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Abstract

We, first, give a general result on the estimate of maximal exponential growth
order  $\rho$(L) of solutions of Ly=0 with L=z^{p+1}(d/dz)I_{N}-A(z)(A(z)\in M_{N}(\mathrm{C}\{z\})
which is Moser irreducible defined by F. Moser [Mos]. Next, we give a counterex‐

ample for the conjecture by M. Barkatou on the characterization of  $\rho$(L) stated in

his lecture [Bar]. We, further, introduce a class of system transformations called

surgery operations by which the leading term of exponential factor of the formal

fundamental matrix solution is calculated exactly for the obtained counterexample.

1 Introduction

A singular system L=(p, A(z)) of apparent Poincaré rank p\geq 1 is defined by

(1.1) L\displaystyle \equiv(p, A(z)):=z^{p+1}\frac{d}{dz}I_{N}-A(z) , A(z)=(a_{ij}(z))\in M_{N}(\mathbb{C}\{z\}) .

We denote by  $\rho$(L)\in \mathbb{Q}_{\geq 0} the maximal exponential growth order in |z|^{-1} of solutions

y(z) of the homogeneous equation Ly(z)=0 , which we call the irregularity of L . The

case  $\rho$(L)=0 is understood that the system L is regular singular at z=0.

The characterization of  $\rho$(L) were established in [Kit] and [M‐I] (also in [Miy2]) by
reducing the system L=(p, A(z)) into a non‐degenerate system in Volevič�s sense.

In this paper we shall give a little more direct estimate for  $\rho$(L) for Moser irreducible

system case L=(p, A(z)) , which is defined as follows (cf. [Mos]).
Let A(z)=\displaystyle \sum_{n=0}^{\infty}A_{n}z^{k+n}(A_{0}\neq O) be the Taylor expansion of A(z) , where k=

O(A)\geq 0 denotes the order of zeros of A(z) at z=0 . Then he defined two numbers,

m(A) :=p-k+r/N (r= rank A_{0} ) (Moser�s rank),
(1.2)  $\mu$(A) :=\displaystyle \min_{P(z)\in GL_{N}(\mathrm{K}[z])}\{m(A_{P}) ; A_{P}(z)\in M_{N}(\mathbb{C}\{z\})\} (reduced Moser�s rank),

where A_{P}(z) denotes the reduced matrix of A(z) by an invertible matrix P(z) over \mathrm{K}[z]
(the field of fractions of \mathbb{C}[z\mathrm{J} ),

(1.3) A_{P}(z) :=P^{-1}(z)A(z)P(z)-z^{p+1}P^{-1}(z)P'(z) .
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Our interest is in the case when m(A)>1 , since L is regular singular at z=0 if

m(A)\leq 1 . Then he defined

Definition ((ir)reducibility) Let m(A)>1 . Then the system L=(p, A(z)) is

called Moser reducible if m(A)> $\mu$(A) . Otherwise, it is called Moser irreducible.

In order to characterize the reducible system, he introduced a kind of characteristic

polynomial \mathcal{P}_{A}( $\lambda$)\in \mathbb{C}[ $\lambda$] , which we call Moser�s polynomial by

(1.4) \mathcal{P}_{A}( $\lambda$) :=z^{r}\times\det( $\lambda$ I_{N}-A(z)/z^{k+1})|_{z=0}=z^{r}\times\det( $\lambda$ I_{N}-(A_{0}/z+A_{1}))|_{z=0}.
Then he proved

Theorem 1.1 [Mos] Let a system L=(p, A(z)) satisfy m(A)>1 . Then L is Moser

reducible if and only if \mathcal{P}_{A}( $\lambda$)\equiv 0.
Under these preparations, a characterization theorem of  $\rho$(L) is obtained in the form,

Theorem 1.2 Let L=(p, A(z)) be Moser irreducible with non‐zero nilpotent constant

term A_{0}=A(0)(k=0) , and define that r=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0}, k_{1}=\displaystyle \min\{k\geq 2 ; A_{0}^{k}=O\} and

d=\deg_{ $\lambda$}\mathcal{P}_{A}\geq 0 . Then  $\rho$(L) is estimated by

(1.5) p-S_{0}(L)\leq $\rho$(L)\leq p-1/k_{1}, S_{0}(L):=(N-d-r)/(N-d) .

Remark (i) The first inequality in (1.5) is found in [Bar, p.31] without proof.
(ii) The both inequalities in (1.5) are best possible. Indeed, in each inequality the

equality is actually attained by an example which we omit.

Here is the conjecture by Barkatou.

Conjecture [Bar, p.35] Let L=(p, A(z)) be a Moser irreducible system as in The‐

orem 1.2. Let p_{A}(z,  $\lambda$) :=\displaystyle \det( $\lambda$ I_{N}-A(z))=\sum_{\dot{}=0}^{N}p_{j}(z)$\lambda$^{N-j} be the characteristic poly‐
nomial of A(z) . Then the following equality may hold

(1.6)  $\rho$(L)=p-s_{0}(A) , s_{0}(A):=\displaystyle \min\{O(p_{i})/j;1\leq j\leq N\}>0,

where O(p_{j}) denotes the order of zeros of p_{j}(z) at z=0 and s_{0}(A) gives the minimal

slope of sides of the Newton polygon of A(z) defined later.

The conjecture does hold trivially when s_{0}(A)=0 , but it is not correct in general
which is shown by a counterexample in Section 3. He gave a sufficient condition on

the Poincaré rank p to hold his conjecture without proof, but our reduction procedure
of systems in Section 3 shows that the conclusion does hold even when his suffcient

condition is violated (cf. Remark in Section 3.1). This system reduction is made by
surgery operations to get the leading term of the exponential factor of the FFMS (formal
fundamental matrix solution). Let us explain this shortly. Let L=(p, A(z)) be Moser

irreducible with non‐zero nilpotent constant term A_{0}=A(0) of Jordan canonical form,

(1.7) A_{0}=\oplus_{j=1}^{m_{1}}N_{k_{j}}\oplus O_{m2}, N_{k_{j}}\in M_{k_{j}}(\mathbb{C})(k_{j}\geq 2) , O_{m2}\in M_{m2}(\mathbb{C}) ,
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where N_{k_{j}} denotes the nilpotent Jordan cell of upper triangular form of rank k_{j}-1 and

O_{m}2 denotes the zero matrix. Then we define Jordan type J(A_{0}) of A_{0} by

(1.8) J(A_{0}) :=(k_{1}, k_{2}, \cdots , k_{rn1} , 1, \cdots, 1)\in \mathrm{N}^{m+m}12.

The surgery operations consist of the following two type operations;

© A_{0}‐invariant transformation by P\in GL_{N}(\mathbb{C}) (cf. Section 4.2).
© J(A_{0})‐change transformation by P(z)\in GL_{N}(\mathrm{K}[z]) (cf. Section 3.4.1).
The important fact is that under the surgery operations \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0} and the Moser poly‐

nomial \mathcal{P}_{A}( $\lambda$) are invariant. Fundamental properties of surgery operations will be given
in Section 4. As an application of A_{0}‐invariant transformations we give a way of construc‐

tion of Moser�s rank reduction matrix for Moser reducible system, which is different from

[Mos] and [B‐P1,2].

2 Proof of Theorem 1.2

The proof will be done after several preliminary considerations. Almost statements are

given without proof because of the page limitation, but they are proved by the knowledge
of elementary linear algebra.

2.1 Newton polygon and Moser irreducibility
Let A(z)\in GL_{N}(\mathbb{C}\{z\}) have non‐zero constant term A_{0} which is not nilpotent neces‐

sarily, and p_{A}( $\lambda$, z)=\displaystyle \sum_{j}p_{\mathrm{j}}(z)$\lambda$^{N-j} be its characteristic polynomial. Then

(2.1) p_{0}\displaystyle \equiv 1, p_{j}(z)=(-1)^{j}\times\sum_{1\leq i_{1}<\cdots<i_{j}\leq N}\det(a_{i_{k},i_{\ell}}(z))_{1\leq k,\ell\leq j}.
We define Q(p_{j}) :=\{(x, y)\in \mathbb{R}^{2};x\leq j, y\geq O(p_{j})\} . Then the Newton polygon \mathrm{N}(A) of

A(z) is defined by

(2.2) \mathrm{N}(A) := Convex ‐‐ hull (\displaystyle \bigcup_{j=0}^{N}Q(p_{j})) .

Therefore, s_{0}(A) :=\displaystyle \min_{1\leq j\leq N}O(p_{j})/j in (1.6) denotes the smallest slope of sides of \mathrm{N}(A)
in the region x\geq 0 . The nilpotent condition for A_{0} is equivalent with that s_{0}(A)>0.

Now, the relation between \mathrm{N}(A) and Moser�s (ir)reducibility is obtained by

Lemma 2.1 (relation between \mathcal{P}_{A}( $\lambda$) and \mathrm{N}(A) ) Let \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0}=r(\geq 1) , where

A_{0} is not assumed to be nilpotent necessarily. Then
2

(i) \mathrm{N}(A) lies in the region y\geq x-r.
(ii) \mathcal{P}_{A}( $\lambda$)\equiv 0 is equivalent that \mathrm{N}(A) lies in the strictly upper region y>x-r.

(iii) \mathcal{P}_{A}( $\lambda$) is determined by the members of monomials in p_{A}( $\lambda$, z) on the line y=x-r

by putting z=1.

The following figure shows this relation visually.
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Figure 1

Lemma 2.2 (invariance of \mathcal{P}_{A}( $\lambda$) ) The Moser polynomial \mathcal{P}_{A}( $\lambda$) is invariant under

the system transformations by matrices P(z)\in GL_{N}(\mathbb{C}\{z\}) . In the Moser irreducible

case, let  d=\deg_{ $\lambda$}\mathcal{P}_{A}\geq O. Then the vertex point (N-d, N-d-r)\in \mathrm{N}(A) is the

common vertex point of \mathrm{N}(A_{P}) for all P(z)\in GL_{N}(\mathbb{C}\{z\}) , and s_{0}(A_{P})\leq S_{0}(L)\leq 1.

2.2 Moser polynomial \mathcal{P}_{A}( $\lambda$) via Moser matrix \mathcal{A}

We show a direct way of calculation of \mathcal{P}_{A}( $\lambda$) by using a sub‐matrix of A_{1} in the Taylor
expansion A(z)=\displaystyle \sum_{n=0}^{\infty}A_{n}z^{n} . We assume A_{0} is given in nilpotent Jordan canonical form,

(2.3) J(A_{0}):=(k_{1}, \cdots, k_{m_{1}},1, \cdots, 1)\in \mathrm{N}^{7n1+m2}. m_{1}\geq 1.

The arrangement of order of J(A_{0}) is only for the convenience. We define \{k(j)\}_{j=0}^{m1} by

(2.4) k(0):=0, k(j):=\displaystyle \sum_{i=1}^{j}k_{i} (1\leq j\leq m_{1}) .

From the coefficient matrix A_{1}=(a_{ij}) , we choose \{a^{[i,j]}\}_{1\leq i,j\leq m+m}12 by

(2.5) a^{[i,j]}:=\left\{\begin{array}{l}
a_{k(i),k(j-1)+1}, 1\leq i, j\leq m_{1},\\
a_{k(i),k(rn)+t}1, 1\leq i\leq m_{1}, j=m_{1}+t,\\
a_{k(m)+s,k(j-1)+\mathrm{b}}1 i=m_{1}+s, 1\leq j\leq m_{1},\\
a_{k(m_{1})+s,k(m_{1})+\mathrm{t}}, i=m_{1}+s, j=m_{1}+t,
\end{array}\right. (1\leq s, t\leq m_{2}) .

Now we define Moser�s matrix \mathcal{A}\in M_{m+m}12(\mathbb{C}) by

(2.6) \mathcal{A} :=(a^{[i,j]})=\left\{\begin{array}{ll}
\mathcal{A}^{[1,1]} & \mathcal{A}^{[1,2]}\\
\mathcal{A}^{[2,1]} & \mathcal{A}^{[2,2]}
\end{array}\right\}, \mathcal{A}^{[i,j]}\in M_{m_{i}\mathrm{x}m_{j}}(\mathbb{C}) .

Then the Moser polynomial \mathcal{P}_{A}( $\lambda$) is calculated by

Lemma 2.3 (calculation of \mathcal{P}_{A}( $\lambda$) )

(2.7) \displaystyle \mathcal{P}_{A}( $\lambda$)=\det[\{O_{m1}\oplus $\lambda$ I_{m2}\}-\mathcal{A}](=\sum_{j=0}^{m_{2}}q_{j}$\lambda$^{m-j}2) .
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This shows that \deg_{ $\lambda$}\mathcal{P}_{A}\leq m_{2} and typical coefficients are obtained by q_{0}=(-1)^{m1}\det \mathcal{A}^{[1,1]}
and q_{m2}=(-1)^{m_{1}+m_{2}}\det \mathcal{A} , which may vanish.

Remark. A similar result from different observation is seen in [B‐P1, 2], where the

matrix in the middle of (2.7) is called L‐matrix L(A,  $\lambda$) .

In actual application, it is convenient to add the Jordan type J(A_{0}) to \mathcal{A}.

A=

It is useful to know that \{a^{[i,j]}\} are the entries on the position * in the figure below.

A_{1}=

k_{\mathrm{I}} k_{2} m_{2}
Figure 2

2.3 Summary on the irregularity  $\rho$(L) from [M‐I]
For A(z)=(a_{$\iota$'\dot{}}(z))\in M_{N}(\mathbb{C}\{z\}) ,

we put r_{ij}=O(a_{ij})\in \mathbb{N}_{\geq 0}\cup\{+\infty\} , where O(0) :=

+\infty . Then Volevič�s weight  V(A)\in \mathbb{Q}\geq 0\cup\{+\infty\} is defined by

 V(A):=\displaystyle \min \min(2.8)  1\displaystyle \leq n\leq N\min_{1\leq i_{1}<\cdots<i_{n}\leq N $\sigma$\in \mathcal{S}_{n}}\frac{1}{n}\sum_{k=1}^{n}r_{i_{k},i_{ $\sigma$(k)}}(\leq s_{0}(A)) .

The following lemma is the most fundamental in the study of singular system L=

(p, A(z)) .

Lemma 2.4 ([Vol], [Miyl], [M‐I]) Let V(A)\in \mathbb{Q}_{\geq 0} . Then, associated with V(A) ,

there is a system of numbers T=\{t_{i}\}_{i=1}^{N}\subset \mathbb{Q} , which we call V‐numbers, such that

(2.9) r_{ij}\geq t_{i}-t_{j}+V(A) , i,j=1, 2, \cdots , N.
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Moreover, we can find the V‐numbers T=\{t_{i}\} satisfying the following span condition,

(2.10)  $\sigma$(T):=\displaystyle \max\{|t_{i}-t_{j}| ; i, j=1, 2, \cdots, N\}\leq(N-1)\times V(A) .

By this lemma, we see that our interest is in the case V(A)<p ,
since otherwise the

system is regular singular at z=0 (cf. [Kit], [M‐I] for detail).
By Lemma 2.4, a_{ij}(z)\in \mathbb{C}\{z\} are written in the form

a_{ij}(z)=\{\mathring{a}_{ij}+\mathrm{o}(1)\}z^{t_{i}-t_{j}+V(A)} , \mathring{a}_{ij}=0 if t_{i}-t_{j}+V(A)\not\in \mathbb{N}.

We define the principal matrix  A\circ of  A(z) w.r.t. \mathrm{V}‐numbers T=\{t_{i}\} by

(2.11) \mathring{A} :=(\mathring{a}_{ij})\in M_{N}(\mathbb{C}) .

The principal matrix \mathring{A} is not determined uniquely, since T is not determined uniquely.
But its eigenvalues is not. It is also important to know that by taking T which satisfy
the span condition (2.10) \mathring{A} is determined from the members of the Taylor coefficients

\{A_{n} ; 0\leq n\leq N\times V(A)\} . Now we give fundamental definition and results.

Definition (non‐degeneracy) Let V(A)<p . Then we define;

(i) L=(p, A(z)) is called non‐degenerate in V‐sense if V(A)=s_{0}(A) which means \mathring{A}
is not nilpotent.

(ii) L is called non‐degenerate of full rank if o(\det A(z))=N\times V(A) , i.e. , \det A\circ\neq 0.
Lemma 2.5 [M‐I] Let V(A)<p . Then we have; (i)  $\rho$(L)\leq p-V(A) .

(ii)  $\rho$(L)=p-V(A) if and only if L is non‐degenerate in V‐sense.

(iii) If L is non‐degenerate offull rank, then the leading term of the exponential factor
 $\Lambda$(z) of the FFMS is obtained in the form,

(2.12) diag (\cdots, $\alpha$_{j}z^{-p+V(A)}/(V(A)-p), \cdots) , \{$\alpha$_{j}\}_{j=1}^{N} are the eigenvalues of \mathring{A}.

Theorem 2.1 [M‐I, Th. \mathrm{A}] Let L=(p, A(z)) be of irregular singular type. Then

we can find P(z)\in GL_{N}(\mathbb{C}[z]) such that the reduced system L_{P}=(p, A_{P}(z)) is non‐

degenerate in V‐sense of V(A_{P})<p, and therefore  $\rho$(L)=p-V(A_{P})>0.

2.4 Proof of Theorem 1.2

By Theorem 2.1, we take P(z)\in GL_{N}(\mathbb{C}[z]) such that L_{P}=(p, A_{P}(z)) is non‐

degenerate in \mathrm{V}‐sense. Then by Lemma 2.2, we know that V(A_{P})=s_{0}(A_{P})\leq S_{0}(L) ,

which shows that  $\rho$(L)= $\rho$(L_{P})=p-V(A_{P})\geq p-S_{0}(L) by Lemma 2.5, (ii).
On the other hand, let A(z) be the one in the theorem. For the nilpotent constant

term A(0)=A_{0} let its Jordan type be J(A_{0})=(k_{1}, \cdots) , where k_{1}=\displaystyle \min\{A_{0}^{k}=O\} . Since

the maximal size of nilpotent Jordan cells is k_{1} , we have V(A)\geq 1/k_{1} by the definition

(2.8) of V(A) . This proves that  $\rho$(L)\leq p-1/k_{1} by Lemma 2.5, (i). \square 
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3A counterexample for Barkatou�s conjecture

3.1 The case when the conjecture does hold

Before we give the counterexample for Barkatou�s conjecture, we remark that for L=

(p, A(z)) with sufficiently large p , we can conclude that  $\rho$(L)=p-s_{0}(A) . Indeed,

Theorem 3.1. Let L=(p, A(z)) be Moser irreducible with d=\deg_{ $\lambda$}\mathcal{P}_{A}\geq 0 , where

A_{0}=A(0) is assumed to be a non‐zero nilpotent matrix. Then it holds that

(3.1) p+1>N\times S_{0}(L) (S_{0}(L)=\displaystyle \frac{N-d-r}{N-d}) implies  $\rho$(L)=p-s_{0}(A) .

Proof. If the Moser irreducible system L=(p, A(\mathrm{z})) is non‐degenerate in \mathrm{V}‐sense,

there is nothing to prove. So we assume that L is Moser irreducible but degenerate in V‐

sense. Hence, V(A)<s_{0}(A)\leq S_{0}(L) , where S_{0}(L) is invariant for every reduced matrix

A_{P}(z) by P(z)\in GL_{N}(\mathbb{C}[z]) and s_{0}(A_{P})\leq S_{0}(L) . By Theorem 2.1, we can find a matrix

P(z)\in GL_{N}(\mathbb{C}[z]) such that the reduced system L_{P}=(p, A_{P}(z)) is non‐degenerate in

V‐sense for which the Moser polynomial is invariant. Then we have  $\rho$(L)=p-s_{0}(A_{P}) .

Therefore we have to prove that s_{0}(A_{P})=s_{0}(A) under the assumption p+1>N\times S_{0}(L) .

For this purpose, we recall the construction of the principal coefficient  A\circ of  A(z) . As

mentioned before, this is determined by the members of the Taylor coefficients \{A_{n} ;  0\leq

 n\leq N\times V(A)\} . The system is degenerate in \mathrm{V}‐sense if and only if  A\circ is a nilpotent
matrix, and the reduction procedure is carried out by reduction matrices in  GL_{N}(\mathbb{C}[z])
obtained by using the null‐vectors of the principal coefficient (cf. [M‐I] for detail). This

shows that, through out the reduction procedure, the operations are done by using the

members of Taylor coefficients of z^{n} of the intermediate coefficient matrix such that

(3.2) 0\leq n\leq N\mathrm{x}S_{0}(L) , V(A)\leq s_{0}(A)\leq S_{0}(L)) .

Let Q(z)\in GL_{N}(\mathbb{C}[z]) be an intermediate reduction matrix. Note that the reduced

matrix is given by

A_{Q}(z)=Q^{-1}AQ-z^{p+1}Q^{-1}Q', V(A_{Q})\leq s_{0}(A_{Q})\leq S_{0}(L) .

From this expression we know that if p+1>N\times S_{0}(L) , the term z^{p+1}Q^{-1}Q' has no influ‐

ence in the determination of s_{0}(A_{Q})(\leq S_{0}(L)) . This shows that s_{0} $\zeta$ A_{Q} ) =s_{0}(Q^{-1}AQ)=
s_{0}(A) . By continuing this procedure we finally get a reduction matrix P(z)\in GL_{N}(\mathbb{C}[z])
into a non‐degenerate system in \mathrm{V}‐sense, and hence s_{0}(A_{P})=s_{0}(A) . \square 

Remark. M. Barkatou gave a theorem [Bar, p.33] without proof that

(B) If p\geq(r+1)S_{0}(L) , then it holds that  $\rho$(L)=p-s_{0}(A)
Our counterexamples given below do not satisfy his assumption throughout system

reductions by surgery operations, but we know that the conclusion does hold after the

one step reduction. Our counterexample shows that if one wants to get a condition under

which we have  $\rho$(L)=p-s_{0}(A) , we have to find a condition under which s_{0}(A) is invariant

by system reductions.
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3.2 Introduction of the counterexample
First we remark that the actual calculations below were done by Mathematica 9.0.

We consider a system L=(1, A(z))(p=1) of A(z)\in M_{9}(\mathbb{C}[z]) given by

A(z)=(\underline{z_{0}^{2}\prod z0\ovalbox{\tt\small REJECT}_{0}^{0}00} z_{0}^{2}00z0zz1 000000001 0000z0001 000000001 ,

In fact, the characteristic polynomial is given by

p_{A}( $\lambda$, z)=$\lambda$^{9}-z$\lambda$^{8}+(-2z+z^{2})$\lambda$^{7}-z^{3}$\lambda$^{6}+(z^{2}-2z^{3})$\lambda$^{5}+z^{4}$\lambda$^{3}-z^{4},

which shows that the Newton polygon \mathrm{N}(A) has only one side \overline{(0,0),(9,4)} of slope s_{0}( $\Lambda$)=
4/9 , Therefore, the system is degenerate in \mathrm{V}‐sense. Moreover, the system is Moser

irreducible, since the Moser matrix and Moser polynomial are given by

\mathcal{A}= \mathcal{P}_{A}( $\lambda$)=\left|\begin{array}{llll}
0 & -1 & 0 & 0\\
0 & 0 & -1 & 0\\
0 & 0 &  $\lambda$ & -1\\
-\mathrm{l} & 0 & 0 &  $\lambda$
\end{array}\right|=-1, d=\deg_{ $\lambda$}\mathcal{P}_{A}=0.

Hence S_{0}(L) :=(N-d-r)/(N-d)=4/9=s_{0}(A)>V(A)=1/4 , and  $\rho$(L)<1-1/4.
Now we shall show the following,

Statement. The irregularity  $\rho$(L) is given by

(3.3)  $\rho$(L)=1-\displaystyle \frac{2}{5}>1-s_{0}(A)=1-\frac{4}{9}.
The leading term of the exponential factor  $\Lambda$(z) of the FFMS is given by

(3.4) diag (\cdots, \displaystyle \frac{$\alpha$_{j}}{-3/5}z^{-3/5}, \cdots

, \displaystyle \frac{$\beta$_{k}}{-1/2}z^{-1/2}, \cdots) , $\alpha$_{j}^{5}+1=0, $\beta$_{k}^{4}-1=0.

3.3 Reduction into a non‐degenerate system in \mathrm{V}‐sense

For the proof of (3.3) we reduce the system into a non‐degenerate one in \mathrm{V}‐sense. It is

done by the following matrix of J(A_{0}) ‐change transformation,

P_{1}(z)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1,1,1,1, z, 1,1,1,1)\circ E(5,1;1)\circ E(5,3;1) ,
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where E(i,j;c)\in M_{9}(\mathbb{C}) differs from the identity matrix I9 by c on the (i,j) ‐position.
The meaning of this transformation matrix will be learned in Section 3.4.1 below.

For the reduced system L_{1}=(1, A_{1}(z)) , A_{1}(z) and its Moser matrix \mathcal{A}_{1} become

(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT}(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT}(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT}(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT}(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT}(-z_{Z}^{\fbox{0}}-z^{2}\displaystyle \frac{0}{\#}z_{0}^{2}000 -zz_{0}^{2}000zz1 -z0000z001 000000001 \displaystyle \frac{\prod}{0}-z0000z00 000000001 -z00000001 \ovalbox{\tt\small REJECT}_{0}^{0}z000000 0z0000000\ovalbox{\tt\small REJECT} \mathcal{A}_{1}=

for which we have V(A_{1})=2/5=s_{0}(A_{1}) and \mathcal{P}_{A_{1}}( $\lambda$)=-1 . This means that the reduced system
L_{1} is Moser irreducible and non‐degenerate in \mathrm{V}‐sense. Indeed, the characteristic polynomial

p_{A_{1}}( $\lambda$, z)=\displaystyle \sum_{j=0}^{9}p_{j}(z)$\lambda$^{9-j} is obtained by

\{p_{\dot{}}(z)\}_{j=0}^{9}=\{\underline{1}, 0, -2z, -z^{2}, -z^{4}-3z^{3}+z^{2},z^{2}-z^{4}, z^{4}-z^{5}, z^{4}, 0, \underline{-z^{4}}\}.

This shows that the Newton polygon \mathrm{N}(A_{1}) has two sides \overline{(0,0),(5,2)} of slope 2/5=s_{0}(A_{1})<
s_{0}(\mathrm{A}) and (5, 2), (9, 4) of slope 1/2.

This proves (3.3), since L_{1} is non‐degenerate in \mathrm{V}‐sense of V(A_{1})=2/5.
In order to prove (3.4), it is convenient to explain the Puiseux expansion of the eigenvalues

of A_{1}(z) , i.e., the roots of p_{A_{1}}( $\lambda$, z)= O. By the property of \mathrm{N}(A_{1}) , the leading terms of the

Puiseux expansions are obtained from $\lambda$^{9}+z^{2}$\lambda$^{4}-z^{4}=0 . Or, equivalently, they are obtained

from $\lambda$^{5}+z^{2}=0 and $\lambda$^{4}-z^{2}=0.
This is the reason why the form in (3.4) appears, but we need a concrete proof by reducing

L_{1}=(1, A_{1}(z)) into a decomposable form by non‐degenerate subsystems of full rank, which is

done by the surgery operations which is explained in the following subsection.

3.4 Reduction of L_{1} by surgery operations
3.4.1 What is J(A_{0})‐change transformation?

In our system reduction developed below, we adopt surgery operations which consist of

1. A_{0}‐invariant transformation by P\in GL_{N}(\mathbb{C}) (cf. Section 4.2 for detail).

2. J(A_{0})‐change transformation by P(z)\in GL_{N}(\mathrm{K}[z]) defined below which preserves the

Moser polynomial \mathcal{P}_{A}( $\lambda$) (see Example below and Theorem 4.1).

Let us explain J(A_{0})‐change transformation which is employed in this paper.

Let L=(p, A(z)) be a Moser irreducible system with  J(A_{0})=(k_{1}, \cdots, k_{m}1,1, \cdots, 1)\in
\mathbb{N}^{m_{1}+m_{2}} . The J(A_{0})‐change transformation is taken only when the Moser matrix A=(a^{[i,j]})
has a row vector, say the i_{0}‐row vector of 1\leq i_{0}\leq m_{1} , such that on the row there is only one

non‐zero element, say a^{[i_{0},j_{0}]}\neq 0 . Then we can find a reduced system such that the constant

term of the reduced matrix has the Jordan type

(3.5) (\cdots, k_{j_{0}}+1, \cdots, k_{i_{0}}-1, \cdots) , the others are same with those in J(A_{0}) .
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In fact, we first make a transformation by

Q(z)=D_{N}(k(i_{0});a^{[i_{0},j_{0}]}z) := diag (1, \cdots, 1, a^{[i_{0},j_{0}]}z, 1, \cdots, 1)\in GL_{N}(\mathrm{K}[z]) ,

where a^{[i_{0\dot {}0}]}z is located on the diagonal position k(i_{0}) . Let A_{Q}(0) be the constant term of the

reduced matrix of the reduced system L_{P}=(p, A_{Q}(z)) . Then A_{Q}(0) differs from A_{0} by that

(k(i_{0})-1, k(i_{0})) entry vanishes, (k(i_{0}), k(j_{0}-1)+1) entry is 1, and other non‐zero elements

may appear on the positions (k(i_{0}),j) such that k(i-1)+1<j\leq k(i) with 1\leq i\leq m_{1}.
This shows that \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{Q}(0)=\mathrm{r}\mathrm{m}\mathrm{k}A_{0} . The last non‐zero elements are killed by using the l�s on

the off‐diagonal positions of the Jordan form A_{0} . Then, by making an arrangement of order if

necessary, we finally obtain a reduced system of the desired form (3.5) by a matrix P(z)=Q(z)R
of R\in GL_{N}(\mathbb{C}) (cf. P_{1}(z) in Section 3.3).

Example. The assumption that 1\leq i_{0}\leq m_{1} is posed for preserving the rank of the

constant term of the reduced matrix. For example, let us consider a Moser irreducible system

L=(p, A(z)) of A(z)=\left(\begin{array}{lll}
0 & 1 & 0\\
0 & 0 & z\\
z & 0 & 0
\end{array}\right) for which J(A_{0})=(2,1) , \mathcal{A}=\left(\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right) and \mathcal{P}_{A}( $\lambda$)=-1.

If we make a system transformation by P(z)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1, z, 1) , we get A_{P}(z)=\left(\begin{array}{lll}
0 & z & 0\\
0 & -z^{p} & \mathrm{l}\\
z & 0 & 0
\end{array}\right) for

which J(A_{P}(0))=(1,2) and A_{P}=\left(\begin{array}{ll}
0 & 1\\
1 & 0
\end{array}\right) . But if we make a system transformation by Q(z)=

\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1,1, z) , we get a Moser reducible system L_{Q}=(p, A_{Q}(z)) of A_{Q}(z)=\left(\begin{array}{lll}
0 & 1 & 0\\
0 & 0 & z^{2}\\
1 & 0 & -z^{p}
\end{array}\right) , which

is reduced by an arrangement of the order into A_{R}(z)=\left(\begin{array}{lll}
-z^{p} & 1 & 0\\
0 & 0 & 1\\
z^{2} & 0 & 0
\end{array}\right) for which J(A_{R}(0))=

(3) (=(3,0)) and \mathcal{A}_{R}=(0) .

3.4.2 First reduction by J(A_{0})‐change transformation

We make a J(A_{0})‐change transformation for L_{1}=(1, A_{1}(z)) by

P_{2}(z)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1,1,1,1,1, z, z, 1,1)=D_{9}(6;z)\circ D_{9}(7;z) .

By this matrix, J(A_{0})‐change transformation is continued twice (cf. Section 3.4.1).
Then for the reduced system L_{2}=(1, A_{2}(z)) , A_{2}(z) , its Moser matrix \mathcal{A}_{2} and its Moser

polynomial become

(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000)(z^{2}000z00 -z00z00zz1 -z0000z001 000000001\displaystyle \frac{\prod}{0,000}-zz000\#_{0}^{0}-z0z0000 -z^{2}-z0000001 000000001\#_{0}^{0}z)000000) \mathcal{P}_{A_{2}}( $\lambda$)=-1.
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3.4.3 Second reduction by A_{0}‐invariant transformation

We kill 1 on (4, 1)‐position of \mathcal{A}_{2} by the second row by the following A_{0}‐invariant matrix,

P_{3}=[000000001 000000001 000000001 000000001 -100000001 000000010 000000001 000000100000001000] \mathrm{p}u\mathrm{t}=

where I_{m\mathrm{x}n} denotes a rectangular matrix of type m\times n defined by I_{m\times n} :=($\delta$_{ij}) if m\geq n and

I_{m\mathrm{x}n} :=($\delta$_{m-i,n-\mathrm{j}}) if m\leq n , by Kronecker�s delta $\delta$_{i\mathrm{j}}.
Then for the reduced system L_{3}=(1, A_{3}(z)) , A_{3}(z) and its Moser matrix \mathcal{A}_{3} become

(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}(-z^{2}z_{0}^{2}0000 -z-z0z00zz1 -z-z000z001 000000001 -z-z-z00z000 -zz00z0000 -z^{2}-z0001000 000000001 \displaystyle \frac{\prod}{0}
See Lemmas 4.1 and 4.2 for the relation between the A_{0}‐invariant transformation and the

transformation of Moser matrix.

3.4.4 Third reduction by A_{0}‐invariant transformation

We kill 1 on the (2,3)‐position of \mathcal{A}_{3} by the first column by

P_{4_{\mathrm{p}ut}}=

Then for the reduced system L_{4}=(1, A_{4}(z)) , A_{4}(z) and its Moser matrix \mathcal{A}_{4} become
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(-z 1-z-z-z000zzz -z-z000z001 000000001 \displaystyle \frac{\prod zz00}{-z-z-z00} z-z^{2}-z^{2}-zz_{0}^{2}000z z_{1+z}^{-z}-z^{2}-z-z-z+z^{2}2z0 -z-z00z0010-z0z00000]_{-z^{2}}
3.4.5 Fourth reduction by A_{0}‐invariant transformation, the final reduction

We kill -1 �s on the second column of \mathcal{A}_{4} by the first row by

P_{5}==\mathrm{p}ut

Then the reduced system L_{5}=(1, A_{5}(z)) becomes

z2^{-z^{2}}-2zz_{0}z-zz_{0}^{-2z}1_{2_{3z}}-z^{2}z -z-z^{2}1-2z-3z-z^{2}zzzz -2z0000001 0z00zz00 z-z^{2}\ovalbox{\tt\small REJECT}_{-z^{2}}^{0}-zz_{0}^{2}z^{2}0z 1+3zz_{-z^{2}}^{-z}-z-z+z^{2}2zz^{2}0 0z000z001 -z ,

z+z^{2} -2z 0

and its Moser matrix has the following decomposition by cyclic matrices.

\mathcal{A}_{5}= = \oplus

We make a blocked decomposition of A5 (z) following the decomposition 9=5+4 , and the

decomposition is denoted by A_{5}(z)=(A_{i,j}(z))_{i,j=1,2} . We take the subsystems of L5 taken from

the diagonal blocks L_{5,i}=(1, A_{i,i}(z))(i=1,2) ,
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A_{1,1}(z)=(
A_{2,2}(z)=(-zz^{2} 1+3z-z^{2}-zz^{2} 0z01 \underline{\prod 0-zz0}) o(\displaystyle \det A_{2,2}(z))=2V(A_{2,2})=s_{0}(A_{2,2}).=\frac{1}{2},

These show that the systems L_{5,i} are non‐degenerate of full rank. By Lemma 2.5, (iii) the

leading term of the exponential factor of the FFMS for each L_{5,i} is obtained by those in (3.4).
Remark. By taking \mathrm{V}‐numbers for A_{h^{i}}(z) , we make a system reduction by P_{6}(z)=

\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1, z^{2/5}, z^{4/5}, z^{6/5}, z^{3/5},1, z^{1/2}, z, z^{1/2}) . The reduced system becomes L_{6}=(1, A_{6}(z)) of

A_{6}(z)=(A_{1}z^{2/5}\circ\oplus A_{2}z^{1/2})\circ+ higher order term, with  A_{\dot{ $\eta$}}\circ of the principal matrices of  A_{i,i}(z) ,

respectively. This reduced system shows the expression (3.4) (see also [Miy2, Sec.4]).

4 Properties of surgery operations

4.1 Invariance of Moser polynomial under surgery operations
Theorem 4.1. The Moser polynomial \mathcal{P}_{A}( $\lambda$) is invariant under the surgery operations defined
in Section 3.4.1 for the Moser irreducible system L=(p, A(z)) .

Proof. The conclusion is obvious for A_{0}‐invariant transformation, since it is done by matrices

in GL_{N(\mathbb{C})} . Then we prove the invariance under the J(A_{0})‐change transformation in Section

3.4.1. Recall that it is done firstly by a diagonal matrix Q(z)=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(1, \cdots, 1 , cz, 1, \cdots, 1)(c\neq 0,
1\leq i_{0}\leq m1) , where cz is located on the position k(i_{0}) , where J\{A_{0} ) =(k_{1}, \cdots, k_{m1}, 1, \cdots, 1)\in
\mathrm{N}^{m1+m2} . Then our J(A_{0})‐change transformation is completed by a matrix of the form P(z)=
Q(z)R with an invertible constant matrix R (cf. Section 3.4.1 for detail). Therefore, A_{P}(z)=
R^{-1}A_{Q}(z)R shows that \mathcal{P}_{A_{P}}( $\lambda$)=\mathcal{P}_{A_{Q}}( $\lambda$) , and hence it is enough to prove \mathcal{P}_{A_{Q}}( $\lambda$)=\mathcal{P}_{A}( $\lambda$) .

Before we start the proof, recall that by the above J(A_{0})‐change transformation we have

J(A_{P}(0))=(\cdots, k_{j_{0}}+1, \cdots, k_{i_{0}}-1, \cdots) and \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0} is preserved. Therefore, from the form

of Q(z) , we know that \mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{Q}(0)=\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0} (cf. Section 3.4.1). The reduced matrix A_{Q}(z) is

expressed in the following form,

A_{Q}(z)=Q(z)^{-1}A(z)Q(z)-z^{\mathrm{p}+1}Q^{-1}(z)Q'(z)

=Q^{-1}(z)\{A(z)-\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(0, \cdots, 0, z^{p}, 0, \cdots, 0)\}Q(z)_{put}=Q^{-1}(z) ÃQ (z) Q(z) .

This shows that p_{A_{Q}}( $\lambda$, z)=p_{A_{Q}^{-}}( $\lambda$, z) for the characteristic polynomials. Furthermore, the

expression shows that rankÃQ(0) =\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{0} , and hence we have rankÃQ(0) =\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}A_{Q}(0) . Then

by Lemma 2.1_{\}} (iii) we have \mathcal{P}_{A_{Q}}( $\lambda$)=\mathcal{P}_{A_{Q}^{-}}( $\lambda$) . On the other hand, the above expression shows

\tilde{A} $\eta$=\mathcal{A} , since J(ÃQ(O)) =J(A_{0}) . Then by Lemma 2.3 we conclude that \mathcal{P}_{\~{A}_{\mathrm{Q}}}( $\lambda$)=\mathcal{P}_{A}( $\lambda$) .

This shows that \mathcal{P}_{A_{Q}}( $\lambda$)=\prime \mathrm{p}_{A}( $\lambda$) as desired. \square 
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4.2 A_{0}‐invariant transformation and \mathrm{M}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{s} rank reduction

We study the relation between the transformation of Moser�s matrix and the associated A_{0}-
invariant transformation of A(z) for L=(p, A(z)) with J(A_{0})=(k_{1}, \cdots , k_{m},11, \cdots , 1) \in

\mathrm{N}^{m}1+m2.

An elementary matrix \mathcal{E}_{m+m}12(i,j;c)\in M_{m1+m}2(\mathbb{C})(i\neq j) is defined by

(*) \mathcal{E}_{m+m}12(i,j;c) differs from I_{m+m}12 (identity matrix) with c on the (i,j)‐position.

We omit to write m_{1}+m_{2} when it is obviously known. Let I_{k_{i}\mathrm{x}k_{j}} be a rectangular matrix

of type k_{i}\times k_{j} ( k_{i} :=1 if i>m_{1} ) defined by

(4 \cdot 1)  I_{k_{\mathrm{t}}\mathrm{x}k_{j}}=($\delta$_{\ell,m})_{\ell,m} (k_{i}\geq k_{\mathrm{j}}) , I_{k_{i}\mathrm{x}k_{j}}=($\delta$_{k_{i}-l,k_{j}-m})_{\ell,m} (k_{i}\leq k_{j}) ,

where $\delta$_{\ell,m} denotes Kronecker�s delta. Then the associated A_{0}‐invariant matrix E(i,j;c) with

\mathcal{E}(i,j;c) , which is blocked decomposed form with that of J(A_{0}) , is defined by

(*) E(i,j;c) differs from I_{N}(N=\displaystyle \sum_{j=1}^{m1}k_{j}+\mathrm{m}_{2}) with cI_{k_{i}\mathrm{x}k_{j}} on the (i,j) block.

Then we can prove the following

Lemma 4.1. Let L_{E} :=(p, A_{E}(z)) be the reduced system of A_{0} ‐invariant transformation by
E=E(i,j;c) . Then the Moser matrix \mathcal{A}_{E} of A_{E}(z) is obtained by

(i) If k_{i}>k_{j} , then \mathcal{A}_{E}=\mathcal{E}^{-1}(i,j;c)A, where \mathcal{E}^{-1}(i,j;c)=\mathcal{E}(i,j;-c) .

(ii) If k_{i}=k_{j)} then \mathcal{A}_{E}=\mathcal{E}^{-1}(i,j;c)\mathcal{A}\mathcal{E}(i,j;c) .

(iii) If k_{i}<k_{j} , then \mathcal{A}_{E}=\mathcal{A}\mathcal{E}(i,j;c) .

The properties (i) and (iii) imply that

Lemma 4.2. (a) Let a^{[i_{0},j_{0}]}\neq 0 in \mathcal{A} , and suppose k_{i_{0}}>k_{i} . Then by \mathcal{E}(i, i_{0};c) with

c=a^{[i,j\mathrm{o}]}/a^{[i_{0},j\mathrm{o}]} , we can kill (i,j_{0}) entry in \mathcal{A}_{E}=\mathcal{E}^{-1}(i, i_{0};c)\mathcal{A}.
(c) Let a^{[i_{0},j_{0}]}\neq 0 in \mathcal{A}, and suppose k_{j_{0}}>k_{j} . Then by \mathcal{E}(j_{0},j;c) with c=-a^{[i_{0},j]}/a^{[i_{0},j_{0}]},

we can kill (i_{0},j) entry in \mathcal{A}_{E}=\mathcal{A}\mathcal{E}(j_{0},j;c) .

By applying this lemma we prove a characterization of Moser reducible system by

Theorem 4.2. A system L=(p, A(z)) with J(A_{0})=(k_{1}, \cdots, k_{m}1,1, \cdots, 1)\in \mathrm{N}^{m+m2}1 is

Moser reducible if and only if by an A_{0} ‐invariant transformation the Moser matrix \dot{u} reduced

into a form, which is written again by A=(a^{[i,j]}) , so that there are two numbers (so, t_{0} ) of
s_{0}\leq m_{1}\leq t_{0}\leq m_{1}+m_{2} such that the row vectors \{\vec{a}_{i}\} of \mathcal{A} satisfy;

\vec{a}_{s0}=(0, \cdots, 0, a^{[s_{0},t_{0}+1]}, \cdots, a^{[sm+m]}0,12) ,

\bullet For  t_{0}+1\leq i\leq m_{1}+m_{2}, \vec{a}_{i}=(1 ].

To this reduced system, the Moser�s rank reduction \dot{u} done by the matrix

(4.2) diag (1, \cdots, 1, z, 1, \cdots , 1, z, \cdots, z)

where z �s are located on the position i of i=s_{0} and of t_{0}+1\leq i\leq m_{1}+m_{2}.

Proof We only give a proof of the necessity, since the converse is obvious from the

determination of Moser polynomial by Lemma 2.3. Let L=(p, A(z)) be Moser reducible

with non‐zero nilpotent A_{0}=A(0) . For the Jordan type J(A_{0})\in \mathbb{N}^{m+m}12 we assume that

k_{1}\geq k_{2}\geq\cdots\geq k_{m_{1}} without loss of generality.
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The Moser reducibility condition P_{A}( $\lambda$)\equiv 0 implies that \det \mathcal{A}= O. We take a left null

vector \ell^{\rightarrow}= (\ell_{1}, \cdots, \ell_{i_{0}-1}, 1, 0, \cdots, 0) of \mathcal{A} , i.e., \ell^{\rightarrow}\mathcal{A}=\vec{0}. We define

\displaystyle \mathcal{E}(\vec{P)}:=\prod_{i=1}^{i_{0}-1}\mathcal{E}(i_{0}, i;-\ell_{i}) , E(\tilde{P)}:=\prod_{i=1}^{i_{0}-1}E(i_{0}, i;-\ell_{i}) .

Then the reduced Moser matrix \mathcal{A}_{E(i_{\grave{j}}} , the i_{0^{-}}\mathrm{t}\mathrm{h} row vector vanishes, is obtained by

\displaystyle \mathcal{A}_{E(\vec{\ell)}}=\mathcal{E}(\vec{\ell)}^{-1}\mathcal{A}\prod_{i=i_{0}}\mathcal{E}(i_{0}, i;-\ell_{i}) .

We write it again by \mathcal{A} for the simplicity of the description below.

If 1\leq i_{0}\leq m_{1} we stop the reduction procedure here. If i_{0}>m_{1} , we may assume i_{0}=m_{1}+m_{2}

by changing the arrangement of order. We define the matrix \mathcal{A}_{1} of size m_{1}+m_{2}-1 obtained

from \mathcal{A} by removing the last row and column. By the Moser reducibility condition \mathcal{P}_{A}( $\lambda$)\equiv 0
we easily see that \det \mathcal{A}_{1}=0 (cf. Lemma 2.3). Then by applying the above operation for A_{1},
we can conclude that there is an i_{1}(\leq m_{1}+m_{2}-1) row vector of A_{1} which vanishes. Then

according to the position of i_{1} as above, we stop or continue the similar procedure. The Moser

reducibility assumption \mathcal{P}_{A}( $\lambda$)\equiv 0 allows us to continue the procedures until we get the desired

form.

The matrix form (4.2) for Moser�s rank reduction is easily seen. \square 
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