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An invitation to quantum filtering and smoothing
theory based on two inner products

By

Kentaro OHKI*

Abstract

The purpose of this paper is to introduce the quantum filtering and a smoothing theory
for Markovian open quantum dynamical systems briefly. The filtering and smoothing theory
for classical systems are well developed and show their performance used in practice, and the
quantum filtering theory has also developed from 1980s based on the quantum version of the
classical conditional expectation. However, the quantum smoothing theory has not developed
since the quantum conditional expectation is not defined as well. We developed a quantum
smoothing theory based on two quantum inner products and show it with the filtering theory.
The weak value is naturally defined as the minimum mean square estimate in our frame work
and the quantum smoother, the dynamical estimator of weak value, is derived.

§1. Introduction

State estimation problems of dynamical systems driven by noisy disturbances often
arise in practice, and many kinds of estimators are proposed to extract the exact signal
from noisy observations [30, 49, 50, 56, 60]. A state estimation problem is a problem
that reconstruction of the objective, such as parameters of a probability density function
and physical quantities, from measured data (Fig. 1). One of the central notions of
state estimations is the so-called minimum mean squares estimation and it is widely
used because it is intuitive and easy to obtain the optimal solution by Hilbert space
theory [6, 38, 40].

Despite the first study of the minimum mean squares estimation problems was found
in 1700s [51], it has been studied and developed so far; for examples, a relation between
estimation errors and mutual information is found and developed in [17, 28, 29, 57],
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Figure 1. Abstract setting of estimation problems

and new estimators for dynamical systems described on certain manifolds, quantum
systems are derived [13, 14, 23]. The minimum mean square estimator is given by the
conditional expectation and we obtain a recursive estimator for hidden random variables
[38, 40]. First of all, let us review the dynamical minimum mean square estimator
without rigorous descriptions. Consider a system driven by Wiener noise with noisy
measurement;:

dXy =f(X:)dt + g(X¢)dWr,
dY; =h(X;)dt + dV,

where all signals are one-dimensional random variables at any time ¢ > 0. W and V are
mutually independent one-dimensional standard Wiener processes. The functions f, g
and h satisfy certain suitable conditions. Let C; be a set of F; := o({¥; | 0 < s < t})-
measurable real-valued functions and P be a probability measure of the whole signals.

Problem 1.1.
Find a function Q°P* € C; as a solution of the following minimization problem

in Ep [| X, — QJ?
mip Ep 1X-—@QF],
where Ep is the expectation with respect to the probability measure P.

Problem 1.1 is called the prediction problem if 7 > ¢, the filtering problem if 7 = ¢,
and the smoothing problem if 7 < ¢, respectively. Whether ¢ is larger than 7 or not,
the solution of Problem 1.1 is given by the Q°P* € C; satisfying

Ep [(X, —Q%¥%)Z] =0, VZ el

This implies that the estimation error and C; are mutually orthogonal under the proba-
bility measure P. The orthogonality defines the conditional expectation [11], and Q°P*
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is usually denoted by Ep [X|F;]. The filtering and fixed point smoothing equations are
then described of following forms

dme(X) = mu(£(X))dt + Ep [ (X: = me(X0) ((X0) = me( (X)) | 2] (@Y: - me(h(X))de)
dr(X) =Ep [(XT = e (X)) (M(Xe) = mo(R(X))) [ft] (dY; — me(h(X))dt) .

As in classical statistics, estimation problems have also been arisen in quantum
physics [32, 33, 34]. Since current technologies give us many experiments of quantum
systems [20, 39, 45, 46, 47, 48], the necessity of the statistical procedure for quantum
systems has been increasing. According to the quantum theory, every quantum physical

quantity, even a measured signal, is described by a self-adjoint operator on certain

Hilbert space 7. Then the estimation problem is the estimation of the self-adjoint
operators rather than that of the random variables. Consider the following quantum
system without details:

dX, =L(X;)dt + [L, Xs)_dA; + [Xs, L] _dA],
a, = (Lo + L) de + dd, + Ay,

where £ is a linear map, which is called the Lindblad operator , L, is a coupling
operator with quantum noisy environment, and A is a quantum noise. X, is the
quantum physical quantity estimand-to-be and V; is the measured signal. Unlike the
classical probability theory, linear operators on Hilbert space are used to describe the
quantum random variables. Since the measurement data is classical, we use certain
commutative operator algebra ), called a commutative von Neumann algebra, which
implies F;—measurable functions. A quantum counter part of real-valued measurable
function is then a self-adjoint operator in ), . From the above situation, consider
following problem.

Problem 1.2.  Find an operator Q°P* € Y; as a solution of the following mini-
mization problem

min Py [
QEY:

N ~12
XT—Q|],

where |fil2 = A*A and IP; is the quantum 'ezpectatz’on with respect to the density operator

p.

As we discuss details in the following sections, there exists the opﬁmum solution
Q°Pt even if the object is described in quantum mechanics.. For the filtering problem,
the quantum filter is obtained by dynamical representation of a quantum version of
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conditional expectation [13, 14]. The optimal solution Q°Pt of the quantum filtering
problem satisfies the following orthogonality,

P, [z ()‘(, - Q"Pt)] =0, YZe), T=t
Usually the Q°P‘ is denoted by P; [)“(,|yt]. Then the recursive filtering equation is
die(R) =y (c‘()“()) dt
+P; [(fdt — #p(£))* X + Xe(Le — ﬁt(ﬁ))|yt] (dY; — #o(L + L*)dt),

where #;(X) := P3[X:|)%] is the quantum conditional expectation. The solutions of
quantum prediction and filtering problems are obtained by the quantum conditional
expectation [8, 13, 14] and the quantum conditional expectation is well-defined if we
consider the indirect measurement [61]. The key notion why the quantum condi-
tional expectation is well-defined is the commutativity between measurement records
and physical quantities to be estimated, and it ensures a certain orthogonal condition
between estimation error and measurement records. The quantum filtering theory also
shed a light on the measurement-based feedback control theory for quantum systems
(3, 9, 10, 21, 37, 61, 64].

However, the solution of the general quantum smoothing problems is not described
by the quantum conditional expectation. In contrast to the classical random variables,
quantum random variables do not have the commutativity with respect to multiplica-
tion and the past physical quantities does not commute with the measurement records
in general. This makes ones impossible to define the quantum conditional expectation,
therefore, the general smoothing theory must not be based on the quantum condi-
tional expectation. The previous work on quantum smoothing problems, Yanagisawa
found that the quantum systems which smoothing problem is described by the quan-
tum conditional expectation [62]. This work opened the door of the quantum smoothing
problems and several researches have tackled with the problems [25, 53, 54, 63]. For
example, Tsang also gave a smoothing method for a quantum phase estimation problem
[53], which is based on the time-symmetric approach proposed by Aharonov et al. [2].
Yonezawa et al. [63] gave another approach for the quantum optical-phase estimation
and showed experimental results of the estimation problem. Since these estimation
problems are the estimation of the classical parameter in the quantum system, they end
up solving the classical smoothing problem. Recently Gammelmark et al. derived a new
past state estimation scheme [25] based on weak values (1, 22]. Furthermore, the author
of this paper proposed a new smoothing theory based on two inner products [42, 43],
which is the main topic of this paper.

In this paper, we show the optimal solution O°P* of Problem 1.2 is composed of
two operators Q°P* = QF + Q—, where Q* and Q~ satisfying the symmetric orthogonal
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condition and the skew symmetric condition under a quantum state p
b [2 (% - 0%) + (% —0*) 7] =o,
P, [Z“)"(, — )"(,z‘] = 2P, [Q—Z] . Y2 e,

respectively. We also show that O is the best approximation in the sense of symmetric
inner product. The optimal solution Q°pt coincides with the “weak value” of X , which
is well-known in physics literatures [1, 18, 19, 22, 24]. Furthermore, we propose a new
framework for quantum smoothing theory based on the symmetric orthogonal condition.
This is a natural extension of the quantum conditional expectation and gives a recur-
sive minimum mean square estimation for past quantum physical quantities. Recently,
Amini et al. derived the linear minimum mean squares estimator for linear quantum
systems [5] and the estimator is realized in quantum systems. Their estimator is inter-
esting but it is impossible to estimate past quantum states because the implemented
estimator is causal. Our proposal estimator is for general Markovian quantum systems
and realized in classical systems. It is possible to implement non-causal estimator in
practice, so it is possible to estimate the past quantum states in principle.

The rest of this paper is organized as follows. In Section 2, we introduce some
foundations of quantum theory and quantum statistics. Especially, we show the key
idea of the main result of this paper in finite dimensional quantum system. The concept
of this paper is described in this section. In Section 3, we introduce the symmetric
orthogonality and asymmetric condition and show that the operators satisfying these
conditions are the real part and imaginary part of the minimum mean square estimation.
The quantum dynamical system considered in this paper and its filter are shown in
Section 4. We develop a new quantum smoother in Section 5 and conclude this paper
in Section 6.

Notation

R and C are real numbers and complex numbers, respectively, and i:= v/—1. H is
a complex Hilbert space and we also denote H x if it is the Hilbert space of the system
X. Any linear operator on a Hilbert space H is denoted by hat, e.g., X. When positive
operators XandY satisfy X = Y2, we denote ¥ = v/X. The absolute value of operator
is defined by |X| := VX*X. L(#) is the set of all linear bounded operators on the
Hilbert space 7. X > 0 means that X € L(H) is a positive operator and X* implies the
conjugate operator of X. Tr[e] : L(#) — C is the trace on the linear bounded operators.
S(H) :={p € L(H) | p >0, Tr[p] = 1} is a set of density operators. 14 is the identity
operator on # and we sometimes omit its subscript. Denote [X,¥V]s+ := XV £ VX,
VX,Y € L(#). ® represents the Kronecker product for matrices and the tensor product
for operators, Hilbert spaces, or the sets of linear operators.
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§2. Basics of quantum theory and estimation

§2.1. Basics of quantum probability theory

In this section, we briefly review the quantum theory (for details, see, e.g., [16,
33, 41, 44, 61]. ) Quantum physics is described by a generalized probability theory,
called quantum probability theory or noncommutative probability theory. It is essentially
. a probability theory that consists of matrices. In this section, we introduce the quantum
probability theory from the elementary probability theory [44, 33, 35].

Consider a set of outcomes {z1,---,z,} of the random variable X and an n-
dimensional variable z = (z;) € R™ with probability vector p = (p;); p; >0, > 1 p; =1

. Then the expectation of the random variable z under probability vector p can be de-
scribed as

y41 Z1
D2 Z2

Zpiwi =Tr

=1
Pn ) Tn

P11 * * x 1

* P2 ¥ x 2 X
=Tr ‘ = Tr[pX].

* k. ok

| * * % Pn Tn

From the cyclic property of the trace, Tr[ﬁf( 1= ’I‘r[VﬁV* VX V*] for any unitary matrix
V € C™*" so p and X can be represented by Hermitian matrices. The p € C**" is an
extension of probability vector for matrices and the Hermitian matrix XeCmisa
matrix-version random variables. p is called a density matriz if p > 0 and Tr[p] = 1.
In this paper, we call a Hermitian matrix a quantum rendom variable or a quantum
physical quantity whether it represents a real physical quantity or not. An outcome
of measurement of a quantum random variable is one of its eigenvalue with certain

probability determined by p and the measurement setup [33, 34, 35]. A probability

theory with Hermitian matrices and density matrices {§ € C™*" | p > 0, Tr[g] =
1} is called quantum probability theory, which describes the statistical structure and
probabilistic nature of quantum physics. We can find a *—isomorphism ¢ for a quantum
random variable X = X* € C**" such that «(X) = = € R", where z = (z;) is a vector
which elements are eigenvalues of X. The corresponding classical random variable
X:Q={1,2,---,n} = R is defined by X (i) = ;.

In general a quantum system is described by a suitably defined Hilbert space #.
Any physical quantity of a quantum system is denoted by self-adjoint operator X on
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7{. Although most of physical quantities are described by unbounded self-adjoint op-
erators in practice, we only consider linear bounded operators except quantum noise
operators introduced in the later section. We denote a set of linear bounded opera-
tors on H by L(#). Since we only use operators with any finite moments under the
given state defined below, this is not strict constraint. The observation of any quantum
physical quantity is a randomly chosen number from the spectrum of the corresponding
self-adjoint operator. Random outcomes of all bounded operators make the quantum
statistics and the quantum expectation P, is defined as P[X] = Tr[6X], p € S(H). In
contrast to classical probability space, the quantum version of the set of the measurable
functions is defined as a von Neumann Algebra [52]. Roughly speaking, it is an algebra
generated by projection operators with algebraic operations [14]. Let N' C L(H) be
von Neumann subalgebra. A pair (NV,P;) is called the quantum probability space. For a
given quantum probability space (N, P;), a subalgebra A := {X € ' | P; [X*X] =0}
of N is a quantum version of the measure zero set with respect to P, called the left
kernel of P;. The left kernel NV, is not empty since it always includes 0. Moreover, N;
is a left ideal and satisfies

P, [()2 + 20" (V + 22)] =P, [X*ff]

for any X,Y e Nand 21,2, € N; (see Lemma 9.6 of Chapter 1 of [52]). If for
X,Y € N, there exists Z € N s.t. X =Y + Z, then we denote X = Y, Ps-as. or
p-a.s. for short. ’

The outcomes of the measurement of the quantum physical quantity are probabilis-
tic in general. Let (€, F) be a certain measurable space, which describes the probabilis-
tic events, and the map £ : F — L(H) is given. E is called a positive operator—valued
map, which represents the instrument, if it satisfies following three conditions.

1. BEQ) =1

2. E(A) >0,YA e F.

3. B(U;A:) =Y, E(A:), if A; € Fand A;NA; =0,6 # 5.
When one measures a quantum system and obtains stochastic event A € F, the density
operator is updated to ‘

o _ M(A)pM(A)*
Tr[pE(A)]

where M(A) is a operator-valued map satisfying E(4) = M (A)*M(A). M is called a

measurement operator and the updated density operator p’ is conditional density oper-
ator on the event A. If we have a positive operator valued map E, then we can define
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the classical probability space (Q, F,P) with a probability measure P(4) = P; [E(4)],
for A € F. When we consider some quantum systems, algebraic tensor product Hilbert
space is used for representation of the compound quantum system. We omit this math-
ematical definition (see, e.g., [12]).

I
Quantum |:| Classical
I

operator algebra

a commutative subalgebra

\_/

measurable functions

Figure 2. Quantum—classical correspondence

§2.2. Indirect measurement and Bayesian approach

It is difficult to observe a quantum physical quantity directly due to the mea-
surement back actions. In this paper, we consider quantum indirect measurement to
estimate the physical quantity X. The quantum indirect measurement is often used in
experiments and a natural setup for the quantum indirect measurement is as follows.
First, we prepare a probe system Hp and make it interact with the system Hg. The
interaction is represented by a suitable unitary operator U over the compound system
Hs ® Hp. For simplicity, we consider finite dimensional Hilbert spaces, i.e., Hs = C"
and Hp = C™. We measure a physical quantity of the probe system ¥ € L(#p)
instead of the system’s physical quantity X € L(#Ls). If the initial state is given by
s ® pp € S(Hs @ Hp). After the interaction, one of eigenvalues of U*ds@Y)U is
detected. Suppose the eigenvalue decomposition of ¥ is ¥ = DI wP@), v # y; if
1 # j, and yx is observed. The update of the entire density matrix is
55 ® pp > P 1= U*(ds® Pfk))éi(;s,f ® fsp)z:rj(is ® Pk)U

Tr[ps ® ppU*(1ls ® P(k))U]
and the conditional expectation of the physical quantity X after the interaction is

T [0*(X © 1p)0bems] = Tr [(X © 1p)Upensll”] = TrR5],

Y

where the posteriori density g is obtained by 'y = Trp [Z?’ DentU *] and Trp is the partial
trace operator that trace out over Hp. The value Tr[X ;] is the expectation under the
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conditional density matrix g, so this is the quantum conditional expectation of X.
This Bayesian approach shows the evolution of the conditional density matrix ps. The
update of the conditional density operator for finite dimensional descrete time quantum
systems is clear, though, it is difficult to extend to the infinite dimensional continuous
time quantum systems. We give another approach to the estimation of the quantum
physical quantity below.

§2.3. A quantum minimum mean square estimation

Let X = X* € C*" and a map P : {1,2,---,m} — C™*" satisfying P@) =
P(i)* = P(i)2, X7, P(3) = 1 and P(i)P(j) = 6:;P(4), 4,5 = 1,2,- - ,m, where m < n,
are given. The map P is called the projection—valued measure or the spectral measure
in quantum probability theory or linear operator theory. Then consider the following
minimum mean square optimization problem;

(2’1‘) {(44>Pz)}¢—1CR2 Ps [ -0l ] Q= ;(qz+1pz)P(z)
Since
1P [P(Z)X + XP(z)]
P ¥ -or] - ;P s [P ( 2 B [BG)] )
1 [P(z)X XP(z)] )
+f:_;]? [P(z)] (% 7, [P(i)]
+]Pﬁ [XQ] B _P,s [15(2))2 + X’ﬁ(z) 2

@t P[P
1 |11»,, [P(z)X XP(>) ] ‘
i€l 4 [P (2)]
where Z := {i = 1,---m | Tr[pP(i)] # 0}, the optimization problem (2.1) is easy to
solve and we obtain the optimal parameters
(22) qut :-];]Pﬁ [ﬁ(Z)X:F XP('&)] _ '_[‘r I:pP(Z) + P(z)pX
2 P [P0)] 2Tr{pP(0)]
1 B [POX-XPG] (5P - Py
2Tr[pP(i)]

] VieZ,

(23) PP =5 ) [P (z)]

X’], Vie T
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We define the best real and imaginary part of the optimal approximated operator as
(2.4) QT =) g PG), Q :=i) p*P(),

7 i€l ieZ

and the optimal approximation is Q°P* := Q+ + Q—. It is easy to confirm that the
optimal approximate Qi are characterized as follows;

25) P; [Z (X _ Q+) + (X _ Q+) Z] =0,

(2.6) P, [2X - X2] =295 [Q2], VZealg ({POIL),

where alg ({P(i)};’f__l) is an algebra generated by {P(z’)};’_‘__l. We define Y = alg ({13] };’_‘__1)
for short and denote QF by Q;,P [X | V] and Q°P* by Q4[X | V. When j = |$)(¢| and
P(i) = |;) (], i = 1,2, ,m, every optimal estimated value g{®* + ip{F® is

TepP(@)X] _ (i, X9)

T[pPGE)] W 9) el

where these are referred as “weak values’ in physics [1, 18, 19, 22, 24]. If any Zey
commute with X, above condition (2.5) is the orthogonal condition under 5 and it
is essentially equivalent to the classical conditional expectation. Furthermore, we can
consider three interesting cases depend on the conmmutativity:

1. If P()X = XP(i), i € Z, or P(i)p = pP(i), i € Z, then pS** = 0 and

., PG)pP()

= —————=, Viel.
Tr[pP ()]

¢ =Tr [pi%],
This is the result of quantum measurement. As we mention below, the filtering
theory requires the commutation condition [X, P(¢)]- =0, i =1,2,--- ,m [13].
2. If Xp=pX, then p** =0 and

o =n[gx], p=YPPOVB gy
TR

where /7 is the square root matrix of positive semi-definite matrix 4. The condition
Xp = pX is equal P; [[X' ,Z]_] =0, VZ € C"*". The Gammelmark’s smoothing
method [25] requires this condition.

3. More weakly, we can consider a condition P; [[X' R Z]_] =0,YZ € Y. This condition
also implies p;** = 0, though, this condition does not give conditional density matrix
in general. A counter example is shown in Example 2.1 below.
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Two obtained matrices g, and g} are also density operators, so the optimal approxima-
tion is given by “a conditional expectation.” On the other hand, the general approxima-
tion (2.2) is not able to be interpreted as the conditional expectation because Q:{ (X))
is not positive even if Xisa positive operator. For any matrix X € C™*" the following
equality holds:
"/ A N 1 An oA s N .
P; [z (X -Q} [X 19])] 2P 2% —XZ] =P, [Q,3 [X 19| 2], vZe.
Example 2.1. Consider the following density matrix, Hermitian matrix and a

set of diagonal matrices

111 N 1 2-ix a0
H = — — ]R = ) .
p 2[1 1]’ X [2+ia 3 ]’ae » Y {lo b}’abec}

A 30 ; —-10
+ _ —_ s
of [x1V] = [O 5} . @ [XY]=ie [ ; 1] .
The matrix X has a negative eigenvalue, though, the approximation Q; (X)) is a

positive—definite matrix. If oo = 0, then PP, “X ,Z] ] =0,VZe.

Then,

If we choose the X as a positive—definite matrix

% Vv1.11-0.1 -1
h -1 viil+o0.1|’

then

A 1]|v/111-11 0
+IXY| ==
QP [ IJ)] 2 l 0 V9111 +1.1

This approximation has negative eigenvalue, so positive—definiteness is not preserved in
general.

§3. Quantum conditional expectation and minimum mean square
approximation

In this section, we introduce real and imaginary parts of the best approximation in
the sense of the semi-norms induced by the pre-inner products below and show several
properties of them. Let ) be a commutative x—subalgebra of £(H). We introduce
another *—subalgebra whose elements commute with all of the elements in Y;

V:={XeLlH)| XY =YX, V¥ eV}
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Hereafter we assume Y = ()Y, i.e., Y is a commutative von Neumann subalgebra
[13, 52]. For instance, Y = alg({P; Yey) isa commutative von Neumann subalgebra
of C™*™. von Neumann algebras are a generalization of the set of the oc—measurable
bounded functions and especially a commutative von Neumann algebra is isomorphic
to the set of the s—measurable bounded functions. Note that )’ is generally non-
commutative *—subalgebra. Let us define the quantum conditional expectation (see,
e.g., [52, Prop. 2.36] and [13, Sec. 3]) and the optimal approximation as we discussed
above.

§3.1. Definitions

We introduce three approximations of a given X € £(#). All of them are based
on the following pre-inner products [4].

Definition 3.1.  For given p € S(H),
1. the pre-inner product (e, ), : L(H)xL(#) — Cisdefined by (X,V); :=P; [X*f’] .

2. the symmetric pre—inner product ((e,e)); : L(H) x L(H) — C is defined by
(X)) 1= 4B, [X0F + 7 X7].

Note that ((X,7V)) 5 is not a real part of (X,Y) 5+ The pre-inner product ((e,e));
is also used in quantum infromation.geometry [4]. These pre—inner products satisfy the
Cauchy-Schwarz inequality (see, e.g., Proposition 9.5 of [52]). (X, X); = 0 is necessary
and sufficient condition for X € N, though, <<X,X>>ﬁ =0Oisnot. If X € NNy,
then (X, X)s = ((X, X)), = 0. This is proven by the Cauchy-Schwarz inequality and
commutativity of ). We use two measures to find the best approximation in ), where
the “probability zero” space is common whenever any of two semi-inner products is
used.

Definition 3.2 (Quantum conditional expectation).

Let (L(#),P5) be a quantum probability space and ) be a commutative von Neu-
mann sub—algebra of £L(#). A linear operator Q € Y is called a version of the quantum
conditional expectation if there exists Q € Y satisfies

(3.1) (2,X-Q);=0, VZey
for arbitrary fixed X € ). Then we denote Q =P; [X' |.'))] .

Some properties of the quantum conditional expectation are shown in, for ex-
ample, [13]. The definition of the quantum conditional expectation implies that the
X - Ps X |y] and the commutative sub-algebra ) are orthogonal under the state ;.
We extend the definition of orthogonality to non-commutative regime.
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Definition 3.3.
Let (L(H),P;) be a quantum probability space and ) be a commutative von Neu-
mann sub-algebra of £(#). For arbitrary fixed X € L(#), we define following operators:

1. Alinear operator Q € Y is called a version of symmetric quantum least mean square
approximation if there exists Q € Y that satisfies

(3.2) {Z,X -Q))s=0, YZe).
Then we denote Qj [f( |y] =Q.

2. A linear operator Q € Y is called a version of the mean non-commutativity with
respect to ) if there exists @ € ) that satisfies

(3.3) Ps [ZX - XZ] = 2P, [QZ] , VZe.
Then we denote Q; [X |y] = Q

3. Qs [f( |,)7] =Qf [X |y] +Q; [X' |y] is called the minimum mean square estimation
of X with respect. to ).

If N3NY # {0}, then there are many operators that satisfy above conditions. This
is why we use “a version of’ here. We call Eq. (3.2) the symmetric orthogonal condi-
tion. This is not a quantum conditional expectation in the sense of Takesaki’s require-
ments for quantum conditional expectation [52]. Obviously, Ps [X ] =P; [Q,; [X' DJ]] =
P; [Q},L [X |y]] holds, i.e., these two approximations are unbiased estimates. The name
“the symmetric minimum square approximation” is originated from Proposition 3.5.

Since the expectation of P5 [Q; [X |y]] is always zero, it is difficult to find its statis-
tical meaning. However, this is an interesting quantity in the view of non-commutative
geometry. If X and Z are Hilbert-Schmidt class operators, respectively, [X' ,Z]_ is
orthogonal to both of X and Z in the sense of Hilbert-Schmidt inner product (e, ) 3
From Eq. (2.3), the operator Q; [X|)] is a measure of the “j—direction” component of
the orthogonal direction against to the both of X and ).

§3.2. Basic properties
A list of the basic properties of Qg [X | ,)7] is as follows:

1. (linearity) QF [X | y] is linear in X € L(#).

2. (uniqueness) Qg: [X’ | y] is uniquely determined in the sense of Ps-a.s.
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3. (self-adjointness and skewness) Q;f [X | y]* = :I:Q’f [X I y] , Ps—a.s. for X =
X* € L(H), and QF [X | y]* =F0F [X | V], Prras. for X =—X* € L(H).

The proofs of above properties are trivial from their definition, and we omit the
proofs. From above properties, Q}’ [X | y] is the minimum mean square error approx-

imation for X = X* in self-adjoint operators in Y as follows.

Proposition 3.4 (MMSE approximation in ((e, e}) sense [43]).
For arbitrary X € L(H),

(X - QF (X, X —QF[XI)s (X - 2,X — 2))p, VZeD.
Since (X —2,X —2)s = (X = Z,X — Z)) for X = X* and Z = Z*, the following
inequality also holds.
(X —QF XV, X —QF X)) <(X - 2,X - 2),
VZ=2%e).
According to the previous section, Q; [X |y] = Q:{ [X |y] +Q5 [X' |y] is the best

approximation in finite dimensional case. It is also true if we consider bounded operators
on general separable Hilbert space.

Proposition 3.5 (MMSE approximation in (e, ¢) sense [43]).
For arbitrary X = X* € L(H),

(X~ Q[ XV, X — Qal XI5 <(X —2,X~2)5, VZeE.
Furthermore, the approzimation error is
(34) (X QXY X - Qs[RI =(X, X)p — (Q[X V], Qs [X V)5

One of our interest is whether richer information gives better estimation or not in
quantum estimation theory. Proposition 3.5 gives the following results.

Corollary 3.6 ([43]).
Let Y1 and Yo be commutative x—subalgebras of L(H) and have inclusion relation
Wi C Vs. Then, for any X = X* € L(H),

1. (X - QF[X (2], X — QF[XID2])s < (X — QF[X ], X — QF [XI)])5
2. (X — Q7 [X|3a], X — Q5 [XDa])s < (X — Q5 [X 1], X — Q5 [X)1])s -

In similar way, we obtain the following corollary.
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Corollary 3.7.  Let )1 and Yo be commutative x—subalgebras of L(}H) and have
inclusion relation Yy C Y. Then, for any X=X*c L(H),

(X — QpX|)2), X — Q[ X|Dh])p <(X — Q[ X|21], X — Q5[ X|I1])5-

§3.3. Some lower bounds and remarks

To estimate the approximation error bound is important for accuracy. Roles of
the Q5 [X|)] is still unclear for the author, though, it provides a lower bound of real
MMSE and is used in the quantum smoothing equation introduced below. The following
proposition holds.

Proposition 3.8 (A lower bound of MMSE).
For X = X* € L(H),

(35) P [(X - QfR) 2] >P, [l@; X[y ﬂ :
where |A]? := A*A.
. Proof. From the definitions,
(2, X -QF[XIV)s = (Z,Q5 X))y VZEY
holds. Since Q; [X|V] € Y, we choose Z = Q; [X|)] and then
Q5 [XIV], X — QF[X V), =(Q5 [X|V), Q5 [X[V]); > 0.

Using Schwarz’s inequality, we obtain

Q11 X - Q1) s\/n»,s (o5t [ (% - es1207)']

and the inequality (3.5) holds.
O

For example, consider the MMSE of Example 2.1. In this case, the following equal-
ity holds; -

Py (% - @pLaw)’] = o = By jesim].

Here, Q7 [X|)] is a measure of non-commutativity in estimation and « is magnitude of
non-commutativity between X and ) under the given state P.
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* The lower bound (3.5) is not tight in general. If X € ), then Q; [X|¥] = 0 but this
does not imply that the MMSE is sufficiently small. It is known well that self-adjoint
operators on the two dimensional Hilbert space can be represented by three dimensional
real space [41]. We, then, can illustrate the approximation of an operator X as in Fig.
3. We represent the vertical axis is for the self adjoint operators in )V and the rotation
of the vertical axis is for skew operators in V. The amplitude of the rotation Q5 [X[V]
is the Euclid distance between the vertical axis and X.

Figure 3. A interpretation of the estimation

In quantum theory, the famous estimation accuracy called uncertainty relation is
well known. A kind of uncertainty relation holds for the MMSE approximates.

Proposition 3.9 (Uncertainty relation).
For any X = X'f, X, = X; € L(H), define AX; =X, — Q;[Xi | V], i=1,2.

(3.6)
(o) oo [(2)] - 2o (00 0)]

Proof. Consider the covariance matrix

|25l o]

P
[ P;AX?) Pﬁ[AXlAXQ]]

PoARAXY]  PBsARE]
P,[AX?] %PA[A)‘Q,A&M} L Pal[AKy, A% ] [o 1}

>0

P [[AX, AXp]]  Ps[AX3] 2 =L
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The determinant of the semi—positive definite matrix is non-negative. The straight
calculation gives

L. N 1 N A 1 N A
P5[AXT|P;[AXS] — Z]Pﬁ[[AXl,AX2]+]2 +3 s[AX1, AXo]_]2 >0
Since

LpllARs, M) ] = 1R, Kol - BlQ5 1% | VIQE e | V]
+P5[QF X1 | VIQ5 (X2 | V)]
=3Pall%, Kol + Q1% | 3], QF[%a | D)5
QK V], Q5K | VD

and P5[[AX1, AX,] |2 = —|P5[[AX1, AX2]_]|?, the inequality (3.6) holds.
O

The inequality (3.6) is a generalization of the Schrodinger-Robertson type uncer-
tainty relation [35]. From the view of quantum estimation theory [59], the uncertainty
principle gives a physical estimation accuracy bound. When Q [Xily] =0,i=1,2,
the inequality (3.6) is same as the Schrédinger-Robertson type uncertainty relation. If
we want to beat the Schrodinger-Robertson type uncertainty relation of physical quan-
tities X 1 and Xg, we should choose the measurement algebra ) to avoid the condition
Q, [X:]Y] =0, i = 1,2 simultaneously.

Remark. .

The real minimum mean square approximate of X € L(H) does not satisfy the
orthogonality condition (3.1). From the definition of the minimum square approximation
(3.2), the “normal” orthogonal relation becomes

Py [2 (X -QIXM)] =P [Q51X1V1Z], VZ € Y.

Obviously, the estimation error X — (Q'ﬁF [X|Y] € L(H) is orthogonal to Y if and only if
Q; [X|Y] = 0 under Ps. X € ) is a sufficient condition for the orthogonality condition
(3.1).

Remark.

P;[e|)], and Q}f [¢])] are regarded as a linear functional on their domains because
any commutative *—subalgebra can be seemed as measurable functions on a suitable
chosen measurable space (€2, F). There exists a *—isomorphism ¢ between ) and L ().
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§4. Model and quantum filtering

§4.1. Model

Any quantum system is described by suitable Hilbert space and linear operators
on the Hilbert space. We consider two quantum systems, system and probe system.
We describe them #s and Hp, respectively. Hp is a continuous Fock space [27];
Hp = ®iclo,00)HP(t) . The compound quantum system is the tensor product Hilbert
space H = Hs®Hp equipped with a density operator p = ps®pp, ps € S(Hs), pp €
S(Hp). Physical quantities of the system are described by self-adjoint operators in
L(#s) and physical quantities of the probe system are described by self-adjoint op-
erators in £L(Hp). They act on the total quantum system with corresponding identity
operator, though, we omit identity operator for simplicity; X@ip=Xandis@V =Y
for X € L(Hs) and ¥V € L(Hp).

1
1
<Quantum H Classical>

A

Ay , U AU, 1Y, ~ Fe(X)
s Q;Z:eumm —> Estimator g
Detector Qi}: (X‘r)

Figure 4. Schematic diagram

In order to quantum theory, the time evolution of every physical quantity X=X*¢c
L(H) driven by probe system is determined by a unitary operator U, that describes the
interaction between the system and the probe. We consider the unitary operator U, as

the solution of the following equation;
(4.1) 20 = (—iH +iar— L*dt) 0., Uo=1

where a; € L(Hp(t)) is called the quantum white noise which satisfies
[ae, &3] = 8(¢ — o)1,

where ¢ is Dirac’s delta function. The formal integral of the quantum white noise and
its infinitesimal increment are defined

T
Ay = / dsds, dA; = A(t+dt) —A(t),
0
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respectively [26]. In order to quantum stochastic calculus [36], the quantum Ito’s rule
is

(42) dA;dA, = dATdA, = dAdt = (dt)% =0,
’ dA;dAr = dt :

From Wong-Zakai’s theorem, the formal equation (4.1) is described by the Hudson-
Parthasarathy equation

43) a0, (-um _ %i*!:dt + LdAr — ﬁ*dﬁt> o,

Then the time evolution of the X, = I?}* XU, follows the quantum stochastic differential
equation

A 1 /a0 o PO
dR, =i, Xi)-dt + 5 (L;; [Re, Le]— + (L7, Xt]_Lt) dt

(4.4) + [L}, i) —dA; + [ Xy, L) _dA?,
where H, = I?'t*fﬂjt, L, = ﬁ;ilj’t, and [A, B]_ := AB — BA. For derivation, see
[13, 16, 26, 61].

We consider the balanced homodyne detection as a detection of the probe system.
Its POVM is introduced in [7] and the dynamical representation is in, for example,
[26, 58]. The measurement outcome is ¥; = U (A; + A;)U, and its increment is
(4.5) v, = (i,;+ i:) dt + dA, + dA?.
We define the following *—algebra by double commutant of the measurement records;

’

Vo= ({¥5 0< s <t))

From the definitions of the unitary operator and the observed process, following
equations hold.

(4.6) XY, =Y, X:, Vt>s>0,
(4.7) VY, =Y.V, Vt,s>0.

These ensure that ), is a commutative von Neumann subalgebra and Xt €)Y, fort >0.
Y; is the quantum counter part of o(ys; 0 < s <t) where ¥ is a classical signal.

We use following lemma in order to derive the filtering and smoothing equations;
see, for example, [13].

Lemma 4.1.
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1. Vs CYs fort >s.
2 VCY, fort2s.
3. (tower property) Py[Ps[X|V|Vs] = P;[X|Vs] fort > s and X € ).
X, lies in Y for any Xe L(Ms) and 7 > t, though, X., 7 < t does not; see Fig.

Figure 5. ); and its commutant )/}

§4.2. Quantum filtering
Let us define #;(X) := P4[X; | J.]. A formal derivation of the quantum filtering

equation is as follows; first, the Doob-Meyer decomposition for the conditional process
gives v

(48) di(X) =P [d ()] 2] + (d(X) - Ps [dr(X)] 2] ) -

The first term of Eq. (4.8) implies the prediction from the data up to ¢ and is obtained
from the tower property;

]Pﬁ [dfft(j( )| yt] ZPﬁ [dj(t| yt]
A (1 © 1, Fxryv T Fx v 7
=, (I[H,. X))t + st (L%, -+ (L X]-1)dt.
The second term of Eq. (4.8) plays the role of the prediction error correction based on

the information update, and is martingale. Secondly, we apply the Fujisaki-Kallianpur—
Kunita theorem to the second term of Eq. (4.8). Then there exists E, € ), satisfying

(@ R) — s [di(%)| 22]) =E¢ (a¥; — Py [d¥3] 22]) = & (¥ — 7 (L+ L) ).
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It is possible to determine the Z; € ), from calculating P[d(X;Y;) Z] = Pald(fs(X 1) 2],
for all t > 0 and Z €. Finally, the quantum filtering equation is given by following
equation.

die(R) = (i, X))o + 5 (£7[%, E] + (L, R)_L)ae
(4.9) + 7y ((f; —wE)) X+ XL~ ﬁt(i))) (dV, — (L + L*)dt).

), is identified to a set of classical random variables of the classical probability space
(2, F,P), there exists py(w) € S(Hsg) for all w € Q satisfies

#4(X)(w) = Te[pe(w)X], VX € L(Hs), Yw € Q

Using a cyclic property of the trace, the stochastic differential equation of j;, so-called
the stochastic master equation or quantum trajectory equation, is

NN P PR PYPURS DR
dpt=—l[H,'pt]_dt+(LPtL*_éL Lpe = 5pL L) dt

(4.10) + (Lpu+ pekt —Te [(E+ £60] pu) (de = Tx [(L + 5] at).
§5. Quantum smoothing

§5.1. The proposal quantum smoothing

In this section, we consider the fixed point smoothing problem. One of the simplest
quantum smoothing setting is the target quantum physical quantity does not evolve un-
der the unitary operator. That implies [U, X]_ = 0 and this is called the Braginsky’s
quantum nondemolition detection condition [15]. Since this case can reduce to the filter-
ing problem, it is not a essential quantum smoothing problem. We consider more general
setup in this paper. Let us derive the recursive expression of the quantum minimum
mean square approximation. We consider the problem of the estimation of X -+, which is
the solution of Eq. (4.4) at a fixed time 7 > 0, from measurement data ), up to ¢t > 7.
Remember that any element of ), can be seemed as a classical random variable, we can
also use the martingale method [40] in order to derive the dynamical estimator. As the
rigorous mathematical derivation and jargons make us confuse, we give a sketch how
to derive the dynamical estimator. We denote Qi (X) := Q;P (X | Y] for X € L(H).
Since the physical quantity does not evolve and Qit (X'T) € Y; for all ¢ > 7, the pro-
cess {QF(X,)}s>- is martingale [40]. An increment of any martingale process can be
represented by multiplication between the innovation increment and a uniquely deter-
mined coefficient derived from measurement records (the Fujisaki-Kallianpur—Kunita’s
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theomm)f
(51)  dQf (X,) =@, (%) —QF (%) =15 (¥ — 0 (L + L7) a)

Note that Q*(X ) =7, (X ) and Q- (X,) = 0. Then the problem is to determine the
coefficient I'F € Y.

Theorem 5.1 ([43]).
Let QF ) = #.(X) and Q7 ( ) = 0. Then the recursive estimators are

described as following equations;
a0z (%) =2{at ([(it 1), %], )+ ([(or ). %] )

(5.2) —2QF (X ) (£+ ) } (dYt (i+ﬁ*) dt) , Vi
The sum of the solutions Q} (X,) + Q; (X,) is the nﬁﬁimum mean square ap-

proximation of X, from the definition. We call Eq. (5.2) the real(imaginary) quantum

smoother.
For implementation of the quantum smoother (5.2) is not easy because to calculate

the (5.2), we have to consider Q; ([(f/t + f,;‘) , XT] +) and Q; ([(ﬁt + ﬁ’{) ,XT] _) .

The time evolution equations of these operator are given by the following lemma.

Lemma 5.2.
The time evolution equation of the Qt (Rti) and f%ti = [(ﬁt + ﬁ’{) ,X’,]_i, 48

d@gc(Rti)=@;t<[ [fe b+ ] %] )dt
eyt (2] nok] )aes o ([1: i 2] 2] )
+{§Q;([zt+L 2] )+ 07 ([eo+ i RfL)
+ot <[[f;;,it]_,)‘(,] ) i (1) @

(5.3) x (dift — (it + ﬁ;) dt) .

Proof. Let R := [(ﬁt +I::) ,X,]i. Using Ito rule gives the time evolution
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equation of Ry;

1 Al A ~ - PN N
dt+-2-[[LZ,Lt] Lo+ L} [L;‘,Lt] ,X,] dt

dRE = [i [ﬁt,it+£:]_,X,] .

+
[£02]_ %] ddor |[Bki] %] adi

+
=[i L+ L, 1] x] dt'+%[[ﬁ:,ﬁt] Lot L [£.14) x] it
- - + d - - +

+

| (dfit -dA:) .

0] 5],

From Definitions 3.3 and 3.3, the predictable part of {);};—adapted process Qf‘ (f%,:i )
satisfies

P [Zd}%;h + thiZ] =2P; [thi (R;t) Z] ,VZ e
Then
B, [a0F (BF) | %] =0f ([1 [ b+ 2] XL) d
+ 30t ( [[ﬁ;,i,]_ Eot i [E5,2] X] i) .

The rest of dQE(RE) is {);}:—martingale part. From Fujisaki-Kallianpur-Kunita the-
orem, we obtain

Kt (A) =0t <[1 (A o 1] XL) i+ 1ot ([[ﬁ;,ﬁt]_ LXL) p
+ %Qf ([ﬂ: (£ 2] ,X,L) dt+ 55 (d¥ — o (L+ L7) dt)
where ¥ is estimated—to—be. The unknown operator 37 is derived by the equ;.hty
P, [Zd (1‘@1%;‘[) +d (R;tfft) Z] =2P, [d (Q;t (Rti) y;) Z] ,VZ e
Finally, we obtain
5t =g ([bo+ 2], ) + g ([Bo+ 2022 )

+Qf ([[liz,ﬁt]_ ,fGL) +# (L+ 1) QfF (Bf).
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O

As in the classical filtering and smoothing theory, it is necessary to derive higher di-
mensional moments equations to calculate exactly and it usually needs infinitely. There
are many approximation methods of the filtering and smoothing equations in classical
estimation theory, though, there are a few research about approximation of the quantum
dynamical estimators [55]. Some examples are in the next section.

§5.2. Special examples

In Gammermark’s setting [25], we can consider [X,,p]_ = 0 for a certain fixed

physical quantity X,. Q; (X ) =0, for all ¢ > 0, then following corollary holds.

Corollary 5.3.  For given X, and p€ S (H), assume [X’,., pl- =0. Then
aar (%) =g{ar ([(Be+ 1) &) ) =207 (%) e (£+ 1)
(5.4) ~QF ([(it + ﬁ:) ,X,] _) } (d?; — 2, (i + Ji*) dt) . Vi

Next, we consider the Bragynski’s qua.ntum nondemolition detection condition.
Suppose that the coupling operator in Eq. (4.1) L € £(?~ls) is normal and [L, 0;]_ = 0,
for all ¢ > 0. In this case, #,(L) = Q; (L). Then, for Xo = X

@ (8) 3l ([(br)., ) ver (2.5 )

(5.5) —2Q; (X) Qf (L + L*) } (df/t — 7 (i + ff) dt) , V>,
and

oo (5) e ([(3+5) 41 ) v ({245 51
(5.6) —2Q; (X) Q; (Ji + 13*) } (df/t — 7 (13 + ff) dt) , W> T

These equations depend on operators in £L(#s) and the classical representation implies
that QF can be regarded as linear functional on £(?s). There exist ﬁg]t and pg;, which

satisfy Q7 (X) = Tr[65;, X].

Proposition 5.4.  For given Xo = X, the quantum smoother is described as
follows:

arfe =5 e (£ 2]+ [ (2 )]
(57) —2Tlpf (L + L))6%, | (e — Telpu(L + L))

where p; is a solution of the stochastic master equation (4.10).
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§6. Conclusion

We introduced the quantum filtering theory and a new quantum smoothing theory.

The orthogonality is the key word of this paper and it plays an important role in the
derivation of the recursive estimators. The future work is how to implement of the
smoother in practice.
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