Summability of formal solutions for $\epsilon t^{r+1} \frac{\partial}{\partial t} u = f(t, u)$

Hiroshi YAMAZAWA

College of Engineering and Design, Shibaura Institute of Technology, Saitama 337-8570, JAPAN E-mail:yamazawa@shibaura-it.ac.jp

Abstract

In this paper we consider semilinear partial differential equations. For a formal solution of the equations we give the results of the summability of the formal solution with respect to the each variable t and ϵ and the both variables.

Key Words and Phrases. Formal solutions, Gevrey esitemates, Summability 2010 Mathematics Subject Classification. 30E10, 34E05, 34E20

1 Introduction

In this paper we study the following equation:

(1.1)
$$\epsilon t^{r+1} \frac{\partial}{\partial t} u = f(t, u)$$

where $(t, \epsilon) \in \mathbb{C} \times \mathbb{C}$ and f(t, u) is a function defined in a neighborhood of (0, 0). In this paper we assume the following conditions:

(A1) f(t, u) is holomorphic in a neighborhood of (0, 0),

(A2)
$$f(0,0) = 0$$
,

(A3)
$$\frac{\partial f}{\partial u}(0,0) \neq 0$$
.

Under the conditions (A1), (A2) and (A3), we have the following expansion

$$f(t,u) = \sum_{l>0} f_l(t)u^l$$
 with $f_0(0) = 0$ and $f_1(0) \neq 0$.

For the case r=0 we have some results. In [4] Balser and Kostov studied Borel summability of formal solutions for a linear system of partial differential equations and in [9] Yamazawa and Yoshino treated a semilinear system of partial differential equations. In these papers the equation (1.1) has a formal solution $\hat{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$ and the formal solution is summable in a suitable direction.

For the case r > 0 Balser and Mozo studied a linear system of partial differential equations in [3] and got the summability of formal solutions $u(t,\epsilon)$ with respect to the respective variables and two variables. In [5] Canalis, Mozo and Schäfke treated a semilinear system of partial differential equations. By their paper we have a formal power series solution of the equation (1.1) and the solution is monomial summable (ϵt^r -summable).

In this paper we will show that the equation (1.1) has formal power series solutions in t or ϵ and the solutions are summable respectively.

In Section 2 we give formal Gevrey estimates of formal solutions $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon)t^k$ of the equation (1.1) and Summability of the formal solution. In Section 3 we give formal Gevrey estimates of formal solutions $\tilde{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$ of (1.1) and Summability of the formal solution. In Section 4 we give Summability of the formal solution $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} u_{k,m}t^k\epsilon^m$ with respect to the both variables. In Section 5 we give an alternative proof of [9] for the case r=0.

2 Summability with respect to the variable t

In this section we will show that the equation (1.1) have formal power series solutions $\hat{u}(t, \epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon) t^k$ and the formal solution $\hat{u}(t, \epsilon)$ is r-summable in a direction d.

Denote the universal covering of $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ by $\widetilde{\mathbb{C}}^*$. Let us introduce s-region that is defined in [2]. Given $s = (s_1, s_2)$ with $s_1, s_2 > 0$, a region G is called an s-region, provided that it is an open and simply connected subset of polysecter in $\widetilde{\mathbb{C}}^* \times \widehat{\mathbb{C}}^*$ satisfying the following condition:

• For every $(t, \epsilon) \in G$ and every real x with $0 < x \le 1$, all points of the form $\zeta_s(x, t, \epsilon) = (x^{s_1}t, x^{s_2}\epsilon)$ belong to G.

We call G_{∞} an s-region of infinite radius, provided that, instead of the above condition, we have the followings:

For every $(t, \epsilon) \in G_{\infty}$ and every real x with $0 < x < \infty$, all points of the form $\zeta_s(x, t, \epsilon)$ belong to G_{∞} .

Let $D_{\rho} = \{t \in \mathbb{C}; |t| < \rho\}$ or $\{\epsilon \in \mathbb{C}; |\epsilon| < \rho\}$. Set $S_{d,\theta}^t := \{t \in \mathbb{C} \setminus \{0\}; |\arg \xi - d| < \theta\}$ and $S_{d,\theta}^t(\rho) = S_{d,\theta}^t \cap D_{\rho}$, further set $S_{d,\theta}^\epsilon$ and $S_{d,\theta}^\epsilon(\rho)$ as the same rules.

Let D^{ϵ} be an open and bounded domain in ϵ -plane. $\mathcal{O}(D^{\epsilon})[[t]]$ be the set of all formal power series $\hat{u}(t,\epsilon) = \sum_{k=0}^{\infty} u_{k*}(\epsilon)t^k$ with holomorphic coefficients in D^{ϵ} .

Let $\gamma > 0$. By $\mathcal{O}(D^{\epsilon})[[t]]_{1/\gamma}$ we denote the subset of $\mathcal{O}(D^{\epsilon})[[t]]$ whose coefficients satisfy with some positive constants A, B and any proper subdomein D' of D^{ϵ}

$$\sup_{\epsilon \in D'} |u_{k*}(\epsilon)| \le AB^k \Gamma\left(\frac{k}{\gamma} + 1\right) \quad \text{for} \quad k = 0, 1, \dots,$$

The elements of $\mathcal{O}(D^{\epsilon})[[t]]_{1/\gamma}$ are called of formal series of Gevrey class $1/\gamma$.

Let $u(t,\epsilon)$ be an analytic function on $S^t_{d,\theta}(\rho) \times D^\epsilon$ for some $\rho > 0$. Then $\hat{u}(t,\epsilon) \in \mathcal{O}(D^\epsilon)[[t]]_{1/\gamma}$ is called a Gevrey asymptotic expansion of $u(t,\epsilon)$ as $t \to 0$ in $S^t_{d,\theta}$, written as

$$u(t,\epsilon) \cong_{1/\gamma} \hat{u}(t,\epsilon) \quad \text{in} \quad S^t_{d,\theta} \quad \text{or} \quad u(t,\epsilon) \in A^t_{1/\gamma}(S^t_{d,\theta}(\rho) \times D^\epsilon),$$

if for any proper subdomain D' of D^{ϵ} there exist positive constants A, B such that $\hat{u}(t,\epsilon) \in \mathcal{O}(D^{\epsilon})[[t]]_{1/\gamma}$ and

$$\sup_{\epsilon \in D'} |u(t,\epsilon) - \sum_{k=0}^{N-1} u_k(\epsilon)t^k| \le AB^N \Gamma\Big(\frac{N}{\gamma} + 1\Big)|t|^N \quad \text{for } N = 1, 2, \dots$$

on $S_{d,\theta'}^t(\rho')$ for $0 < \theta' < \theta$ and $0 < \rho' < \rho$.

Definition 2.1 We say that $\hat{u}(t, \epsilon) \in \mathcal{O}(D^{\epsilon})[[t]]_{1/\gamma}$ is γ -summable with respect to the variable t in a direction $d \in \mathbb{R}$ if there exist a sector $S^t_{d,\theta}(\rho)$ with $\theta > \pi/(2\gamma)$ and a function $u(t,\epsilon)$ analytic on $S^t_{d,\theta}(\rho) \times D^{\epsilon}$ such that $u(t,\epsilon) \cong_{1/\gamma} \hat{u}(t,\epsilon)$ in $S^t_{d,\theta}$.

Remark 2.2 Let us remark that the function $u(t, \epsilon)$ is unique if it exists, in that case $u(t, \epsilon)$ is called the γ -sum of $\hat{u}(t, \epsilon)$ with respect to the variable t.

Here let us give our theorem of the summability of formal solutions $\hat{u}(t, \epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon) t^k \in \mathcal{O}(D_{\rho})[[t]]_{1/r}$ for the equation (1.1). Set $d_j = \arg \partial f / \partial u(0, 0) + 2\pi j$ for $j \in \mathbb{Z}$.

Theorem 2.3 Assume the conditions (A1), (A2) and (A3). Then the equation (1.1) has a formal power solution $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon)t^k$ and the solution $\hat{u}(t,\epsilon)$ is in $\mathcal{O}(D_{\rho})[[t]]_{1/r}$. Further the formal solution $\hat{u}(t,\epsilon)$ is r-summable with respect to the variable t in any direction d for any d and ϵ with $d_j < \arg \epsilon + rd < d_{j+1}$ and $|\epsilon| < \rho$ for a suitable constant $\rho > 0$.

Remark 2.4 For (τ, ϵ) with $d_j < \arg \epsilon + r \arg \tau < d_{j+1}$ the following holds

$$r\epsilon \tau^r - \frac{\partial f}{\partial u}(0,0) \neq 0.$$

Further the set described by $d_j < \arg \epsilon + r \arg \tau < d_{j+1}$ is an s-region.

We prove the following proposition in order to show Theorem 2.3.

Proposition 2.5 Assume the conditions (A1), (A2) and (A3). Then the equation (1.1) has a formal power solution $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon) t^k$ and there exists constants $U_{k*} \geq 0$ such that for $0 < \rho' < \rho$

(2.1)
$$\sup_{\epsilon \in D_{\rho'}} |u_{k*}(\epsilon)| \le U_{k*}(k-1)!^{1/r} \quad \text{for } k \ge 1$$

and a series $\sum_{k>1} U_{k*}t^k$ converges in a neighborhood of t=0.

Proof. Set $f_0(t) = \sum_{k=1}^{\infty} f_{0,k} t^k$ and $f_l(t) = \sum_{k=0}^{\infty} f_{l,k} t^k$ for $l \ge 1$. By substituting $\hat{u}(t, \epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon) t^k$ into the equation (1.1) we have

$$(2.2) 0 = f_{0,1} + f_{1,0}u_{1*}(\epsilon)$$

$$(k-r)\epsilon u_{k-r*}(\epsilon) = f_{0,k} + f_{1,0}u_{k*}(\epsilon) + \sum_{\substack{k_0 + k_1 = k \\ k_0, k_1 \ge 1}} f_{1,k_0}u_{k_1*}(\epsilon)$$

$$+ \sum_{l=2}^{k} \sum_{\substack{k(l) = k \\ k_1 \ge 1, 1 \le i \le l}} f_{l,k_0} \prod_{i=1}^{l} u_{k_i*}(\epsilon) \quad \text{for } k \ge 2$$

where $k(l) = k_0 + k_1 + \cdots + k_l$ and $u_{k*}(\epsilon) \equiv 0$ for $k \leq 0$. By the condition (A3) we have $\partial f/\partial u(0,0) \neq 0$. Then we obtain a formal power series solution $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon)t^k$ by the recurrence formula (2.2).

Let us give estimates for the coefficients $u_{k*}(\epsilon)$. By the first equation in (2.2) we have $u_{1*}(\epsilon) = -f_{0,1}/f_{1,0}$. Then set

$$U_{1*} = \left| \frac{f_{0,1}}{f_{1,0}} \right|.$$

Let show the estimates for $k \geq 2$ on induction. By the induction's assumption and

$$\prod_{i=1}^{l} (k_i - 1)! \le (k_1 + \dots + k_l - l)! \le (k - l)!$$

for k(l) = k and $k_i \ge 1$ $(i \ge 1)$, we obtain

$$(2.3) |f_{1,0}U_{k*}(\epsilon)| \leq \left\{ |f_{0,k}| + \rho_0 U_{k-r*} + \sum_{\substack{k_0 + k_1 = k \\ k_0, k_1 \geq 1}} |f_{1,k_0}| U_{k_1*} + \sum_{l=2}^k \sum_{\substack{k(l) = k \\ k_i \geq 1, i \geq 1}} |f_{l,k_0}| \prod_{i=1}^l U_{k_i*} \right\}$$

$$\times (k-1)!^{1/r}$$

for $\epsilon \in D_{\rho'}$. Set

$$(2.4) U_{k*} := |f_{1,0}|^{-1} \Big\{ |f_{0,k}| + \rho' U_{k-r*} + \sum_{\substack{k_0 + k_1 = k \\ k_0, k_1 \ge 1}} |f_{1,k_0}| U_{k_1*} + \sum_{l=2}^k \sum_{\substack{k(l) = k \\ k > 1, i > 1}} |f_{l,k_0}| \prod_{i=1}^l U_{k_i*} \Big\}.$$

Then we obtain the estimate (2.1).

Let us show that $\sum_{k=1}^{\infty} U_{k*} t^k$ converges in a neighborhood of t=0. We consider the following equation:

(2.5)
$$|f_{1,0}|U(t) = \sum_{k>1} |f_{0,k}|t^k + \rho_0 t^r U(t) + \sum_{l>2} \sum_{k>0} |f_{l,k}|t^k \{U(t)\}^l.$$

By r > 0 and Implicit function theorem, the equation (2.5) has a holomorphic solution $U(t) = \sum_{k=1}^{\infty} U_{k*} t^k$ in a neighborhood of t = 0 and U_{k*} satisfies the relation (2.4). Q.E.D.

Definition 2.6 For $\hat{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k*}(\epsilon)t^k$ we define the formal Borel transform $(\hat{\mathcal{B}}_{\gamma}\hat{u})(\tau,\epsilon)$ by

$$(\hat{\mathcal{B}}_{\gamma}\hat{u})(\tau,\epsilon) := \sum_{k=1}^{\infty} u_{k*}(\epsilon) \frac{\tau^{k-\gamma}}{\Gamma(k/\gamma)}.$$

Then γ -summability of $\hat{u}(t,x) \in \mathcal{O}(S_{d,\theta}^{\epsilon}(\rho))[[t]]_{1/\gamma}$ can be characterized by the following Proposition.

Proposition 2.7 (L.M.S. [7]) The formal power series $\hat{u}(t, \epsilon) \in \mathcal{O}(S_{d,\theta}^{\epsilon}(\rho))[[t]]_{\gamma}$ is γ -summable with respect to the variable t in a direction d if the following two properties hold:

- 1. The power series $\tau^{\gamma}u_{B}(\tau,\epsilon) := \tau^{\gamma}(\hat{\mathcal{B}}_{\gamma}\hat{u})(\tau,\epsilon)$ converges on $D_{\rho'} \times S_{d,\theta}^{\epsilon}(\rho)$.
- 2. Let S^{ϵ} be any proper subdomain of $S^{\epsilon}_{d,\theta}(\rho)$. There exists a $\theta > 0$ such that for any $\epsilon \in \overline{S^{\epsilon}}$ the function $u_B(\tau,\epsilon)$ can be continued with respect to τ into the sector $S^{\tau}_{d,\theta}$. Moreover for any $0 < \theta' < \theta$ there exist constants C, K > 0 such that

$$\sup_{\epsilon \in S^{\epsilon}} |u_B(\tau, \epsilon)| \le C e^{K|\tau|^{\gamma}} \quad for \quad \tau \in S^{\tau}_{d, \theta'}.$$

Then $(\mathcal{L}_{\gamma,d}u_B)(t,\epsilon)$ is γ -sum with respect to the variable t in a direction d of $\hat{u}(t,\epsilon)$, where $\mathcal{L}_{\gamma,d}$ is the Laplace transform that is defined by

$$(\mathcal{L}_{\gamma,d}\phi)(t,\epsilon) := \int_0^{\infty \epsilon^{id}} \exp\big(-ig(rac{ au}{t}ig)^{\gamma}ig)\phi(au,\epsilon)d au^{\gamma}.$$

Let us seek for the equation that is satisfied with $u_B(\tau, \epsilon)$.

Definition 2.8 Let $\phi_i(\tau, \epsilon) \in \mathcal{O}(S_{d,\theta}^{\tau} \times D)$, i = 1, 2, satisfy $|\phi_i(\tau, \epsilon)| \leq C|\tau|^{\delta - \gamma}$ for $\delta > 0$ where D is an open domain. Then γ -convolution of $\phi_1(\tau, \epsilon)$ and $\phi_2(\tau, \epsilon)$ is defined by

$$(\phi_1 *_{\gamma} \phi_2)(\tau, \epsilon) = \int_0^{\tau} \phi_1((\tau^{\gamma} - \eta^{\gamma})^{1/\gamma}, \epsilon) \phi_2(\eta, \epsilon) d\eta^{\gamma}.$$

Set $u_B(\tau, \epsilon)^{l*_r} = \underbrace{u_B(\tau, \epsilon) *_r \cdots *_r u_B(\tau, \epsilon)}_{l}$. By operating $\hat{\mathcal{B}}_r$ to the equation (1.1), we get the following convolution equation:

(2.6)
$$(\epsilon r \tau^r - f_{1,0}) u_B(\tau, \epsilon) = f_{0,B}(\tau) + \sum_{l \ge 1} f_{l,B}(\tau) *_r u_B(\tau, \epsilon)^{l *_r}$$

where
$$f_{1,B}(\tau) = (\hat{\mathcal{B}}_r(f_1 - f_{1,0}))(\tau)$$
 and $f_{l,B}(\tau) = (\hat{\mathcal{B}}_r f_l)(\tau)$ for $l \neq 1$.

Let us solve the equation (2.6). We construct $u_B = \sum_{k=1}^{\infty} u_{B,k}$ as follows;

$$(\epsilon r \tau^r - f_{1,0})u_{B,1} = f_{0,B}(\tau)$$
 and for $k \ge 2$

(2.7)
$$(\epsilon r \tau^r - f_{1,0}) u_{B,k} = f_{1,B}(\tau) *_r u_{B,k-1} + \sum_{l=2}^k \sum_{k^*(l)=k} f_{l,B}(\tau) *_r u_{B,k_1} *_r \cdots *_r u_{B,k_l}$$

where $k^*(l) = k_1 + \cdots + k_l$.

Set $G_j = \{d_j < \arg \epsilon + r \arg \tau < d_{j+1} \text{ and } |\epsilon| < \rho\}$. Then we have:

Proposition 2.9 There exist constants $U_{B,k} \geq 0$ such that

$$|u_{B,k}| \le U_{B,k} \frac{|\tau|^{k-r}}{\Gamma(k/r)} e^{c|\tau|^r} \quad on \quad G_j$$

for some c>0 and a series $\sum_{k=1}^{\infty} U_{B,k} t^k$ converges in a neighborhood of t=0.

In order to show Proposition 2.9 we will use the following lemma:

Lemma 2.10 ([8], Lemma 1.4, p.516) Assume that the functions $\phi_i(\tau, \epsilon) \in \mathcal{O}(G_j)$, i = 1, 2, satisfy

$$|\phi_i(\tau, \epsilon)| \le C_i \frac{|\tau|^{s_i - \gamma}}{\Gamma(s_i/\gamma)} e^{c|\tau|^{\gamma}} \quad on \quad G_j$$

for i = 1, 2. Then convolution $(\phi_1 *_{\gamma} \phi_2)(\tau, \epsilon)$ satisfies

$$|(\phi_1 * \phi_2)(\tau, \epsilon)| \le C_1 C_2 \frac{|\tau|^{s_1 + s_2 - \gamma}}{\Gamma((s_1 + s_2)/\gamma)} e^{c|\tau|^{\gamma}} \quad on \quad G_j.$$

Proof of Proposition 2.9. We have that the following estimate holds

$$|\epsilon r \tau^r - f_{1,0}| \ge K_1^{-1} \quad \text{on } G_j$$

and

(2.10)
$$|f_{l,B}| \le \begin{cases} F_{l,B}|\tau|^{1-r}e^{c|\tau|^r} & l = 0, 1\\ F_{l,B}e^{c|\tau|^r} & l \ge 2 \end{cases}$$

where $\sum_{l\geq 0} F_{l,B}t^l$ converges in a neighborhood of t=0. Let us give estimates on $u_{B,k}$. By the recurrence formula (2.7) and the estimate (2.9) we have

$$|u_{B,1}| \le U_{B,1} |\tau|^{1-r} e^{c|\tau|^r}$$
 on G_j

where $U_{B,1} = K_1 F_{0,B}$. For $k \ge 2$ we show the estimate (2.8) on induction. By the induction's assumptions and Lemma 2.10 we have

$$(2.11) \qquad |\epsilon r \tau^r - f_{1,0}| |u_{B,k}| \le F_{1,B} U_{B,k-1} \frac{|\tau|^{k-r}}{\Gamma(k/r)} e^{c|\tau|^r} + \sum_{l=2}^k \sum_{\substack{k^*(l)=k}} F_{l,B} \prod_{i=1}^l U_{B,k_i} \frac{|\tau|^{k-r}}{\Gamma(k/r)} e^{c|\tau|^r}.$$

Then by setting

(2.12)
$$U_{B,k} = K_1 \left\{ F_{1,B} U_{B,k-1} + \sum_{l=2}^k \sum_{k^*(l)=k} F_{l,B} \prod_{i=1}^l U_{B,k_i} \right\}$$

we get the estimates

$$|u_{B,k}| \le U_{B,k} \frac{|\tau|^{k-r}}{\Gamma(k/r)} e^{c|\tau|^r} \quad \text{on } G_j.$$

Let us show that $\sum_{k=1}^{\infty} U_{B,k} t^k$ converges in a neighborhood of t=0. We consider the following equation:

(2.14)
$$U(t) = tU_{B,1} + K_1 \left\{ tF_{1,B}U(t) + \sum_{l=0}^{\infty} F_{l,B} \{ U(t) \}^l \right\}.$$

By Implicit function theorem, the equation (2.14) has a holomorphic solution $U(t) = \sum_{k=1}^{\infty} U_{B,k} t^k$ in a neighborhood of t = 0 and $U_{B,k}$ satisfies the relation (2.12). Q.E.D.

We will show the uniqueness of solution near $\tau=0$ for the equation (2.6). Let u_B and v_B be solutions of the convolution equation (2.6). Then $w_B:=u_B-v_B$ satisfies the following convolution equation:

(2.15)
$$(\epsilon r \tau^r - f_{1,0}) w_B = f_{1,B} *_r w_B + \sum_{l=2}^{\infty} f_{l,B} *_r w_B^{l*_r}.$$

We can get that there exist positive constants A and B such that

(2.16)
$$|w_B| \le AB^n \frac{|\tau|^{n-r}}{\Gamma(n/r)} e^{c|\tau|^r} \quad \text{for } n \ge 1$$

as the same way as in the proof of Proposition 2.9. By letting $n \to \infty$ we obtain $u_B = v_B$. Q.E.D.

3 Summability with respect to the variable ϵ

In this section we will show that the equation (1.1) has a formal solution $\tilde{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$ and the formal solution is 1-summable in a direction d. We will use the same notations with respect to the variable ϵ as those with respect to the variable t in Section 2.

Theorem 3.1 Assume the conditions (A1), (A2) and (A3). Then the equation (1.1) has a formal power series solution $\tilde{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$ and the solution $\tilde{u}(t,\epsilon)$ is in $\mathcal{O}(D_{\rho})[[\epsilon]]_1$. Further the formal solution $\tilde{u}(t,\epsilon)$ is 1-summable with respect to the variable ϵ in a direction d for any t with $d_j < d + r \arg t < d_{j+1}$ and $|t| < \rho$.

Proof. Let us show that (1.1) has a formal power series solution. By substituting $\tilde{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$ into (1.1) we have

(3.1)
$$t^{r+1} \frac{\partial}{\partial t} u_{*m-1}(t) = f_1(t) u_{*m}(t) + \sum_{l=2}^m \sum_{\substack{m^*(l)=m \\ m>1}} f_l(t) \prod_{i=1}^l u_{*m_i}(t).$$

By the condition (A3) we have $f_1(t) \neq 0$ for $|t| \ll 1$. By the conditions (A2), (A3) and Implicit function theorem for the first relation in (3.1), we get a holomorphic function $u_{*0}(t)$ in a neighborhood of t=0 with $u_{*0}(0)=0$. For $m \geq 1$ we can get $u_{*m}(t)$ from the second relation in (3.1) by $f_1(t) \neq 0$. Then we have a formal solution $\tilde{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*m}(t)\epsilon^m$

Let us give estimates to the coefficients $u_{*m}(t)$. Set $a(t) = u_{*0}(t)$ and $\tilde{u}_1(t, \epsilon) = \tilde{u}(t, \epsilon) - u_{*0}(t)$. Then $\tilde{u}_1(t, \epsilon)$ is a solution of the following equation:

(3.2)
$$f_1(t)u_1 = \epsilon t^{r+1} \frac{\partial}{\partial t} a(t) + \epsilon t^{r+1} \frac{\partial}{\partial t} u_1 - u_1 \int_0^1 \frac{\partial f_2}{\partial u} (t, su_1 + a(t)) ds$$

where $f_2(t, u) = \sum_{l=2}^{\infty} f_l(t)u^l$.

By substituting $\tilde{u}_1(t,\epsilon) = \sum_{m=1}^{\infty} u_{*m}(t)\epsilon^m$ into the equation (3.2) and setting $u_{*m}(t)/m! = v_m(t)$ we get

(3.3)
$$f_1(t)v_1(t) = t^{r+1} \frac{\partial}{\partial t} a(t) \quad \text{for } m \ge 2$$

$$m! f_1(t)v_m(t) = (m-1)! t^{r+1} \frac{\partial}{\partial t} v_{m-1}(t) - \sum_{l=2}^m f_l(t) \sum_{l'=1}^l \frac{l!}{l'!(l-l')!} \sum_{m^*(l')=m} \prod_{i=1}^{l'} m_i! v_{m_i}(t) a^{l-l'}$$

where $m(l'+1)=m_1+\cdots+m_{l'+1}$. We can suppose $|f_1(t)|\geq K_1^{-1}$ for $|t|\ll 1$. Then we have

$$|v_{1}(t)| \leq K_{1}|t^{r+1}\frac{\partial}{\partial t}a(t)| \quad \text{for } m \geq 2$$

$$(3.4) \quad m|v_{m}(t)| \leq K_{1}\Big\{|t^{r+1}\frac{\partial}{\partial t}v_{m-1}(t)| + \sum_{l=2}^{m}|f_{l}(t)|\sum_{l'=1}^{l}\frac{l!}{l'!(l-l')!}\sum_{m(l')=m}\prod_{i=1}^{l'}m_{i}|v_{m_{i}}(t)a^{l-l'}|\Big\}.$$

Let us take T, Y_0 and Y_1 with $0 < T \ll 1$,

$$Y_0 = \sup_{t \in D_T} |a(t)| \quad \text{and} \quad Y_1 = \max\{\sup_{t \in D_T} |v_1(t)|, \sup_{t \in D_T} |(\partial/\partial t)v_1(t)|\}$$

and consider the following equation:

$$(3.5) Y = Y_1 \epsilon + \frac{K_1}{T - r} \Big\{ e \epsilon Y + Y \int_0^1 \frac{\partial F_2}{\partial u} (sY + Y_0) ds \Big\},$$

where $F_2 = \sum_{l=2}^{\infty} \{F_l/(T-r)^l\} u^l$ and $F_l = \sup_{t \in D_T} |f_l(t)|$ for 0 < r < T. By Implicit function theorem, the equation (3.5) has a holomorphic solution $Y = \sum_{m=1}^{\infty} Y_m \epsilon^m$ and with a form

$$Y_m = \frac{C_m}{(T-r)^{m-1}}$$
 $(C_1 = Y_1, C_m > 0).$

Then we have;

Proposition 3.2 For any $m \ge 1$ we have

(3.6)
$$m \sup_{t \in D_n} |v_m(t)| \le Y_m \quad and \sup_{t \in D_n} \left| \frac{\partial}{\partial t} v_m(t) \right| \le eY_m.$$

In order to show Proposition 3.2 we will use the following lemma:

Lemma 3.3 (Nagumo's lemma) If a holomorphic function u(t) in D_T satisfies

$$\sup_{t \in D_r} |u| \le \frac{C}{(T-r)^p} \quad for \ 0 < r < T$$

then we have

$$\sup_{t \in D_r} \left| \frac{\partial}{\partial t} u \right| \le \frac{Ce(p+1)}{(T-r)^{p+1}} \quad \text{for } 0 < r < T.$$

For the proof, see Hörmander ([6], lemma 5.1.3).

Proof of Proposition 3.2. For m=1 the estimate (3.6) holds by the rule to take Y_1 . Let us show the estimate (3.6) for $m \geq 2$ on induction. By substituting $Y = \sum_{m=1}^{\infty} Y_m \epsilon^m$ into the equation 3.5 we have

$$(3.7) Y_m = \frac{K_1}{T-r} \Big\{ eY_{m-1} + \sum_{l=2}^m \frac{F_l}{(T-r)^l} \sum_{l'=1}^l \frac{l!}{l'!(l-l')!} \sum_{m^*(l')=m} \prod_{i=1}^{l'} Y_{m_i} Y_0^{l-l'} \Big\}$$

for $m \ge 2$. By the induction's assumptions, the recurrence formulas (3.4) and (3.7), the following holds

$$m \sup_{t \in D_r} |v_m(t)| \le (T - r)Y_m \le Y_m.$$

Therefore we get the first estimate in the estimate 3.6.

Let us show the second estimate. By

$$m \sup_{t \in D_r} |v_m(t)| \le (T-r)Y_m = \frac{C_m}{(T-r)^{m-2}}$$

and Lemma 3.3 we have

$$\sup_{t \in D_r} \left| \frac{\partial}{\partial t} v_m(t) \right| \le \frac{1}{m} \frac{e(m-1)C_m}{(T-r)^{m-1}} \le eY_m.$$

Hence we can get the second estimate in the estimate 3.6. Q.E.D.

Here we will show that the formal solution $\hat{u}(t,\epsilon)$ is 1-summable. Let us give one definition and one proposition in [1] that are needed in order to show Theorem 3.1.

Definition 3.4 Let $\gamma > 0$, and G be a bounded s-region. $A_{\gamma,0}^{\epsilon}(G)$ is the set of all function $f(t,\epsilon) \in \mathcal{O}(G)$ such that for any proper subdomains $S^t \times S^{\epsilon}$ of G

(3.8)
$$\sup_{\epsilon \in S^t} |f(t,\epsilon)| \le C \exp\left(-c_0|\epsilon|^{-\gamma}\right)$$

where c_0 depends on S^{ϵ} where S^t and S^{ϵ} are sectors.

Proposition 3.5 ([1], Proposition 18, p.121) Let $\gamma > 0$, any function u, holomorphic in S, be given. Then $u(\epsilon) \in A_{\gamma}(S)$ is equivalent to the existence of a normal covering S_0, \ldots, S_m , with $S_0 = S$, and function u_j , holomorphic in S_j , $0 \le j \le m$, with $u_0 = u$ and $u_m(\epsilon e^{-2\pi i})$, $\epsilon \in S_m$, so that all u_j are bounded at the origin, and

$$u_{i-1}(\epsilon) - u_i(\epsilon) \in A_{\gamma,0}(S_{i-1} \cap S_i)$$
 for $1 \le j \le m$.

Proof of Theorem 3.1. Let us take a number d_i^* with

$$d_j < \arg \epsilon + rd_j^* < d_{j+1}$$

and set

$$G_j^* = \{d_j - \pi/2 < \arg \epsilon + r \arg t < d_{j+1} + \pi/2\}$$

Then we define the r-sum $u_j(t,\epsilon)$ of $\hat{u}(t,\epsilon)$ with respect to the variable t in a direction d_j^* in Section 2 by

(3.9)
$$u_j(t,\epsilon) = \int_0^{\infty} u_B(\tau,\epsilon) e^{-(\tau/t)^r} d\tau^r.$$

Remark 3.6 By changing a direction d_j^* with $d_j < \arg \epsilon + r d_j^* < d_{j+1}$, $u_j(t, \epsilon)$ is holomorphic on G_j with $|t| < \rho$ and $|\epsilon| < \rho$.

Proposition 3.7 $u_j(t,\epsilon) - u_{j-1}(t,\epsilon) \in A_{1,0}^{\epsilon}(G_j^* \cap G_{j-1}^*)$ holds, that is, there exist positive constants K and C such that

$$(3.10) |u_j(t,\epsilon) - u_{j-1}(t,\epsilon)| \le Ke^{-c|\epsilon|^{-1}} for (t,\epsilon) \in G_j^* \cap G_{j-1}^*.$$

Remark 3.8

$$G_j^* \cap G_{j-1}^* = \{d_j - \pi/2 < \arg \epsilon + r \arg t < d_j + \pi/2\} \Rightarrow \Re(f_{1,0}/(r\epsilon t^r)) > 0$$

Proof. We have

(3.11)
$$u_j(t,\epsilon) - u_{j-1}(t,\epsilon) = \int_{\mathcal{C}} u_B(\tau,\epsilon) e^{-(\tau/t)^r} d\tau^r$$

where a path C is a circle with centered at $f_{1,0}$ and any positive radius in $\eta = r\epsilon \tau^r$ plane. By a change variable $\eta = r\epsilon \tau^r$ we get

$$(3.12) u_j(t,\epsilon) - u_{j-1}(t,\epsilon) = \frac{1}{\epsilon r} \int_{\mathcal{C}} u_B \left(\left(\frac{\eta}{\epsilon r} \right)^{1/r}, \epsilon \right) e^{-\eta/(\epsilon r t^r)} d\eta.$$

By Residue theorem and Lebesgue's dominated convergence theorem, we have

$$(3.13) \qquad \int_{\mathcal{C}} u_B \left(\left(\frac{\eta}{\epsilon r} \right)^{1/r}, \epsilon \right) e^{-\eta/(t\epsilon t^r)} d\eta = 2\pi \sqrt{-1} f_{0,B} \left(\left(\frac{f_{1,0}}{\epsilon r} \right)^{1/r} \right) e^{-f_{1,0}/(r\epsilon t^r)}.$$

By (3.13) and Remark 3.8 we obtain Proposition 3.7. Q.E.D.

By Proposition 3.7 and Proposition 3.5 we have $u = u_0(t, \epsilon) \in A_1(G_0)$ in ϵ . We can get an opening of arg ϵ bigger than π . By Definition 2.1 we have that $u_0(t, \epsilon)$ is 1-sum of $\tilde{u}(t, \epsilon)$. Q.E.D.

4 Summability with respect to the both variables

In this section we will study the summability for the formal solution $\bar{u}(t,\epsilon) = \sum_{k\geq 1} \sum_{m\geq 0} u_{k,m} t^k \epsilon^m$ of the equation (1.1) with respect to the both variables (t,ϵ) .

Let us introduce the definition of the summability of the both variables by Balser ([2]).

We define $\mathcal{H}^{(s)}(G_{\infty})$ to be the set of all holomorphic function $f(t,\epsilon)$ on G_{∞} and have the following property: For every element of $\mathcal{O}:=\{(t,\epsilon)\in G_{\infty} \text{ with } |t|^2+|\epsilon|^2=1\}$ there exist constants c,K>0 such that

$$|f(\zeta_s(x,t,\epsilon))| \le ce^{Kx} \quad \text{for } x > 0.$$

Let $s = (s_1, s_2)$ be $s_1, s_2 > 0$ and set $k = (1/s_1, 1/s_2)$ and

$$\hat{\mathcal{B}}_s \bar{u}(t,\epsilon) = \sum_{k \geq 1, m \geq 0} u_{k,m} \frac{t^{k-r} \epsilon^{m-1}}{\Gamma(s_1 k + s_2 m)}.$$

Definition 4.1 We say that $\bar{u}(t,\epsilon) = \sum_{k\geq 1, m\geq 0} u_{k,m} t^k \epsilon^m$ is k-summable with direction \mathcal{O} if the following two statements hold;

- 1. $t^r \in \hat{\mathcal{B}}_s \bar{u}(t, \epsilon)$ converges in a neighborhood of $(t, \epsilon) = (0, 0)$.
- 2. $\hat{\mathcal{B}}_s \bar{u}(t,\epsilon)$ can be continued into the region G_{∞} , and its continuation is in $\mathcal{H}^{(s)}(G_{\infty})$.

Then the following $u(t, \epsilon)$ is k-sum of $\bar{u}(t, \epsilon)$ is direction \mathcal{O} :

$$u(t,\epsilon) = t^r \epsilon \int_0^\infty e^{-\eta} v(\eta^{s_1}t,\eta^{s_2}\epsilon) d\eta = \mathcal{L}_s v(t,\epsilon).$$

4.1 Formal solution

Here let us show that equation (1.1) has a formal solution $\bar{u}(t,\epsilon) = \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} u_{k,m} t^k \epsilon^m$ and give estimates for the solution.

Theorem 4.2 Assume the conditions (A1), (A2) and (A3). Then (1.1) has a formal power solution $\bar{u}(t,\epsilon) = \sum_{k=1}^{\infty} \sum_{m=0}^{\infty} u_{k,m} t^k \epsilon^m$ and the solution satisfies $t^r \epsilon y(t,\epsilon) = t^r \epsilon \hat{\mathcal{B}}_s \bar{u}(t,\epsilon)$ converges in a neighborhood of $(t,\epsilon) = (0,0)$ with $s_1 r + s_2 = 1$ and $s_1, s_2 > 0$.

Proof. By Proposition 2.1 and 3.4 we can prove this theorem.

4.2 k-summability

Here we will show that the formal solution $\bar{u}(t,\epsilon)$ is k-summable in a direction. The proof follows that in Balser and Mozo [3].

Theorem 4.3 Assume the conditions (A1), (A2) and (A3). Then the formal solution $\bar{u}(t,\epsilon)$ in Theorem 4.2 is k-summable in direction \mathcal{O} .

Let $u_i(t,\epsilon)$ be defined by (3.9) and $s=(s_1,s_2)$ with $s_1,s_2>0$ and $s_1r+s_2=1$. Set

$$(4.2) y_1(t,\epsilon) := \frac{t^{-r}\epsilon^{-1}}{2\pi i} \int_{\Gamma} e^{\tau} u_j(\tau^{-s_1}t,\tau^{-s_2}\epsilon) d\tau$$

where the path $\Gamma = \Gamma(\delta, R)$ is as follows; form infinity along a ray $\arg \tau = -(\pi + \delta)/2$ to a circle of radius R > 0 about the origin, along the circle to the ray $\arg \tau = (\pi + \delta)/2$, and along that ray back to infinity.

Remark 4.4 We have that the function $y_1(t,\epsilon)$ is holomorphic in $d_j + \delta/2 < r \arg t + \arg \epsilon < d_{j+1} - \delta/2$ since the function $u_j(t,\epsilon)$ is holomorphic on G_j .

Proposition 4.5 Assume the conditions (A1), (A2) and (A3). We have $y_1(t, \epsilon) = y(t, \epsilon)$ on $d_j + \delta/2 < r \arg t + \arg \epsilon < d_{j+1} - \delta/2$ with $|t^r \epsilon| < T$ for a sufficiently small T > 0 where $y(t, \epsilon)$ is in Theorem 4.2.

Let $u_i(t, \epsilon)$ be holomorphic on $d_j + \delta/2 < r \arg t + \arg \epsilon < d_{j+1} - \delta/2$ with $|t^r \epsilon| < T$ for a sufficiently small T > 0 for i = 1, 2. Then we define s-convolution $u_1 *_s u_2$ by

$$u_1(t,\epsilon) *_s u_2(t,\epsilon) := t^r \epsilon \int_0^1 u_1(au^{s_1}t, au^{s_2}\epsilon) u_2((1- au)^{s_1}t,(1- au)^{s_2}\epsilon) d au.$$

Then we have the following lemma:

Lemma 4.6

$$\mathcal{L}_s u_1 \mathcal{L}_s u_2 = \mathcal{L}_s (u_1 *_s u_2).$$

Let seek out the equation that $y_1(t, \epsilon)$ satisfies.

Lemma 4.7 Set

$$u(t,\epsilon) = t^r \epsilon \int_0^\infty e^{-\eta} v(\eta^{s_1} t, \eta^{s_2} \epsilon) d\eta.$$

Then we have

$$\begin{split} \epsilon t^{r+1} \frac{\partial}{\partial t} u(t,\epsilon) &= \epsilon t^r \int_0^\infty e^{-\eta} \frac{1}{s_1} (t \eta^{s_1})^r (\epsilon \eta^{s_2}) v(\eta^{s_1} t, \eta^{s_2} \epsilon) d\eta \\ &- \epsilon t^r \epsilon t^r \int_0^\infty \frac{s_2}{s_1} e^{-\eta} \frac{\partial}{\partial \epsilon} (\epsilon v(\eta^{s_1} t, \eta^{s_2} \epsilon)) d\eta. \end{split}$$

Proof. By

$$\frac{\partial}{\partial \eta}(v(t\eta^{s_1},\epsilon\eta^{s_2})) = s_1t\eta^{s_1-1}\frac{\partial}{\partial t}v + s_2\epsilon\eta^{s_2-1}\frac{\partial}{\partial \epsilon}v$$

we can prove Lemma 4.7. Q.E.D.

Set $f_{1,s}(\tau) = (\hat{\mathcal{B}}_s(f_1 - f_{1,0}))(\tau)$ and $f_{l,s}(\tau) = (\hat{\mathcal{B}}_s f_l)(\tau)$ for $l \neq 1$. By Lemma 4.7 $y_1(t, \epsilon)$ satisfies the following equation:

$$(4.3) \qquad \left(\frac{1}{s_1}\epsilon t^r - f_{1,0}\right)y_1(t,\epsilon) = f_{0,s}(t) + \sum_{l>1} f_{l,s}(t) *_s y_1(t,\epsilon)^{l_{*s}} + \frac{s_2}{s_1}(1) *_s \left(\frac{\partial}{\partial \epsilon} \epsilon y_1(t,\epsilon)\right),$$

where $y_1(t,\epsilon)^{l_{*s}} = \underbrace{y_1(\tau,\epsilon) *_s \cdots *_s y_1(\tau,\epsilon)}_{l}$. Further $y(t,\epsilon)$ also satisfies (4.3).

Proof of Proposition 4.5.

Set $y_0(t,\epsilon) = y_1(t,\epsilon) - y(t,\epsilon)$. Then $y_0(t,\epsilon)$ satisfies

(4.4)
$$\left(\frac{1}{s_1}\epsilon t^r - f_{1,0}\right) y_0(t,\epsilon) = \frac{s_1}{s_2} (1) *_s \left(\frac{\partial}{\partial \epsilon} \epsilon y_0(t,\epsilon)\right) + f_{1,s}(t) *_s y_0(t,\epsilon)$$
$$+ \sum_{l>2} f_{l,s}(t) *_s y_0(t,\epsilon) *_s \int_0^1 (y_0 \tau + y)^{(l-1) *_s}.$$

By the equation (4.4) there exist positive constant

$$|y_0(t,\epsilon)| \le AB^n |t^r \epsilon|^n$$
 for any $n = 0, 1, \cdots$

on $d_j + \delta/2 < r \arg t + \arg \epsilon < d_{j+1} - \delta/2$ with $|t^r \epsilon| < T$. By letting $k \to \infty$ we get $y_1(t, \epsilon) = y(t, \epsilon)$. Q.E.D

Proof of Theorem 4.3.

Let us show $|y_1(\eta^{s_1}t,\eta^{s_2}\epsilon)| \leq ce^{K|\eta|}$. By a transform $\tau = z\nu$ with $\nu = rt^r\epsilon$, we have

$$(4.5) y_1(t,\epsilon) := \frac{1}{2\pi i} \int_{\Gamma'} e^{z\nu} u_j((z\nu)^{-s_1} t, (z\nu)^{-s_2} \epsilon) \frac{dz}{z}$$

where the new path Γ' is of the same shape as Γ , with two radial pieces along rays $\arg z = \alpha$, $\arg z = \beta$, and $\beta - \alpha > \pi$. By $((z\nu)^{-s_1}t)^r(z\nu)^{-s_2}\epsilon = (rz)^{-1}$ the integrand (4.5) is well defined for the radius R of the circular section of Γ' is sufficiently large and

$$d_j - \frac{\pi}{2} < -\beta < -\alpha < d_{j+1} + \frac{\pi}{2}.$$

By a transform $\tau \mapsto \eta \tau$ with $\eta > 0$ (4.5) is changed into

$$y_1(\eta^{s_1}t, \eta^{s_2}\epsilon) := \frac{1}{2\pi i} \int_{\Gamma'} e^{\eta \tau} u_j(\tau^{-s_1}t, \tau^{-s_2}\epsilon) \frac{d\tau}{\tau}.$$

By Proposition 3.7, we have

$$|y_1(\eta^{s_1}t, \eta^{s_2}\epsilon)| \le ce^{R(t,\epsilon)\eta}$$

with $R(t,\epsilon) = \max\{(|t|/\rho)^{1/s_1}, \ (|\epsilon|/\rho)^{1/s_2}\}$. Then

(4.6)
$$u(t,\epsilon) = \int_0^\infty e^{-\eta} y_1(\eta^{s_1}t, \eta^{s_2}\epsilon) d\eta$$

converges on G_j . Q.E.D.

Remark 4.8 In fact the formula (4.6) can be defined by

$$u(t,\epsilon) = \int_0^{\infty e^{i\alpha}} e^{-\eta} y_1(\eta^{s_1} t, \eta^{s_2} \epsilon) d\eta$$

with $d_i < \alpha + r \arg t + \arg \epsilon < d_{i+1}$ and $\cos \alpha > R(t, \epsilon)$.

5 Alternative proof of the case r = 0

In this section we will give an alternative proof of the result of the summability of formal solutions for the following equation.

(5.1)
$$\epsilon t \frac{\partial}{\partial t} u = f(t, u).$$

Let us consider a formal solution $\hat{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*,m}(t)\epsilon^m$ of (5.1).

Theorem 5.1 Assume the conditions (A1), (A2) and (A3). Then the equation (5.1) has a formal solution $\hat{u}(t,\epsilon) = \sum_{m=0}^{\infty} u_{*,m}(t)\epsilon^m \in \mathcal{O}(D_R)[[\epsilon]]_1$ Further the formal solution $\hat{u}(t,\epsilon)$ is Borel summable in a direction $d \neq \arg(\partial f/\partial u)(0,0)$.

Proof. We will show that the equation (5.1) has a formal solution $\tilde{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k,*}(\epsilon) t^k$ and the solution $\tilde{u}(t,\epsilon)$ is holomorphic in a suitable domain.

Set

$$G = \Big\{ \epsilon \in \mathbb{C} \setminus \{0\} : \big| \arg \frac{\partial f}{\partial u}(0,0) + \pi - \arg \epsilon \big| < \pi - \delta \Big\}.$$

For $\tilde{u}(t,\epsilon)$ we have the following proposition.

Proposition 5.2 Assume the conditions (A1), (A2) and (A3). Then (5.1) has a formal solution $\tilde{u}(t,\epsilon)$. Further the solution $\tilde{u}(t,\epsilon)$ is holomorphic on $D_R \times G$ for some R > 0. Then set $u_G(t,\epsilon) := \tilde{u}(t,\epsilon)$.

Proof. Set $f_l(t) = \sum_k f_{l,k} t^k$. By substituting $\tilde{u}(t,\epsilon) = \sum_{k=1}^{\infty} u_{k,*}(\epsilon) t^k$ into (5.1) we have

$$(\epsilon - f_{1,0})u_{1,*}(\epsilon) = f_{0,1}$$

(5.2)
$$(\epsilon k - f_{1,0}) u_{k,*}(\epsilon) = f_{0,k} + \sum_{k_0 + k_1 = k} f_{1,k_0} u_{k_1,*}(\epsilon) + \sum_{k(l) = k} f_{l,k_0} \prod_{i=1}^{l} u_{k_i,*}(\epsilon).$$

Remark 5.3 We have

$$|(\epsilon k - f_{1,0})^{-1}| \le C \quad on \ G.$$

Then we can show Theorem 5.2. Q.E.D.

It is sufficient to show that the following proposition holds in order to prove Theorem 5.1.

Proposition 5.4 We have

$$\left| \left(\frac{\partial}{\partial \epsilon} \right)^n u_G(t, \epsilon) \right| \le AB^n (n!)^2 \quad on \ D_R \times G.$$

Proof. By Proposition 5.4 and the argument of G is greater than π we can show that $u_G(t, \epsilon)$ is the sum of the formal solution $\hat{u}(t, \epsilon)$ in Theorem 5.1.

Let us show Proposition 5.4. The proof is similar to that of Balser and Kostov [4]. Set $u_n(t,\epsilon) = \frac{1}{n!} \left(\frac{\partial}{\partial \epsilon}\right)^n u_G(t,\epsilon)$. Then we have

(5.3)
$$\begin{aligned} \epsilon t \frac{\partial}{\partial t} u_n(t,\epsilon) - f_1(t) u_n(t,\epsilon) \\ &= -t \frac{\partial}{\partial t} u_{n-1}(t,\epsilon) + \sum_{n(l)=n} f_l(t) u_{n_1}(t,\epsilon) \times \dots \times u_{n_l}(t,\epsilon). \end{aligned}$$

For $u_n(t,\epsilon) = \sum_{k=1}^{\infty} u_{n,k}(\epsilon) t^k$ we define the following norm

$$U_{n,k} := \sup_{\epsilon \in G} |u_{n,k}(\epsilon)|$$

$$(5.4)$$

$$||u_n||_{n,R_1} := \sup_{t \in D_{R_1}} (R_1 - |t|)^n \sum_{k=1}^{\infty} U_{n,k} |t|^k$$

By introducing the norm we get

(5.5)
$$||u_{n}||_{n,R_{1}} \leq C \Big\{ en||u_{n-1}||_{n-1,R_{1}} + \sum_{n(l)=n} ||f_{l}||_{n_{0},R_{1}} ||u_{n_{1}}||_{n_{1},R_{1}} \times \cdots \times ||u_{n_{l}}||_{n_{l},R_{1}} \Big\}.$$

By (5.5) we can show Proposition 5.4. Q.E.D.

References

- [1] W. Balser, Formal power series and linear systems of mermorphic ordinary differential equations, *Universitext*, *Springer-Verlag*, *New York*, *Berlin Heiderburg* (1999).
- [2] W. Balser, Summability of power series in several variables, with applications to singular perturbation problems and partial differential equations, Annales de la Faculté des Sci. de Toulouse Vol.14 No. 4 (2005), 593-608
- [3] W. Balser and J. Mozo, Multisummability of formal solutions of singular perturbation problems J. Differential Equations 183(2002), 525–545.
- [4] W. Balser and V. Kostov, Singular perturbation of linear systems with a regular singularity, J. Dynam. Control. Syst 8 No. 3 (2002) 313–322.
- [5] S. Canalis, J. Mozo and R. Schäfke, Monomial summability and doubly singular differential equations, J. Differential Equations 233 (2007), 485–511.
- [6] L. Hörmander, Linear partial differential operators, Springer, 1963.
- [7] D. A. Lutz, M. Miyake and R. Schäfke, On the Borel sommability of divergent solutions of the heat equation, *Nagoya Math. J.* **154** (1999), 1–29.

- [8] S. Ōuchi, Multisummability of Formal Solutions of Some Linear Partial Differential Equations, J. Differential Equations 185 (2002), 513–549.
- [9] H. Yamazawa and M. Yoshino, Borel summability of some semilinear system of partial differential equations, *Opuscula Mathematica* **35** No. 5 (2015), 825–845