaces with planar cuvature lines, J. Geom., DOI:10.10007/s00022-016-0352-0.
- [6] J. Cho and Y. Ogata, Deformation and singularities of maximal surfaces with planar curvature lines, submitted.
- [7] J. Dorfmeister, F. Pedit and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom. 6(4) (1998), 633-668.
- [8] L. P. Eisenhart, A Treatise on Differential Geometry on Curves and Surfaces, Ginn and Company, Boston, 1909.
- [9] A. Enneper, Untersuchungen über die Flächen mit planen und sphärischen Krümmungslinien. Abh. Königl. Ges. Wissensch. Göttingen 23 (1878) and 24 (1880).

- [10] S. Fujimori, K. Saji, M. Umehara, and K. Yamada, Singularities of maximal surfaces, Math. Z. 259, no. 4, 827-848 (2008).
- [11] S. Izumiya and K. Saji, The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surfaces, J. Singul. 2 (2010), 92-127.
- [12] O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math.
 6 (2), 297-309 (1983).
- [13] O. Kobayashi, Maximal surfaces with coneline singularities, J. Math. Soc. Japan 36. no. 4, 609-617 (1984).
- [14] M. L. Leite, Surfaces with planar lines of curvature and orthogonal systems of cycles, J. Math. Anal. Appl. 421, no. 2, 1254-1273 (2015).
- [15] F. Manhart, Bonnet-Thomsen surfaces in Minkowski geometry, J. Geom. 106, no. 1, 47-61 (2015).
- [16] J. C. C. Nitsche, Lectures on minimal surfaces, Cambridge University Press., vol. 1, (1989).
- [17] Y. Ogata and K. Teramoto, Duality between cuspidal butterflies and cuspidal S_1^- singularities on maxfaces, submitted.
- [18] K. Saji, Criteria for cuspidal S_k singularities and its applications, J. Gökova Geom. Topol. GGT 4 (2010), 67-81.
- [19] H. Schaal, Die Ennepersche Minimalfläche als Grenzfall der Minimalfliche von G. Thomsen, Arch. Math. (Basel) 24 (1973), 320-322.
- [20] G. Thomsen, Uber affine Geometrie XXXIX, Abh. Math. Sem. Univ. Hamburg 2 (1923), no. 1, 71-73.
- [21] M. Umehara and K. Yamada, Maximal surfaces with singularities in Mikowski space, Hokkaido Math. J. 35 (1), 13-40 (2006).
- [22] R. Walter, Explicit examples of the H-problem of Heinz Hopf, Geom. Dedicata 23, 187-213 (1987).
- [23] H. C. Wente, Counterexample to a conjecture of a H. Hopf, Pacific J. Math., 121, no. 1, 193-243 (1986)