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Abstract

In this paper we consider semilinear partial differential equations. For a formal solution
of the equations we give the results of the summability of the formal solution with respect
to the each variable ¢ and € and the both variables.
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1 Introduction

In this paper we study the following equation:

(1.1) et’“%u = f(t,u)

where (t,€) € C X C and f(t,u) is a function defined in a neighborhood of (0,0).
In this paper we assume the following conditions:

(A1) f(¢,u) is holomorphic in a neighborhood of (0,0),
(A2) £(0,0) =0,
. Of
(A3) 7-(0,0) #0. |
Under the conditions (A1), (A2) and (A3), we have the following expansion

Ftw) =3 fileyat with fo(0) = 0 and f2(0) #0.
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For the case r = 0 we have some results. In [4] Balser and Kostov studied Borel summability
of formal solutions for a linear system of partial differential equations and in [9] Yamazawa and
Yoshino treated a semilinear system of partial differential equations. In these papers the equation
(1.1) has a formal solution @(t,€) = > o-_; tsm(t)€™ and the formal solution is summable in a
suitable direction.

For the case r > 0 Balser and Mozo studied a linear system of partial differential equations
in [3] and got the summability of formal solutions u(¢, €) with respect to the respective variables
and two variables. In [5] Canalis, Mozo and Schifke treated a semilinear system of partial
differential equations. By their paper we have a formal power series solution of the equation
(1.1) and the solution is monomial summable (et"-summable).

In this paper we will show that the equation (1.1) has formal power series solutions in ¢ or
€ and the solutions are summable respectively.
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In Section 2 we give formal Gevrey estimates of formal solutions (2, €) = 3 o ; u.(€)t* of
the equation (1.1) and Summability of the formal solution. In Section 3 we give formal Gevrey
estimates of formal solutions @(t,€) = > o tsm(t)e™ of (1.1) and Summability of the formal
solution. In Section 4 we give Summability of the formal solution @(t, €) = 30 | 3°%°_ uy ,ntFe™
with respect to the both variables. In Section 5 we give an alternative proof of [9] for the case
r=0.

2 Summability with respect to the variable ¢

In this section we will show that the equation (1.1) have formal power series solutions a(t, €) =
> req ks (€)t* and the formal solution 4(t, €) is r-summable in a direction d.

Denote the universal covering of C* = C\ {0} by C*. Let us introduce s-region that is defined
in [2]. Given s = (s1,s2) with s1,52 > 0, a region G is called an s-region, provided that it is an
open and simply connected subset of polysecter in C* x C* satisfying the following condition:

- For every (t;¢) € G and every real z with 0 < 'z < 1, all points of the form {s(z,t,€) =
(z°1t, z°2¢) belong to G.

We call G, an s-region of infinite radius, provided that, instead of the above condition, we have
the followings:

- For every (t,e) € G and every real z with 0. < z < oo, all points of the form (,(z,t,¢)
belong to Geo.

Let D, = {t € C; |t| < p} or {€ € C; |e| < p}. Set Shy:= {t € C\{0}; |argé —d| < 6} and
Sfi,o(l’) = Sfi,o N Dy, further set S5, and Sg 4(p) as the same rules.

Let D¢ be an open and bounded domain in e-plane. O(D¢)[[t]] be the set of all formal power
series (t, €) = 3 3o o uk«(€)t* with holomorphic coefficients in D¢.

Let v > 0. By O(D¢)[[t]]1/, we denote the subset of O(D*)][t]] whose coefficients satisfy with
some positive constants A, B and any proper subdomein D’ of D¢ .

sup |ug«(€)] < AB’T(E + 1) for k=0,1,...,
ecD’ Y

The elements of O(D*)[[t]]1/y are called of formal series of Gevrey class 1/.

Let u(t, €) be an analytic function on S} 5(p) x D* for some p > 0. Then 4(t, €) € O(D¢)[[t]]1/4
is called a Gevrey asymptotic expansion of u(t,€) as t — 0 in S"fw, written as

u(t,€) Zypyate) in She or ulte) € AL, (She(p) x DY,

if for any proper subdomain D’ of D¢ there exist positive constants A, B such that i(t,¢) €
O(D9)][t]]1/ and
N-1 N
sup [u(t,€) — 3 wr(e)tt] < ABNI‘(— + 1)|t|N for N=1,2,...
eeD! b=0 vy

on S} 5 (p) for 0 < ¢ < and 0 < p' < p.
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Definition 2.1 We say that i(t, €) € O(D*)|[[t]]1/y is y-summable with respect to the variable t
in a direction d € R if there exist a sector Sfi,g(p) with 8 > 7/(27) and a function u(t, €) analytic
on 8§ 5(p) x D¢ such that u(t,€) =y, i(t,€) in Shy.

Remark 2.2 Let us remark that the function u(t,€) is unique if it exists, in that case u(t,€) is
called the y-sum of 4(t,€) with respect to the variable t.

Here let us give our theorem of the summability of formal solutions (t, €) =
S uka(e)tF € O(Dy)|[t]lyr for the equation (1.1).
Set d; = arg 9f/0u(0,0) + 273 for j € Z.

Theorem 2.3 Assume the conditions (A1), (A2) and (A3). Then the equation (1.1) has a
formal power solution 4(t,€) = Y 5o, ug«(€)t* and the solution i(t, ) is in O(D,)[[t]]1jr. Further
the formal solution i(t, €) is r-summable with respect to the variable t in any direction d for any
d and € with d; < arge + rd < djyy and |e| < p for a suitable constant p > 0.

Remark 2.4 For (1,€) with d; < arge + rargr < dj1 the following holds

rer” — g—i(O, 0) #0.

Further the set described by d; < arge + rarg T < dj11 s an s-region.
We prove the following proposition in order to show Theorem 2.3.

Proposition 2.5 Assume the conditions (Al), (A2) and (A3). Then the equation (1.1) has a
formal power solution i(t,€) = 3 7o, ur«(€)t* and there erists constants Uy, > 0 such that for
0<p<p

(2.1) sup |urs(€)] < Upa(k — D)V"  for k> 1
GGDPI

and a series ZkZI Usst® converges in a neighborhood of t = 0.

Proof. Set fo(t) = Sor1 foxtt and fi(t) = o2, fiktt for L > 1. By substituting 4(t, e) =
oo Uk« (€)t® into the equation (1.1) we have

0= fo1+ fiouix(e)
(k — r)ew_ru(€) = for + frours(€) + Y Fronin(e)

ko+ki=k
(22) ko,k1>1
k l
+ Z Z Siko H’“ki*(f) for k > 2
=2 k(l)=k =1
ki>1,1<i<]

where k(I) = ko + k1 + -+ + k; and ug.(e) = 0 for k£ < 0. By the condition (A3) we have
df/du(0,0) # 0. Then we obtain a formal power series solution 4(t,€) = 3 5 ; uks(€)t* by the
recurrence formula (2.2).

Let us give estimates for the coefficients uy4(€). By the first equation in (2.2) we have
u1x(€) = —fo,1/ f1,0. Then set
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Let show the estimates for k > 2 on induction. By the induction’s assumption and

i
Ik -Dr< kit + k=) < (k—1)!

i=1

for k(l) =k and k; > 1 (i > 1), we obtain

|f10Uk*()|<{|f0k|+P0Uk—r*+ > |f1ko|Uk1*+Z > |flko|HUk,*}

(2.3) ko+k1=k =2 k(l)=k i=1
kok1>1 k;>1,i>1

x (k—1)"/r

for e € Dy. Set

24)  Un=|fol” 1{|f0k|+PUk—r*+ > |f1ko|Uk,*+Z > |fiko|HUkz}

ko+ki1=k =2 k(l)=k i=1
ko,k12>1 k21,421

Then we obtain the estimate (2.1).
Let us show that 372 Up«t* converges in a neighborhood of t = 0. We consider the following
equation:

(2.5) frolU®) = 3" [forlt® + oot U®) + >3 1firlt {U®)}.

E>1 1>2 k>0

By r >0 and Implicit function theorem, the equation (2.5) has a holomorphic solution U(t) =
322 Upst® in a neighborhood of t = 0 and Uy, satisfies the relation (2.4). Q.E.D.

Definition 2.6 For a(t,€) = 322, ug.(€)t* we define the formal Borel transform (Bya)(r,€) by

(B’Yu) (T7 6) = Z Ukx (6) F(k/")’)

Then -summability of i(t,z) € O(Sg4(p))[[t]]1/y can be characterized by the following Propo-
sition.

Proposition 2.7 (L.M.S. [7]) The formal power series 4(t,€) € O(Sgo(p))[[¢]]y is v-summable
with respect to the variable t in a direction d if the following two properties hold:

1. The power series T7ug(T,€) := ‘r"(li’,yﬁ)(‘r, €) converges on Dy x S§o(p)-

2. Let S¢ be any proper subdomain of Sgo(p). There exists a 8 > 0 such that for any € € Ed
the function ug(T,€) can be continued with respect to T into the sector S3,6- Moreover for
any 0 < §' < @ there exist constants C, K > 0 such that

sup lug(r,€)| < CeXI™ for € Sg.er-
€S



Then (L, ,4uB)(t,€) is y-sum with respect to the variable ¢ in a direction d of i(t,€), where
L4 is the Laplace transform that is defined by

ocetd
(Crad)(t.0)= [ exp (= (3))e(r
Let us seek for the equation that is satisfied with up(7,€).
Definition 2.8 Let ¢;(7,€) € O(S7, x D), i = 1,2, satisfy |¢i(r,€)| < C|7|*~7 for § >0 where
D is an open domain. Then vy-convolution of ¢1(7,€) and ¢a(7,€) is defined by
T
(12 02)(r.0) = [ (77 =1, ontm, )i

Set up(7,€)"* = up(7,€) %, - - - ¥, up(7, €). By operating B, to the equation (1.1), we get the

l

following convolution equa’tion:

(2.6) (er7" — fr,0)us(r,€) = foB(T) + Z f1.B(7T) *r up(T, €)™

>1
where f15(7) = (B:(f1 — f1,0))(7) and f,5(7) = (B, fi)(r) for L # 1.
Let us solve the equation (2.6). We construct ug = Y o ; up as follows;

(GTTT - fl,o)’u,B’l = fO,B(T) and for k > 2
k

(er7" = fro)upr = fLB(T) *rupr-1+ Y . fiB(T) *r Uk, *r- % UBk
1=2 k*(l)=k

@2.7)

where k*() = k1 + - + k.
Set G; = {d; < arge+ rargt < dj41 and |¢| < p}. Then we have;

Proposition 2.9 There exist constants Ugy > 0 such that

[+~

L(k/r)

for some ¢ >0 and a series > g0 U Bkt converges in a neighborhood of t = 0.

elr|”

(2.8) lupi| < Uk e on Gj

In order to show Proposition 2.9 we will use the following lemma:

Lemma 2.10 ([8], Lemma 1.4, p.516 ) Assume that the functions ¢;(7,€) € O(G;), i = 1,2,

satisfy e
1T ot

) < 3
40l < L et on
fori=1,2. Then convolution (¢1 *y ¢2)(7,€) satisfies
|7-|31+52—7 "
|(¢1 % g2)(,€)| < C1Co7————€™" on G;.

T'((s1 + s2)/7)

118



119

Proof of Proposition 2.9. We have that the following estimate holds

(2.9) lert™ — fiol > K7' on G;
and

Fplr|' e 1=0,1
2.10 figl<{ PN
( ) I l,BI {FLBeclTI 1>2

where leo F, pt! converges in a neighborhood of ¢ = 0. Let us giife estimates on up . By the
recurrence formula (2.7) and the estimate (2.9) we have

lupal < UB,1|T[1_Te°|T|-r on Gj

where Up 1 = K1 Fp g. For k > 2 we show the estimate (2.8) on induction. By.the induction’s
assumptions and Lemma 2.10 we have

(211)  |ert" = fiollusk| < F1,8UB k- 1

k—r c|'r|’”+z Z -FIBHUB/C,,I\(k/ ) c|1'|r.

=2 k*()=k  i=1
Then by setting
ok 1
(2.12) Uy = KI{FI,BUB,k—l + Z Z Fip HUB,k,»}
=2 ke()=k  i=1

we get the estimates

k—r
(2.13) lup | < Us |(L e ™" on G;.

Let us show that Y52, Upt* converges in a neighborhood of ¢ = 0. We consider the
following equation:

(2.14) U(t) = tUp1 + K1{tF1,BU(t) + i E,B{U(t)}l}’~
=2

By Implicit function theorem, the equation (2.14) has a holomorphic solution U(t) = Y32, Up xtk
in a nelghborhood of t = 0-and Up, satisfies the relation (2.12). Q.E.D.

We will show the uniqueness of solution near 7 = 0 for the equation (2.6). Let up and
vp be solutions of the convolution equation (2.6). Then wp := up — vp satisfies the following
convolution equation:

(e ]
(2.15) (er1” — fro)ws = fip*r wp+ Y f1.B % wWhT
=2

We can get that there exist positive constants A and B such that

|T| T
2.16 wg| < AB" ——— eCITI forn>1

as the same way as in the proof of Proposition 2.9. By letting n — co we obtain up = vp.
Q.ED.
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3 Summability with respect to the variable ¢

In this section we will show that the equation (1.1) has a formal solution u(t,€) =
> =0 Usm(t)e™ and the formal solution is 1-summable in a direction d. We will use the same
notations with respect to the variable e as those with respect to the variable ¢ in Section 2.

Theorem 3.1 Assume the conditions (A1), (A2) and (A8). Then the equation (1.1) has a
formal power series solution @(t,€) = Y ou_o Usm (t)€™ and the solution i(t,€) is in O(D,)[[¢]];.
Further the formal solution u(t, €) is 1-summable with respect to the variable € in a direction d
for any t with d; < d+rargt < dj11 and [t] < p.

Proof. Let us show that (1.1) has a formal power series solution. By substituting #(t,e) =
Yoo Uk (£)€™ into (1.1) we have

0= f(t, uw(t))

m . 1
(3.1) D s (§) = SO+ Y0 S ) [T o ()
=2 m*(l)=m i=1
m;Zl

By the condition (A3) we have fi(t) # 0 for |[t] < 1. By the conditions (A2), (A3) and
Implicit function theorem for the first relation in (3.1), we get a holomorphic function u.(t) in
a neighborhood of ¢ = 0 with u,0(0) = 0. For m > 1 we can get u.m(t) from the second relation
in (3.1) by fi(t) # 0. Then we have a formal solution @(t,€) = Y>> s (t)e™

Let us give estimates to the coefficients w.my, (t). Set a(t) = ux(t) and @1 (t, €) = 4(t, €) —uxo(t)-
Then @, (¢, €) is a solution of the following equation:

G, G, 1 9f,
— g+l Y r+1 Y _ Yia
(3.2) fi(®)ug = et 6ta(t) +e 2w u1/0 Bu (t, su1 + a(t))ds

where fa(t,u) = 3372, fi(t)u!. .

By substituting @1(t,€) = Y01 usm(t)e™ into the equation (3.2) and setting wam(t)/m! =
Um (t) we get
(3.3)

Altyo(t) = t’“%a(t) form > 2
9 m 4 o 4

_ r+1 4 X -
ml f1(t)vm(t) = (m = )it avm_l(t) - gﬁ(t),g =7 Z 1mz!vml.(t)a

m*(I')=m i=

where m(I' +1) = mq + -+ + mp41.
We can suppose | f1(t)| > K;! for |t| < 1. Then we have

o1 ()] < K1|t’+1%a(t)] form > 2
ll

m l \ )
mlom(®)] < Ko (I 2 2 (0] + OIS l"(llT’)' S [Imidom(a=1}.
' =2 =1 ° 1

m(l')=mi=

(3.4)



121

Let us take T', Ygand Y7 with 0 < T« 1,

Yo = sup |a(t)] and Y1 = max{sup |vi(t)|, sup |(8/t)v1(?)|}
teDr teDy teDr

and consider the following equation:

(3.5) Y = Yiet 2 eY+Y/ —a—Fé(sY-i-Yo)ds}

where Fy = 320, {F /(T — r)t }u and Fj = supsep,. |fit)] for 0 < = < T. By Implicit function
theorem, the equation (3.5) has a holomorphlc solution ¥ = 3> ™ and with a form

Cm

Yo = (7

(Ch=Y1, Cpn >0).

Then we have;

Proposition 3.2 For any m > 1 we have

(3.6) m sup |vm(t)| < Y  and sup ‘ vm(t)‘ < eY,.
teD, ot

In order to show Proposition 3.2 we will use the following lemma:

Lemma 3.3 (Nagumo’s lemma) If a holomorphic function u(t) in Dt satisfies

sup [u| < ——— forO0<r<T
tel?rH (T —r)p f
then we have Ce(p+1)
ep
tsequ,yat ’_, T —r)pHl for0<r<T.

For the proof, see Hérmander ([6], lemma 5.1.3).

Proof of Proposition 3.2. For m = 1 the estimate (3.6) holds by the rule to take Y;. Let
us show the estimate (3.6) for m > 2 on induction. By substituting ¥ = - ™ into the
equation 3.5 we have

K TR I 4 _r
(37) Yo =71 Y’"‘“’E T —r) V;l’!(l—l')! > [I¥=%"}

m*(l)=m i=1

for m > 2. By the induction’s assumptions, the recurrence formulas (3.4) and (3.7), the following

holds
m sup [vm()| < (T — 7)Y < Y.
teD, v

Therefore we get the first estimate in the estimate 3.6.
Let us show the second estimate. By

Cm

m sup [vm(t)] < (T'=r)¥m = 5o



and Lemma 3.3 we have

1e(m-1)Cp < eV

sup ‘Z‘%Um(t)‘ < —Tﬁm =

teDy

Hence we can get the second estimate in the estimate 3.6. Q.E.D.

Here we will show that the formal solution 4(¢, €) is 1-summable. Let us give one definition
and one proposition in [1] that are needed in order to show Theorem 3.1.

Definition 3.4 Let v > 0, and G be a bounded s-region. AS o(G) is the set of all function
f(t,€) € O(G) such that for any proper subdomains St x S¢ of G

(3.8) sup [f(t,€)] < Cexp (—cole|™")
ecSt

where cy depends on S¢ where St and S¢ are sectors.

Proposition 3.5 ([1];, Proposition 18, p.121) Let vy > 0, any function u, holomorphic in' S,
be given. Then u(e) € A,(S) is equivalent to the existence of a normal covering Sy, ..., Sm, with
So =S, and function uj, holomorphic in Sj; 0 < j < m, with ug = u and um(ee™ ™), € € Sp,
so that all u; are bounded at the origin, and

uj—1(€) —u;(€) € A4 0(Sj-1NS;) for1.<j<m.
Proof of Theorem 3.1. Let us take a number d’; with
d; < arge+ T'd; < dji1

and set
G ={dj —n/2 <arge+rargt < djs1+7/2}

Then we define the r-sum u;(t,€) of 4(t, €) with respect to the variable ¢ in a direction dj in
Section 2 by

id?}

- e 7 .
(3.9) uj(t, €) =/ up(r,€)e” /D" dr".
0

Remark 3.6 By changing a direction dj with d; < arge +rd; < dj41, u;(t,€) is holomorphic
on G; with |t| < p and || < p.

Proposition 3.7 u;(t,€) — uj-1(t,€) € 47 (G} NGj_;) holds, that is, there exist positive con-
stants K and C such that

(3.10) luj(t,€) — uj—1(t, )| < Ke 9™ for (t,e) € GE NG,
Remark 3.8

G;NGj_y ={dj — /2 < arge + rargt < d; + 7/2} = R(f10/(ret”)) >0

122
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Proof. We have
(311) uj (t, 6) - Uj_l(t7 6) = / UB(T, E)B—(T/t)rd‘r'r
C

where a path C is a circle with centered at fio and any positive radius in 7 = rer” plane. By a
change variable n = rer” we get

((1)1/ ’,6) e/t gy

€T

(3.12) wi(t,€) — wjo1(t, &) = & / -

C

By Residue theorem and Lebesgue’s dominated convergence theorem, we have

(3.13)> /c up ((i) ;UTY, e) e~ ) dpy = 2#\/_;1f0,3 ((M) I/T)e‘f‘v‘;/("“r).

€r €T

By (3.13) and Remark 3.8 we obtain Proposition 3.7. Q.E.D.

By Proposition 3.7 and Proposition 3.5 we have u = uy(t,€) € A1(Gop) in e. We can get an
opening of arg e bigger than 7. By Definition 2.1 we have that ug(t, €) is 1-sum of %(t, ¢). Q.E.D.

4 Summability with respect to the both variables

In this section we will study the summability for the formal solution @(t, €) = 2 ok>1 om0 U mtFe™
of the equation (1.1) with respect to the both variables (¢,¢€).

Let us introduce the definition of the summability of the both variables by Balser ([2]).

We define H(9)(Gw) to be the set of all holomorphic function f(t,€) on Go, and have the
following property: For every element of O := {(t,€) € Goo with [t|? + |¢|> = 1} there exist
constants ¢, K > 0 such that

(4.1) |f(¢s(z,t,€))| < ce®® for z > 0.

Let s = (s1,82) be s1,83 > 0 and set k = (1/s1,1/s2) and

. ( ) Z tk—'l‘ﬁm—l
Bt €) = Upm e
Gy O T'(s1k + sam)

Definition 4.1 We say that 4(t,€) = 3351 mxo tkmt €™ is k-summable with direction O if the
following two statements hold; :

1. t"eB,i(t,€) converges in a neighborhood of (t,€) = (0,0).
2. Byii(t,€) can be continued into the region Goo, and its continuation is in HE)(Goo).

Then the following u(t, €) is k-sum of u(t,€) is direction O:

(o o]
u(t,€) = t’e/ e Tu(n*t,n*2e)dn = Lsv(t, €).
0
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4.1 Formal solution

Here let us show that equation (1.1) has a formal solution %(t,€) = R 3% uk mtFe™ and
give estimates for the solution. :

Theorem 4.2 Assume the conditions (A1), (A2) and (A3). Then (1.1) has a formal power so-
lution @(t, €) = Y o1 S o0 o ukmte™ and the solution satisfies t"ey(t, €) = t"eBsii(t, €) converges
in a neighborhood of (t,€) = (0,0) with s17 + s2 = 1 and 351,52 > 0.

Proof. By Proposition 2.1 and 3.4 we can prove this theorem.

4.2 k-summability

Here we will show that the formal solution 4(t, €) is k-summable in a direction. The proof follows
that in Balser and Mozo [3].

Theorem 4.3 Assume the conditions (A1), (A2) and (A3). Then the formal solution u(t,€) in
Theorem 4.2 is k-summable in direction O.

Let u;(t, €} be defined by (3.9) and s = (s1, s2) with s1,52 > 0 and s17 + s2 = 1. Set
t—refl

(4.2) yi(tye) == o AGTUj(T_slt, 7 %2€)dT.

where the path I' = I'(, R) is as follows; form infinity along a ré,y argT = —(m+4)/2 to a circle
of radius R > 0 about the origin, along the circle to the ray arg T = (7 + J)/2, and along that
ray back to infinity.

Remark 4.4 We have that the function y,(t,€) is holomorphic in d; + /2 < rargt + arge <
djt1 — 0/2 since the function u;(t,€) is holomorphic on Gj.

Proposition 4.5 Assume the conditions (A1), (A2) and (A3). We have y1(t,€) = y(t,€) on
dj+6/2 <rargt+arge < djp1 — /2 with |t"e| < T for a sufficiently small T > 0 where y(t,€)
is in Theorem 4.2. '

Let wu;(t, e) be holomorphic on d; + §/2 < rargt +arge < dj1 — §/2 with [t"e¢| < T for a
sufficiently small T > 0 for ¢ = 1,2. Then we define s-convolution u; *, ug by

1
uy(t, €) x5 ug(t, €) = t’e/ ur (79, 7°2€)ug((1 — 7)%¢t, (1 — 7)°2€)dT.
0

Then we have the following lemma:

Lemma 4.6
Lsui Lsug = Es(’llq *s U2)‘

Let seek out the equation that y; (¢, €) satisfies.
Lemma 4.7 Set o
u(t, €) = t’e/ e Mu(n®1t, n°2e)dn.
0

Then we have

(o]
i Zut) = et [ e L) e ol 1 dn

T_gr s ——'r]a 51 52¢))d
—et’et A ;e —8;(61)(7] t,n°%€))dn.



Proof. By

%(v(tnsl, en’?)) = 81tnsl'1g;v + Szen”‘lgv

we can prove Lemma 4.7. Q. E.D.

Set f1,6(7) = (Bs(f1 — f1,0))(7) and fis(r) = (B, fi)(7) for L # 1.
By Lemma 4.7 y; (¢, €) satisfies the following equation:

1 . - leg 4 52 a
(4'3) (gEt - fl,O) 1 (tv 5) = .fO_,s(t) + ; fl,s(t) *s yl(t, e) + ;‘1‘(1) *s (ngyl(t, 5));
where 43 (¢, €)*s = y1 (7, €) %5 - - - %5 yr(7, €) . Further y(¢,¢) also.satisfies (4.3).

g

l

Proof of Proposition 4.5.
Set yo(t,€) = y1(t,€) — y(t, €). Then yo(t,€) satisfies
1 P _ 5 9] ’
(57"~ Fr0)wlt: ) = 221 »: (grewolt )) + Fua(t) = 1o(t,)

1
+ D fralt) *s yo(t, €) *s /0 (yor + y)~De.

1>2

(4.4)

By the equation (4.4) there exist positive constant
[yo(t,€)] < AB™|t"e|™ for any n=0,1,:--

ond;j+0/2 < rargt+arge < dj;1—08/2 with [t"e| < T'. By letting k — oo we get y1(t,€) = y(t, €).
QED

Proof of Theorem 4.3.
Let us show |y1(n°1t,n%%¢)| < ceXI". By a transform 7 = zv with v = rt"e, we have

(45) nte) = g [ (@) @0 F

where the new path I is of the same shape as I', with two radial pieces along rays argz = «,
argz = 8, and 8 — a > m. By ((zv)™*'t)"(zv)"*2¢ = (rz)~! the integrand (4.5) is well defined
for the radius. R of the circular section of I' is sufficiently large and

d]-—% <—/3<—a<dj+1+—72:
By a transform 7 — 57 with n > 0 (4.5) is changed into

d
y1(n°1t, n°%e€) := eMu; (171, 'r'”e)TT.

27 ™

By Proposition 3.7, we have
R(t.e)n

ly1(n°'t,n°%€)| < ce
with R(t,¢) = max{([t]/)"/*1, (|e|/p)"/**}. Then
(46) ult,€) = / & My (it m% €)dn
0

converges on G;. Q.E.D.
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Remark 4.8 In fact the formula (4.6) can be defined by

Ooeia
u(t, ) = / e~y (n°'t, n*€)dn
o}

with d; < o+ rargt + arge < dj11 and cosa > R(t,€).

5 Alternative proof of the case r =0

In this section we will give an alternative proof of the result of the summability of formal
~ solutions for the following equation.

(5.1) et%u = f(t,u).

Let us consider a formal solution 4(t, e) = o Us,m(t)e™ of (5.1).

Theorem 5.1 Assume the conditions (A1), (A2) and (A3). Then the equation (5.1) has a
formal solution (t,€) = Y oo o Usm(t)€™ € O(Dg)|le]]: Further the formal solution 4(t,€) is
Borel summable in a direction d # arg(df/0u)(0,0).

Proof. We will show that the equation (5.1) has a formal solution @(t,€) = St ; uk.(€)t* and
the solution #(t, €) is holomorphic in a suitable domain.

Set
3]
G’={e€C\{0}:'Mga—£(0,0)+1r—arge| <1r—5}.

For i(t,€) we have the following proposition.

Proposition 5.2 Assume the conditions (A1), (A2) and (A3). Then (5.1) has a formal solution
i(t,€). Further the solution u(t,€) is holomorphic on Dr-x G for some R > 0. Then set
ug(t, €) :=a(t, €).

Proof. Set fi(t) =Y fixt®. By substituting i(t,€) = Y5> ; uk,«(€)t* into (5.1) we have
(e = fro)ui(e) = foa
!
(k= fro)urs(e) = for+ D frothis(€)+ D Fiko | [ this(€)-

ko+k1=k k()=k  i=1

(5.2)

Remark 5.3 We have
|(€k - fly())_ll <C onG.

Then we can show Theorem 5.2. Q.E.D.

It is sufficient to show that the following proposition holds in order to prove Theorem 5.1.

Proposition 5.4 We have

‘(%)"UG@, 9| < AB"(n!)* on DpxG.
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Proof. By Proposition 5.4 and the argument of G is greater than m we can show that ug(%, €) is
the sum of the formal solution 4(t, €) in Theorem 5.1.

Let us show Proposition 5.4. The proof is similar to that of Balser and Kostov [4].
1/0\»
Set un(t, €) = H(E) ug(t,€). Then we have

et%un(t, €) — fi(t)un(t, 6)

a
= —taun_l(t, €) + %; Fi)tny (,€) X - X up, (¢, €).

(5.3)

For uy,(t,€) = 3 5o, tn k(€)t* we define the following norm

Un,k ‘= sup ,un,k (E)I
G

(5.4) o0 .
l|tn|ln, iy = sup (Ra = [t)" > Unilt]
tEDR1 k=1

By introducing the norm we get
|[unlln,ry < C{enllun—illn-1,r,

£ 3 Al by - [l 2}

n(l)=n

(5.5)

By (5.5) we can show Proposition 5.4. Q.E.D:

References

(1] W. Balser, Formal power series and linear systems of mermorphic ordinary differential
equations, Universitext, Springer-Verlag, New York, Berlin Heiderburg (1999).

[2] W. Balser, Summability of power series in several variables, with applications to singular
. perturbation problems and partial differential equations, Annales de la Faculté des Sci. de
Toulouse Vol.14 No. 4 (2005), 593-608

[3] W. Balser and J. Mozo, Multisummability of formal solutions of singular perturbation
problems J. Differential Equations 183(2002), 525-545.

[4] W.Balser and V. Kostov, Singular perturbation of linear systems with a regular singularity,
J. Dynam. Control. Syst 8 No. 3 (2002) 313-322.

[5] S.Canalis, J. Mozo and R. Schafke, Monomial summability and doubly singular differential
equations, J. Differential Equations 233 (2007), 485-511.

[6] L. Hormander, Linear partial differential operators, Springer, 1963.

[7] D. A. Lutz, M. Miyake and R. Schéfke, On the Borel sommability of divergent solutions
of the heat equation, Nagoya Math. J. 154 (1999), 1-29.



128

[8] S. Ouchi, Multisummability of Formal Solutions of Some Linear Partial Differential Equa-
tions, J. Differential Equations 185 (2002), 513-549.

[9] H. Yamazawa and M. Yoshino, Borel summiability of some semilinear system of partial
differential equations, Opuscula Mathematica 35 No. 5 (2015), 825-845



