
Security improvements in Iff Live

PREINING Norbert

アクセリア株式会社、東京都

Tr Live Team

北陸先端科学技術大学院大学、能美市

Abstract

We report on security improvements in the TEX Live distribution introduced

for the release 2016. We present possible attack vectors on older releases, and

explain how the recent changes render these attack vectors impossible.

1 Introduction

Since the switch to the current distribution method and the introduction of network

installs and updates, many things have changed in the TEX (Live) world. But one thing
hasn�t kept up with the new distribution methods: security.

There was hardly any verification going on whether the package downloaded from

the CTAN mirrors haven�t been tampered with. And although we are shipping checksum

and file size information, these were only used on rare instances (when restarting a failed

installation).
We will recall the general layout of the i\mathrm{E}\mathfrak{c} Live distribution, as well as the security

state up till release 2015 and possible attack vectors onto TEX Live installations in

Section 1.1. The following Section 2 explains the new security infrastructure and how

integrity and authenticity can be guaranteed by it. The following Section 3 is dedicated
to implementational and social problems we faced in the process of introducing these

changes, as well as general user experience.

1.1 Overview on the TEX Live distribution model

While we cannot give a detailed explanation of the internals, as well as refrain from

giving a practical introduction to using the \mathrm{J}\mathrm{B}K Live Manager tlmgr, we want to give
an overview how packages are installed by tlmgr (and similarly by the install script), as

this is a necessary prerequisite in understanding the security implications. We assume

that the reader has experience in using [\mathrm{p}\mathfrak{c} Live as well as the \mathrm{T} Live Manager
tlmgr.

Every Iffl Live instance, that is any actual installation on a user�s computer, as well

as the repositories used to distribute TEX Live, carries all of the relevant information

bundled in one file, the so call? Ψ Live Database [4], normally named texlive. tlpdb.
This file contains general information about the instance, like setting of the used repos‐

itories, or distribution format, as well as all contained packages with list of files etc.

Thus, this file plays a central role in every operation tlmgr is carrying out.

In particular, what happens when a user asks tlmgr to update the installation is the

following:

数理解析研究所講究録
第2022巻 2017年 10-16

10

1. tlmgr loads the local database and determines the set of installed packages,
2. loads the remote database (the one from the used repository)
3. compares the revision numbers and determines packages that need to be up‐

date/added/removed,
4. for each package to be updated (or installed) between 1 and 3 so called containers

(currently tar. xz arhcives) are downloaded,
5. each container is unpacked into the destination tree and the local database up‐

dated.

1.2 IEX Live security status up to release 2015

Till 2015, the texlive. tlpdb at the servers did contain certain consistency information,
in particular the size of the containers as well as their checksum (md5), see the following
excerpt from a texlive. tlpdb:

name 12 many

containersize 2100

\mathrm{c} ont ainermd5

doccontainersize 375404

do \mathrm{c} cont ainermd5

This information could be used to at least guarantee that the correct containers

have been downloaded, but it turned out that our programs, in particular tlmgr and

the installation routines did not use these information during normal runs, but only
during interrupted installations.

1.3 Possible attack vectors

Improving security brings first a complication of the necessary software, increased work‐

load of the maintainers, changed behavior for users, and thus it is wise to discuss first

whether a better security model is necessary. This can be done by scrutinizing the

infrastructure for possible attack vectors, and looking at the consequences for the users.

We consider the worst case scenario for the user, namely that a crypto‐virus infected

the computer and all data is lost.

1.3.1 Attack vector 1

In the simplest case an attack can be carried out by the following steps:
1. compromise one CTAN mirror

2. exchange the pdftex binary with one shipping a crypto‐virus
3. wait for users to update
It must be noted that worldwide there are a lot of different CTAN mirrors, practically

all of them out of our personal control. We cannot even check the security level on these

servers, so a possible breach will remain completely unknown to us.

11

This attack vector could be blocked by actually checking the checksum as provided
by the texlive. tlpdb. And while changes implementing this feature have been in

tlcritical (a testing repository for changes to the infra‐structure of \mathrm{I}|\mathrm{E}\mathrm{X} Live), these

changes were never shipped out to users.

1.3.2 Attack vector 2

Another possible attach vector, a bit more involved than the previous, consists of the

above steps plus one more:

1. compromise one CTAN mirror

2. exchange the pdftex binary with one shipping a crypto‐virus
3. adjust the container in a way that the checksum does not change
4. wait for users to update
Here the attacker would byte‐pad the container in a way that the checksum is not

changed. Note that while this is possible for the checksum algorithm we have been using
till now (MD5), the requirement that the resulting file still works as a tar. xz archive

restricts this attack.

While less likely to happen, this attack vector couldn�t be blocked up till release 2016.

1.4 Attack vector 3

Finally, let us consider the most probable attack vector:

1. compromise one CTAN mirror (or set one up yourself!)
2. exchange the pdftex binary with one shipping a crypto‐virus
3. adjust the checksum in the texlive. tlpdb
4. wait for users to update
Indeed, an intruder that can change the containers itself is of course also able to

change the data in the texlive. tlpdb, thus rendering all protective measures futile.

Again, up till release 2016 there was no way to handle this attack vector.

This short list of rather simple attack scenarios gives a clear indication that there is

ample way to improve.

2 Security infrastructure

From the previous discussion on possible attack vectors one can extract two require‐
ments of the distribution mechanism necessary to guarantee security: Integrity and

authenticity

Integrity of the packages downloaded: Here any kind of tampering should be caught,
not only by intruders but also by errors in the download process or disk errors on

the server.

Checksums are normally used for integrity, and because the currently used MD5

is not strong enough, we have switched to SHA512.

Authenticity guarantees that the package downloaded is actually the one that we the

\ulcorner \mathrm{E}^{ ζ} Live distributors have prepared, and not someone else.

12

To guarantee authenticity we introduced cryptographic signatures.

2.1 Overview of the verification architecture

The general flow of package download and verification is as follows:

Checking authenticity of the downloaded texlive. tlpdb is done by first down‐

loading its respective checksum texlive. tlpdb. sha512, as well as the cryptographic
signature of the checksum file, named texlive. tlpdb. sha512. asc. The GNU Privacy
Guard (gnupg) is used to verify that the downloaded signature and the checksum file

agree. We refer the reader to introductions to asymmetric cryptography concerning
details of this process.

texlive. tlpdb \rightarrow texlive. tlpdb. sha512

name 00texlive. config <128\mathrm{h}・ \mathrm{x} digits >\mathrm{t} ・ \mathrm{x} ・ \mathrm{i}・ \mathrm{e}.\mathrm{t} ・・ \mathrm{d}\mathrm{b}

\downarrow
texlive. tlpdb. sha512. asc

name 12many

containerchecksum . . .

----‐BEGIN PGP SIGNATURE

iQEVAwUBVyAV9kzhh3. . .

name 2\mathrm{u}\mathrm{p} \mathrm{r}2\mathrm{m}\mathrm{B}9\mathrm{x}\mathrm{E}\mathrm{n}\mathrm{R}402 SRBDNI \ldots

containerchecksum . . .
. . .

----‐END PGP SIGNATURE

2.2 The signing key

Asymmetric cryptography involves a key‐pair with a private and a pubhc key. The

private key is used to create signatures, and the public key is used to verify signatures
(encryption is another use case, but not relevant to this article). The private key used

is (slighly edited output to fit the page):
pub 2048\mathrm{R}/06\mathrm{B}\mathrm{A}\mathrm{B}6\mathrm{B}\mathrm{C} 2016−03−19

Key fingerprint =\mathrm{C}78\mathrm{B} 82\mathrm{D}8 C795 12\mathrm{F}7 9\mathrm{C}\mathrm{C}0 \mathrm{D}7\mathrm{C}8 0\mathrm{D}5\mathrm{E} 5\mathrm{D}91 06\mathrm{B}\mathrm{A} \mathrm{B}6\mathrm{B}\mathrm{C}

uid TeX Live Distribution <\mathrm{t}\mathrm{e}\mathrm{x} ‐live@tug. org >

sig 3 06\mathrm{B}\mathrm{A}\mathrm{B}6\mathrm{B}\mathrm{C} 2016-03-19 TeX Live Distribution <\mathrm{t}\mathrm{e}\mathrm{x} ‐live@tug. org >

sig 3 06\mathrm{B}\mathrm{A}\mathrm{B}6\mathrm{B}\mathrm{C} 2016-03-19 TeX Live Distribution <\mathrm{t}\mathrm{e}\mathrm{x} ‐live@tug. org >

sig 860\mathrm{C}\mathrm{D}\mathrm{C}13 2016-03-20 Norbert Preining < norbert@preining. info >

sig 30\mathrm{D}155\mathrm{A}\mathrm{D} 2016-03-20 Karl Berry < karl@freefriends. org >

13

It carries, besides the self‐signatures, the signatures of Karl Berry and myself, and thus

allows easy trust verification since both our keys are available from the usual key servers,

as well as in my case the Debian keyring.
As a technical detail, we are not using the actual private key to generate signatures,

but a so called sub‐key, and keep the main key completely off‐line. This guarantees that

in case of a breach of the tug. org server and compromise of the used signing key, the

main key is not compromised aind can be used to revoke the subkey and generate a new

one.

2.3 Discussion

2.3.1 Integrity

Due to the stringent verification of checksums of all downloaded files, the integrity of

any packages is guaranteed.

2.3.2 Authenticity of the containers

Authenticity of the downloaded τ \mathrm{f}X Live Database texlive. tlpdb is given by the

cryptographic signature. Authenticity of the downloaded containers is guaranteed by
the fact that the checksum information for each containers is taken from the (authen‐
ticated) database, and the checksum algorithm (SHA512) cannot (at the current time)
be tampered with.

3 Practical problems and user experience
As expected, we did face a long list of problems and surprises during the implementation,
testing, and transition course. In this last part we discuss a few of them, and how we

worked around it, and also report on the user experience.

3.1 (Non‐)Distribution of GnuPG

The whole setup is based on the fact that the GNU Privacy Guard GnuPG [2] is avail‐

able. Without it, authenticity cannot be guaranteed, and as consequence also integrity.
Practically all Unix‐like distributions ship GnuPG, but there are two notable and im‐

portant exceptions: Windows and OSX. The default solution—as we do it for other

programs commonly available on most platforms but Windows and Mac, e.g., wget‐
would be to ship binaries of GnuPG with r\mathrm{E}\mathfrak{c} Live.

Unfortunately, due to a long history of ignorant legislative bodies, import and export
of crytographic software is (might still be) heavily restricted in some countries, governed
by the Waasenaar Arrangement [1]. (For those who remember how the first copy of PGP

reached Europe, they will understand easily!) And although the situation has changed
slightly and export seems to be less restricted nowadays, import into some countries,
notably France and India, seems to be a no‐go.

As TUG we do not want to get involved into legal problems when sending DVDs into

foreign countries, so we refrained from distributing GnuPG from within TFX Live.

14

3.2 Alternative distribution of GnuPG

To mitigate the problems described in the previous section, I personally did set up a

repository containing GnuPG binaries for Windows and Mac, which allows users to

simply add GnuPG after the initial installation. To obtain GnuPG for either of the

mentioned platforms, simply issue the following command

tlmgr −repo http: //\mathrm{w}\mathrm{w}\mathrm{w} . preining. \displaystyle \inf 0/\mathrm{t}\mathrm{l}\mathrm{g}\mathrm{p}\mathrm{g}/ install tlgpg

On the Mac, the \mathrm{E}\mathfrak{c} Live Utility (TLU) already offers to install GnuPG from this

location on first run, and the Ψ \mathrm{X} Live infrastructure itself is prepared to use the

GnuPG installed via this way.

3.3 Computing checksums

Another problem we faced is how to compute checksums, in particular SHA512. There is

an excellent and quick Perl module Digest: : SHA which we initially used, but it turned

out the the default Perl distribution even on new Macs is, well, old, very old, and does

not ship this module.

We tried a view different options, like pure Perl implementations, or Lua imple‐
mentations, but all of them were far to slow for the amount of checksums we have to

computer.
As a solution we implemented a multi‐trial system: First the existence of Digest: : SHA

is checked. If it is not available, the following command line programs are checked in

order: openssl, \mathrm{s}\mathrm{h}\mathrm{a}512\mathrm{s}\mathrm{u}\mathrm{m} , and shasum. One or the other should be available on all

platforms.

3.4 Users� complains and experience

As laid out in the introduction, one of the aims was that the user experience should

change as little as possible. During the initial testing phase we got quite some complains
that our initial implementation and way of warning users was to intrusive, too rough.
We have reworked the user experience in a way that, although things are checked and

verified as far as possible, only in worst‐case scenarios the user is warned, the rest of

the changes are minimal.

In particular, for the tlmgr calls we now have the following layout:

tlmgr update
-‐list -

‐repo < CTAN >/\mathrm{t}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{t}/

tlmgr: package repository < CTAN >/\mathrm{t}\mathrm{l}\mathrm{n}\mathrm{e}\mathrm{t}/ (verified)

The only new part is the (verified) part, which also might look like

(not verified: < reason >

where the reasons are either a missing GnuPG, or a missing signature on the server side.

Only in case that a signature was checked and couldn�t be verified, the user will

receive a stark warning and tlmgr aUorts.

15

3.5 Key management

Immediately after release we received request for supporting different signature keys for

alternative repositories. I thus have added key management functions, tlmgr key, that

allows for listing, adding, and removing of additional keys to the trusted list of signing
keys.

This feature is already in use by at least the KOMA‐Script project [3].

4 Conclusion

With the release 2016 of TEX Live we are now up to the same standard of major
Linux distributions which ensure authenticity via cryptographic signatures. Although
in the long years of π \mathrm{x} Live being out there, not one case of abuse has been reported,
we believe that in the current environment with high risk viruses being distributed in

ever evolving schemes, to support verification of authenticity and integrity is a great
step forward. A step that most users will not even realize it has been made, but still

important.

References

[1] The Wassenaar Arrangement on Export Controls for Conventional Arms and

Dual‐Use Goods and Technologies. https: //\mathrm{e}\mathrm{n} . wikipedia. \mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{w}\mathrm{i}\mathrm{k}\mathrm{i}/\mathrm{W}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{a}\mathrm{a}\mathrm{r}_{-}
Arrangement.

[2] Werner Koch et al. GNU Privacy Guard GnuPG. http: //\mathrm{w}\mathrm{w}\mathrm{w} . gnupg. \mathrm{o}\mathrm{r}\mathrm{g}/.

[3] Markus Kohm. KOMA‐Script. htt. \mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w} . komascript. \mathrm{d}\mathrm{e}/.

[4] Norbert Preining. TEX Live�s new infrastructure. ArsTEXnica, 4:69−73, October

2007.

16

