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1 Connection problem for Fuchsian ordinary dif‐

ferential equations
In our previous paper [4], we formulated the connection problem for regular
holonomic systems. In the present note, we shall explain our idea in more detail

by several examples of Fuchsian ordinary differential equations.

1.1 Gauss hypergeometric differential equation
The Gauss hypergeometric differential equation

x(1-x)\displaystyle \frac{d^{2}u}{dx^{2}}+( $\gamma$-( $\alpha$+ $\beta$+1))x\frac{du}{dx}- $\alpha \beta$ u=0
with parameters  $\alpha$,  $\beta,\ \gamma$\in \mathbb{C} has the Riemann scheme

\left\{\begin{array}{llll}
x & =0 & x=1 & x=\infty\\
 & 0 & 0 &  $\alpha$\\
 & 1- $\gamma$ &  $\gamma$- $\alpha$- $\beta$ &  $\beta$
\end{array}\right\}.
This scheme is a table which notes the characteristic exponents at each singular
point. For example, at x=0 ,

if 1- $\gamma$\not\in \mathbb{Z} , we see that there are local solutions

u_{01}(x)=$\varphi$_{1}(x) , u_{02}(x)=x^{1- $\gamma$}$\varphi$_{2}(x)

with convergent Taylor series $\varphi$_{1}(x) , $\varphi$_{2}(x) at x=0 satisfying $\varphi$_{1}(0)=$\varphi$_{2}(0)=
1 . Similarly, if  $\gamma$- $\alpha$- $\beta$\not\in \mathbb{Z} , there are local solutions

u_{11}(x)=$\psi$_{1}(x) , u_{12}(x)=(1-x)^{ $\gamma$- $\alpha$- $\beta$}$\psi$_{2}(x)
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at x=1 with convergent Taylor series $\psi$_{1}(x) , $\psi$_{2}(x) at x=1 satisfying $\psi$_{1}(1)=
$\psi$_{2}(1)=1 . Since the radii of convergence of these four Taylor series are at least

1, the domain \{|x|<1\}\cap\{|x-1|<1\} is a common domain of definition for

the above four local solutions. Then there exists a linear relation among two

sets (u_{01}(x), u_{02}(x)) , (u_{11}(x), u_{12}(x)) of fundamental system of solutions. The

relation can be written in the form

(u_{01}(x), u_{02}(x))=(u_{11}(x), u_{12}(x))C

with a constant 2\times 2‐matrix C . We call this relation a connection relation,
and C a connection matrix. The entries of C are called connection coefficients.

When the parameter  $\alpha$,  $\beta$,  $\gamma$ are generic, we have the explicit form of  C :

C=(_{\frac{ $\Gamma$( $\beta$)\frac{ $\Gamma$( $\gamma$) $\Gamma$( $\gamma$- $\alpha$- $\beta$)}{ $\Gamma$( $\gamma$- $\alpha$) $\Gamma$( $\gamma$- $\beta$)2- $\gamma$) $\Gamma$( $\gamma$- $\alpha$-}}{ $\Gamma$(1- $\alpha$) $\Gamma$(1-\sqrt{})}} \displaystyle \frac{ $\Gamma$( $\gamma$)\frac{ $\Gamma$( $\gamma$) $\Gamma$( $\alpha$+ $\beta$- $\gamma$)}{2- $\gamma$) $\Gamma$( $\alpha$+ $\beta$- $\Gamma$( $\alpha$) $\Gamma$( $\beta$)}}{ $\Gamma$( $\alpha$- $\gamma$+1) $\Gamma$( $\beta$- $\gamma$+1)})
This explicit form can be obtained in several ways. We can use Gauss‐Kummer

identity, or an integral representation of Euler type of solutions, and so on. By
a connection problem we mean a problem of obtaining connection coefficients

explicitly. Thus we have a complete answer to the connection problem for the

Gauss hypergeometric differential equation in generic case.

1.2 Legendre differential equation

The Legendre differential equation

(1-t^{2})\displaystyle \frac{d^{2}u}{dt^{2}}-2t\frac{du}{dt}+ $\lambda$ u=0
can be obtained from the Gauss hypergeometric differential equation by the

change of variables

x=\displaystyle \frac{1-t}{2}
and the specialization of the parameters

 $\alpha$+ $\beta$=1,  $\gamma$=1.

The parameter  $\lambda$ is given by  $\lambda$=- $\alpha \beta$ . Note that the Legendre differential

equation corresponds to a non generic Gauss equation because  1- $\gamma$=0\in \mathbb{Z}.
The Legendre differential equation appears in the process of solving the

Laplace equation in \mathbb{R}^{3} by separation of variables. For example, in determining
the Coulomb potential, which satisfies the Laplace equation, we come to the

Legendre differential equation which possesses a solution holomorphic at both

t=1 and t=-1 . The last condition determines special values of the parameter
 $\lambda$ . We shall see how the connection problem is used to determine special values

of  $\lambda$.
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The Riemann scheme for the Legendre equation is

\left\{\begin{array}{llll}
t=1 & t=-1 & t= & \infty\\
 0 & 0 & p_{1} & \\
0 & 0 & $\rho$_{2} & 
\end{array}\right\},
where $\rho$_{1}, $\rho$_{2} are the roots of $\rho$^{2}- $\rho$- $\lambda$= O. Since the exponents are 0, 0 at

t=1 , there are local solutions

u_{+1}(t)=$\varphi$_{1}(t) , u_{+2}(t)=$\varphi$_{2}(t)+u_{+1}(t)\log(t-1)

with convergent Taylor series $\varphi$_{1}(t) , $\varphi$_{2}(t) at t=1 satisfying $\varphi$_{1}(1)=1 . Simi‐

larly, at t=-1 we have local solutions

u_{-1}(t)=$\psi$_{1}(t) , u_{-2}(t)=$\psi$_{2}(t)+u_{-1}(t)\log(t+1)

with convergent Taylor series. $\psi$_{1}(t) , $\psi$_{2}(t) at t=-1 satisfying $\psi$_{1}(-1)=1.
By solving a connection problem ([3]), we obtain the relation

u_{+1}(t)=e^{ $\pi$ i(1- $\alpha$)}(u_{-1}(t)+\displaystyle \frac{1-e^{2 $\pi$ i $\alpha$}}{2 $\pi$ i}u_{-2}(t))
if  $\alpha$\not\in \mathbb{Z} . It is readily seen that the solution u_{+1}(t) holomorphic at t=1 cannot

be holomorphic at t=-1 . Then a solution holomorphic at both t=1 and

t=-1 can exist only when  $\alpha$\in \mathbb{Z} . It is shown that, when  $\alpha$\in \mathbb{Z} , the Legendre
differential equation has a polynomial sol�ution, which is entirely holomorphic.
In this way, we can determine the special values of  $\lambda$ as

 $\lambda$=n(n-1) (n\in \mathbb{Z})

by using the connection problem.

1.3 Generalized hypergeometric differential equation

The generalized hypergeometric series {}_{3}F_{2}(^{$\alpha$_{1},$\alpha$_{2},$\alpha$_{3}}$\beta$_{1},$\beta$_{2};x) satisfies a third order

Fuchsian differential equation (_{3}\mathrm{E}_{2} ), whose Riemann scheme is given by

\left\{\begin{array}{llll}
x & =0 & =x\mathrm{l} & x=\infty\\
 & 0 & 0 & $\alpha$_{\mathrm{l}}\\
 & $\beta$_{\mathrm{l}}1- & 1 & $\alpha$_{2}\\
 & $\beta$_{2}1- & -$\beta$_{3} & $\alpha$_{3}
\end{array}\right\},
where $\beta$_{3} is determined by \displaystyle \sum_{j=1}^{3}$\alpha$_{j}=\sum_{j=1}^{3}$\beta$_{j} . The exponents 0 , 1 at x=1

implies that the dimension of the space of solutions holomorphic at x=1 is 2.

Note that there is no canonical choice of basis of this 2 dimensional space.
We can study the connection problem by using an integral representation of

Euler type of solutions

u_{ $\Delta$}(x)=\displaystyle \int_{ $\Delta$}s^{$\alpha$_{2-$\beta$_{1}}}(1-s)^{$\beta$_{1}-$\alpha$_{1-1}}t^{$\alpha$_{3}-$\beta$_{2}}(t-x)^{-$\alpha$_{3}}(s-t)^{$\beta$_{2}-$\alpha$_{2}-1}dsdt.
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We consider the domains of integration

$\Delta$_{1}=\{(s,t)|s<t<0\},
$\Delta$_{2}=\{(s,t)|t<s<0\},
$\Delta$_{3}=\{(s, t)|0<s<1, t<0\},
$\Delta$_{4}=\{(s, t)|s>1, t<0\},
$\Delta$_{5}=\{(s,t)|0<s<t<x\},
$\Delta$_{6}=\{(s,t)|x<t<s<1\}.

With each domain we attach a branch by the standard loading (cf. [7]), and

regard the domains as twisted cycles. By using the method given by Aomoto [1],
we get linear relations among twisted cycles. For example, we have the relations

\left\{\begin{array}{l}
\triangle_{1}+e_{5}$\Delta$_{2}+e_{1}e_{5}$\Delta$_{3}+e_{1}e_{2}e_{b}$\Delta$_{4}=0,\\
$\Delta$_{1}\dotplus e_{5}^{-1}$\Delta$_{2}+(e_{1}e_{5})^{-1}\triangle_{3}+(e_{1}e_{2}e_{5})^{-1}$\Delta$_{4}=0,
\end{array}\right.
where e_{1}=e^{ $\pi$ i($\alpha$_{2}-$\beta$_{1})}, e_{2}=e^{ $\pi$ i($\beta$_{1}-$\alpha$_{1}-1)} , e3 =e^{ $\pi$ i($\alpha$_{3}-$\beta$_{2})}, e_{4}=e^{ $\pi$ i(-$\alpha$_{3})}, e5=

e^{ $\pi$ i($\beta$_{2}-$\alpha$_{2}-1)} . On the other hand, we have asymptotic behaviors

u_{$\Delta$_{5}}(x)\sim C_{5}x^{1-$\beta$_{1}} (x\rightarrow 0) ,

u_{$\Delta$_{6}}(x)\sim C_{6}(1-x)^{-$\beta$_{3}} (x\rightarrow 1)
for some non‐zero constants C_{5}, C_{6} . Also we see that u_{$\Delta$_{1}}(x) , u_{$\Delta$_{2}}(x) , u_{$\Delta$_{S}}(x) ,

u_{\triangle_{4}}(x) are holomorphic at x=1 . Then we can choose a basis of the space of

holomorphic solutions at x=1 from among these four solutions. Let u_{\triangle_{j}}(x) ,

u$\Delta$_{k}(x) be a chosen basis. Then we have a connection relation

u_{$\Delta$_{5}}(x)=c_{56}u_{$\Delta$_{6}}(x)+c_{5j}u_{$\Delta$_{j}}(x)+c_{5k}u_{\triangle_{k}}(x) .

The connection coefficients \mathrm{c}_{56}, c_{5j}, c_{5k} are calculated by using the linear rela‐

tions among the twisted cycles. If we choose u_{$\Delta$_{1}}(x) , u_{$\Delta$_{4}}(x) as a basis, we get
the relation

u_{\triangle s}(x)=c_{56}u_{$\Delta$_{6}}(x)+c_{51}u_{$\Delta$_{1}}(x)+c_{54}u_{$\Delta$_{4}}(x)
with

c_{56}=\displaystyle \frac{e_{4}e_{5}(e_{2}^{2}-1)}{e_{245}^{2}-1}=\frac{\sin $\pi$($\beta$_{1}-$\alpha$_{1})}{\sin $\pi$\sqrt{}3},
c_{51}=\displaystyle \frac{A}{e_{1}e_{3}e_{5}^{2}(e_{1}^{2}-1)(e_{4}^{2}-1)(e_{245}^{2}-1)},
C54 =\displaystyle \frac{(e_{2}^{2}-1)(e_{1245}^{2}-1)(e_{345}^{2}-1)}{e_{2}e_{3}e_{5}(e_{1}^{2}-1)(e_{4}^{2}-1)(e_{245}^{2}-1)}

=\displaystyle \frac{\sin $\pi$($\beta$_{1}-$\alpha$_{1})\sin $\pi$($\beta$_{2}-$\alpha$_{1}-$\alpha$_{3})\sin $\pi \alpha$_{2}}{\sin $\pi$($\beta$_{1}-$\alpha$_{2})\sin $\pi \alpha$_{3}\sin $\pi \beta$_{3}}
where

A=1-e_{15}^{2}-e_{45}^{2}+e_{145}^{2}-e_{1245}^{2}-e_{1345}^{2}+e_{124}^{2}e_{5}^{4}
+e_{134}^{2}e_{5}^{4}-e_{1234}^{2}e_{5}^{4}+e_{15}^{4}e_{234}^{2}+e_{123}^{2}e_{45}^{4}-e_{14}^{4}e_{23}^{2}e_{5}^{6}.
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We used the notation e_{jk} =e_{j}e_{k}\cdots.
In many cases as in the case of the Coulomb potential, we are interested in

the vanishing or non‐vanishing of connection coefficients. It is easy to see when

the connection coefficient c_{56} or C54 vanishes, while it hard for c_{51} . However, we

can easily get the condition for the vanishing of c_{51} under the condition C54 =0.

For example, if e_{2}^{2}=1 , we have

A=-(e_{15}^{2}-1)(e_{45}^{2}-1)(e_{1345}^{2}-1) .

Note that the space of solutions V_{1} at x=1 is decomposed into a direct sum

V_{1}=V_{1}^{1}\oplus V_{1}^{e^{2 $\pi$ i(-$\beta$_{3})}}
where V_{1}^{1} denotes the subspace of the holomorphic solutions at x=1 and

V_{1}^{e^{2 $\pi$ i(-$\beta$_{3})}}=\{u_{$\Delta$_{6}}\} . Then we can see when the component in V_{1}^{1} of the solution

u_{$\Delta$_{5}} vanishes.

We note that another choice of the basis of V_{1}^{1} works better. Namely, if we

take u_{$\Delta$_{1}}, u_{$\Delta$_{3}} as a basis, we have

u_{$\Delta$_{5}}=c_{56}u_{$\Delta$_{6}}+c_{51}u_{$\Delta$_{1}}+c_{53}u_{$\Delta$_{3}}

with

c_{56}=\displaystyle \frac{\sin $\pi$($\beta$_{1}-$\alpha$_{1})}{\sin $\pi \beta$_{3}},
c_{51}=\displaystyle \frac{\sin $\pi$($\beta$_{2}-$\alpha$_{1})\sin $\pi$($\beta$_{2}-$\alpha$_{2}-$\alpha$_{3})\sin $\pi \alpha$_{1}}{\sin $\pi$($\alpha$_{1}-$\alpha$_{2})\sin $\pi \alpha$_{3}\sin $\pi \beta$_{3}},
c_{53}=\displaystyle \frac{\sin $\pi$($\beta$_{1}-$\alpha$_{1})\sin $\pi$($\beta$_{2}-$\alpha$_{1}-$\alpha$_{3})\sin $\pi \alpha$_{2}}{\sin $\pi$($\alpha$_{2}-$\alpha$_{1})\sin $\pi \alpha$_{3}\sin $\pi \beta$_{3}}.

1.4 Formulation of the connection problem

Looking at the above examples, we realize that the direct sum decomposition
of the space of local solutions at a singular point is substantial for the connec‐

tion problem. In order to get the direct sum decomposition, we use the local

monodromy action.

We consider a Fuchsian ordinary differential equation (L) on the projective
line \mathbb{P}^{1} . Let a_{0}, a_{1} ,

.

.., a_{p} be the regular singular points, and set X=\mathbb{P}^{1}\backslash 
\{a_{0}, a_{1}, \cdots, a_{p}\} . For each a_{j} , we take a point b_{j}\in X near a_{j} so that the circle

K_{j} with center a_{j} of radius |b_{j}-a_{j}| does not contain the other a_{k} �s in its inside.

We attach the positive direction to K_{j} . Let V_{j} be the vector space of solutions

of (L) at b_{j} . The analytic continuation along K_{j} induces a linear transformation

of V_{j} , which we call the local monodromy action at a_{j} . Then we can decompose
V_{j} into a direct sum

V_{j}=\displaystyle \bigoplus_{ $\alpha$}V_{j}^{ $\alpha$}
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by this action, where  $\alpha$ is an eigenvalue and  V_{j}^{ $\alpha$} is the generalized eigenspace for

the eigenvalue  $\alpha$ . Each  V_{j}^{ $\alpha$} is stable under the action. For each j,  $\alpha$ , we denote

by
 $\pi$_{j}^{ $\alpha$}:V_{j}\rightarrow V_{j}^{ $\alpha$}

the projection onto the component V_{j}^{ $\alpha$} . If V_{j}^{ $\alpha$} is not an eigenspace, we have a

filtration

V_{j}^{ $\alpha$,0}\subset V_{j}^{ $\alpha$,1}\subset\cdots\subset V_{j}^{ $\alpha$},
which is called the logarithmic filtration, where V_{j}^{ $\alpha$,k} consists of solutions con‐

taining (\log(x-a_{j}))^{l} with l\leq k . Each V_{j}^{ $\alpha$,k} is also stable under the action.

In the previous examples, the decompositions are given as follows. In the

Gauss case, we have

V_{0}=V_{0}^{1}\oplus V_{0}^{e^{2 $\pi$ i(1- $\gamma$)}}, V_{1}=V_{1}^{1}\oplus V_{1}^{e^{2 $\pi$ i( $\gamma$-a- $\beta$)}}
with

V_{0}^{1}=\{u_{01}\}, V_{0}^{e^{2 $\pi$ i(1- $\gamma$)}}=\{u_{02}\},
V_{1}^{ $\iota$}=\langle u_{11}\}, V_{1}^{e^{2ni( $\gamma$- $\alpha$- $\beta$)}}=\{u_{12}\}.

In the Legendre case, we have

V_{1}=V_{1}^{1}, V_{-1}=V_{-1}^{1}

with the filtrations

V_{1}^{1,0}\subset V_{1}^{1,1}=V_{1}^{1}, V_{-1}^{1,0}\subset V_{-1}^{1,1}=V_{-1}^{1},
where

V_{1}^{1,0}=\{u_{+1}\}, V_{1}^{1,1}=\{u_{+1}, u_{+2}\},
V_{-1}^{1,0}=\langle u_{-1}\rangle, V_{-1}^{1_{)}1}=\langle u_{-1}, u_{-2}\rangle.

In the generalized hypergeometric case, we have

V_{0}=V_{0}^{1}\oplus V_{0}^{e^{2 $\pi$ i(1-$\beta$_{1})}}\oplus V_{0}^{e^{2 $\pi$ i(1-$\beta$_{2})}}, V_{1}=V_{1}^{1}\oplus V_{1}^{\mathrm{e}^{2 $\pi$ i\langle-$\beta$_{3})}}
The second one has already been given in the previous subsection. We note that

\dim V_{1}^{1}=2 , and that

V_{0}^{e^{2 $\pi$ i(1-$\beta$_{1})}}=\langle u_{\triangle_{6}}\rangle.
We shall go back to the general case. For each pair (j, k) of indices, we take

a path $\gamma$_{jk} in X with the starting point b_{j} and the end point b_{k} . The result of

the analytic continuation of V_{j}^{ $\alpha$} along $\gamma$_{jk} becomes a subspace of V_{k} , and hence

is decomposed according to the direct sum decomposition of V_{k} . The connection

problem can be understood as a problem to obtain each component

$\pi$_{k}^{ $\beta$}(($\gamma$_{jk})_{*}V_{j}^{ $\alpha$})
for  $\beta$ . If we take bases of  V_{j}^{ $\alpha$} and of V_{k}^{ $\beta$} , the problem reduces to the usual

connection problem, the evaluation of the connection coefficients.
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The vanishing of a connection coefficient can be generalized in basis free

manner as follows. We see

\displaystyle \dim$\pi$_{k}^{ $\beta$}(($\gamma$_{jk})_{*}V_{j}^{ $\alpha$})\leq\min\{\dim V_{j}^{ $\alpha$}, \dim V_{k}^{ $\beta$}\}.
Then, the vanishing of some connection coefficients corresponds to the inequality

\displaystyle \dim$\pi$_{k}^{ $\beta$}(($\gamma$_{jk})_{*}V_{j}^{ $\alpha$})<\min\{\dim V_{j}^{ $\alpha$}, \dim V_{k}^{ $\beta$}\}.
When we consider the logarithmic filtrations, we are also interested in, for each

l , the minimum of m such that

$\pi$_{j}^{ $\beta$}(($\gamma$_{jk})_{*}V_{j}^{ $\alpha$,l})\subset V_{k}^{ $\beta$,m}
holds.

2 Connection problem for regular holonomic sys‐
tems

Our formulation of the connection problem for Fuchsian ordinary differential

equations depends on the direct sum decomposition of the space of a local

solution by the local monodromy action. In order to extend the problem. to

regular holonomic case, we need to define the local monodromy action, and for

the purpose, here we recall the definition of the local monodromy for regular
holonomic case.

Let D\subset \mathbb{C}^{n} be a hypersurface, and

D=\displaystyle \bigcup_{j}D_{j}
its irreducible decomposition. Set X=\mathbb{C}^{n}\backslash D=\mathbb{P}^{n}\backslash (D\cup H_{\infty}) , where H_{\infty} is

the hyperplane at infinity, and take a base point b\in X . We denote by D^{\mathrm{o}} the

set of regular points of D . Consider an irreducible component D_{j} . For any point
a\in D_{j}\cap D^{\mathrm{o}} , we can take a complex line  $\Pi$ which passes through  a and is in

general position with respect to D . Take \mathrm{a}(+1)‐loop \tilde{ $\gamma$} for a in Il. Connecting
b to the starting point of the (+1)‐loop by a path  $\mu$ in  X , we get \mathrm{a}(+1)‐loop
 $\mu$\tilde{ $\gamma$}$\mu$^{-1} for a in X . It can be shown that the conjugacy class of such (+1)‐loop
in $\pi$_{1}(X, b) is uniquely determined by D_{j} . Then, if we consider a representation

 $\rho$:$\pi$_{1}(X, b)\rightarrow \mathrm{G}\mathrm{L}(V) ,

the conjugacy class [ $\rho$( $\gamma$)] of the image of \mathrm{a}(+1)‐loop  $\gamma$ for  a\in D_{j}\cap D^{\mathrm{o}} is

uniquely determined by D_{j} , which we call the local monodromy at D_{j} . Thus we

understand that, in holonomic case, each irreducible component of the singular
locus plays a similar role as a singular point of ordinary differential equations.

Now we know how to obtain a direct sum decomposition of the space of local

solutions. Let (M) be a regular holonomic system with the singular locus D.
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Take an irreducible component D_{j} of D , and a point b_{j} near D_{j} . Let V_{j} be the

space of solutions at b_{j} . Then, similarly as in ODE case, we can decompose V_{j}
by the local monodromy action into the direct sum

V_{j}=\displaystyle \bigoplus_{ $\alpha$}V_{j}^{ $\alpha$},
where  $\alpha$ is an eigenvalue of the local monodromy action and  V_{j}^{ $\alpha$} the generalized
eigenspace for  $\alpha$ . (We also have the logarithmic filtration for each generalized
eigenspace.) The connection problem will be \mathrm{a} . problem to study the relation

among V_{j}^{ $\alpha$} and V_{k}^{ $\beta$} , and, in ODE case, we took a path $\gamma$_{jk} to relate V_{j} to

V_{k} . However, in holonomic case, we do not need to take such path, since two

irreducible components D_{j} and D_{k} may meet. Thus we take a point b_{jk} near

an intersection point of D_{j} and D_{k} , and consider the space V_{jk} of solutions at

b_{jk} . The space V_{jk} can be decomposed in two ways as

V_{jk}=\displaystyle \bigoplus_{ $\alpha$}V_{j}^{ $\alpha$}
=\displaystyle \bigoplus_{ $\beta$}V_{k}^{ $\beta$}.

According to these decompositions, we have two sets of projections

$\pi$_{j}^{ $\alpha$}:V_{jk}\rightarrow V_{j}^{ $\alpha$},
$\pi$_{k}^{ $\beta$}:V_{jk}\rightarrow V_{k}^{ $\beta$}.

Then the connection problem is the study of the components

$\pi$_{k}^{ $\beta$}(V_{j}^{ $\alpha$})
for  $\alpha$ and  $\beta$ . This is our formulation of the connection problem for regular
holonomic systems.

Another distinguished nature for regular holonomic case is the existence of

simultaneous basis for several direct sum decompositions. Let  a be an intersec‐

tion point of several irreducible components D_{j_{1}}, D_{j_{2}} ,
. .. D_{j_{m}} . Take a point

b\in X near a , and let V be the space of local solutions at b . If these irreducible

components are normally crossing at a , thanks to the results by Gérard [2] and

Yoshida‐Takano [12], we have a basis of V such that each member of the basis

belongs to some direct sum component simultaneously for every decomposition
by a local monodromy action. We call the problem to find such simultaneous

basis a trivialization, which is a solution of the connection problem at a nor‐

mally crossing point. At a non‐normally crossing point, we should solve a usual

connection problem.
In our paper [4], we solved connection problems for Appell�s hypergeometric

series F_{1} and F_{2} along the above formulation. We do not repeat the results

here, however, we find that our formulation works well for these cases.

There are not so many works on the connection problem for regular holo‐

nomic systems. We refer the readers to the works [5], [6],[8], [9], [10] and [11].
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