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Abstract
In this short note, we discuss the relationships between eigenvalues of Schrédinger operators and periodic
trajectones of classical mechanics. For a Hamiltonian function H(z,p) : T*R™ — R U {£oo}, let H =
oY (H (x,p)) be a self-adjoint Weyl type pseudo-differential operator and Spec(H) be the spectrum of H.
If A,.(E‘ ¢) = Spec(H) n [E — ¢, E + c] consists of only eigenvalues, we define the (semiclassical) essential
difference spectrum by

Ei(h)

Do(H) = {+E’(h) | E(h), E;(h) € An(E,0)} CR

where {-}  means the set of accumulating points as A — 0. We prove the so-called Helton type theorem
including Harmltoma.ns with singular potentials, that is, either every classical Hamiltonian flow is periodic
near E or Do(H) =

Introduction

Let us first recall the Helton theorem. For a compact oriented, smooth Riemannian n-dimensional manifold
(M, g), we set the classical mechanics and quantum mechanics by

@) {_Au,(x) = Aju;(a),

{uj(z), A;} : Eigenfunction expansion,

= (B_H _QE
( P) op?’ Oz
exp tX H:S*M — S*M Geodesic flow,

where A denotes the Laplacian and H(z,p) = 1/gs:(p,p) € C®(T*M). We note that A = %a‘:, {vgg” 81:’}

and H(z,p) = \/gst(p,p) = \/9pip, € C°°(T*R™) on local charts. Under these circumstances, Helton proved
[8] that either Do(y/=A) = R or every geodesic curve of (CP) is closed. Here

Do(v/=A) = {/A, - VA A € Spec(-A)}AM

—ess
and {-}  means the set of accumulating points in R. To understand the meaning of this theorem, we shall see
three examples :

(Example 1) Let (5%, gy) be a standard 2-dim sphere in R®. Then A; = j(j + 1) with multiplicity 2j + 1 and

aﬁ):

(Example 2) Let (M, g) be a 2-dim Zoll surface with period 2. It is known (See e.g. [9, Lemma 29.2.1]) that
V2Ai=j+3+0(G™)jeNand

Do(v/~8) =

(Example 3) Let (R?/(2rZ)?, gjiat) be a 2-dim flat torus. Then A, x = 5% + k2 j,k € N and so

Do(/-A) =
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Every geodesic flow is periodic in Example 1 and 2, however, we find some geodesic curves are not closed in
Example 3. These faithfully reflect properties of the difference specturm Do(y/—2A). We also would like to
mention some recent results for compact manifold cases. For the case of magneti¢ Schrédinger operators (which
is called Bochner Laplacian), the analogous result is given by R. Kuwabara [11], and if the periodic points of
Hamiltonian with a smooth scalar potential have measure 0 on the energy surface H—1(e), T. Tate [15] proved
D.o(v/=B)=R.

It is emphasized that manifolds are compact and the potentials are not singular in the above theorems. So
our purpose is to consider Hamiltonians including singular potentials on Euclidean spaces. Such a situation
allows us to treat Hydrogen atoms and celestial mechanics. To do this, we set (SP) and (CP) by

(SP) ﬁuj(z’ h) = Ej (h)uj (.’t, h)»
{u;(z,h), E,(h)} : Eigenfunctions and eigenvalues,

Xn = (8H) _%ﬂ),
(CP) o) O
exptXy : T*R™ - T*R™ : Hamiltonian flow,
where H(z,p) : T*"R™ — R U {+oo} denotes a Hamiltonian function. Under suitable conditions (See §2),
An(E,c) = Spec(H) N [E — ¢, E + ¢ consists of only eigenvalues and §Ax(E,c) — oo as h — 0. Thus the
semi-classical difference spectrum can be defined by

€SS

Do(H) = {w | M(R), M\ (R) € An(E, )}  CR.

Our result is analogous to the Helton theorem, that is, either every complete Hamiltonian flow is periodic near
E or Do(H) = R (Theorem 2.5). Here the terminology “near E” will be explained in Sect. 3.

2 Semiclassical operators on R"

Let A(z,p) € L}, .(T*R™) be a symbol. We define the Weyl type pseudo-differential operators by :
Definition 2.1.

Afe) = O @) = s [ 24 (T p) 1) vy for S2) € RO

Followings are the typical examples of Weyl type peudodifferential operators :
(Example 4)
H@,p) =2p € CO(I'R") = Oplf (H) = 1 (at, + 0,2).
(Example 5)
h
H(z,p) = |p— A(2)* + V(z) = Opy/ (H) = 17V = A@) + V(2).
(Example 6)
H(z,p) = 3ol - — € I (T*R®) = OplV(H) = KA L
) 2 I 5'3| loc h 2 l zl .
We assume that
(A1) Hy = Op}¥ (H) is essentially self-adjoint in L2(R™) for small h > 0.
(A2) Ax(E, c) = Spec(Hp) N[E — c, E + c] consists of asymptotically infinite many eigenvalues for small & > 0.
Our guiding: principle is based on harmonic oscillators, hydrogen atoms and magnetic Schrodinger operators.
In these cases, (A1) and (A2) are satisfied (See for instance [4, §4] and [13]).

Definition 2.2 (Semiclassical essential difference spectrum near E). Under the assumptions (A1) and (A2),

o588
S

M;E_J(h) | Ei(h), Ey(h) € An(E, c)} )

Do(H) = {

Fess .
;)zvhere){-} means the set of accumulating points as h — 0 (i.e. @ € Do(H) means that EIE‘(h);E ") 5 g as
—0).
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In this note we further assume that
(A3) H(z,p) = 3 j41<m %a(z)p™: real valued.
(A4) day(z) € Li,(R™) V8| < ol
(A5) 3 finite set K € R™ and p > 0 such that aq is analytic in
Gg={Imz|<p, Rez ¢ K}
and for some C >0 and M > 0,
la(@)| £ C(L+ [z} in G

(A6) exptXy: HY(E-c,E+c)— H™Y(E - ¢, E + ¢) is almost complete.
(i.e. 38 C H™Y(E — ¢+ E +¢) such that the Liouville measure of S¢ is 0 and exp¢Xy is complete on S).
We use the notion of Gevrey class : Given @ C T*R" and s 2 1, the Gevrey class G* (of index s) is defined
as the set of all functions f € C°(2) such that for every compact subset K there exists a C = Cf, g satisfying

maxgex|0°f(z)| £ CloH(lad])*, Va€Zm, ol =01+ ...+ on

For s > 1, G§(Q) = G*(Q) N C°(82) contains non-zero functions. It is also known [1] that nice partitions of
unity are constructed in suitable s > 1. Under the assumptions (A1)~(A6), we have Egorov type theorem for
Gevrey class symbols (See e.g. [2]).

Lemma 2.3. Let  be a bounded open subset of T*R™ such that € is exptXy invariant for every ¢ € R and
OQ\(K x R™). If suppA C Q and A is Gevrey s > 1, then

13.4
h

e_%Osz(A)e = Opl ((exptXg)*A) mod h.

By integrating with respect to ¢, we obtain

Corollary 2.4. Under the same assumptions of Lemma 2.3, if f(t) € C$°(R) then
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& = wth R -
AR = / Ft)e"Eopl (A)e* dt = Op¥ / F®)(exptXu)*Adt) mod h.
-R -R

where f(t) denotes the Fourier transform of f(t) and (exptXy)*A(z,p) = A(exptXy(z,p)) is the pull-back of
A.

The analogy of Helton theorem for the smooth Hamiltonians is proved by M. Combescure and D. Robert
[3]. Our purpose is to treat singular potentials :

Theorem 2.5. Under the assumptions (A1)~(A6), Either Da(H) = R or every complete Hamiltonian flow on
H7Y((E — ¢, E + ¢)) is periodic.

3 Outline of the proof of Theorem 2.5

Proof. Let f € C°(R;) be a Fourier transform of f(z). Assuming (A2), we have unitary operators e by

Stone’s theorem [16]. We denote the spectral decomposition by e = > e#Z: (WP, near E. Thus for a suitable
J

Gevrey class symbol A with suppA C H~Y(E — ¢, E + ¢),

[13:4

A= /R Ft)eEopl¥ (A)eE dt o

-y /R F(t)e R EW-E oW (4) P, ds. @
4,J t



If o ¢ Do(H), there exists a sub interval I, € A, (E, c) such that I, contains finite number EJM’S for
small k. So if suppf C I, A 7 is a finite rank h* smoothing operator. By Corollary 2.4, we have

R
AR = / ) Fit)e ol (A)e*E dt ®)
R ~
— Oopl¥ ( / Ft)(exp tXH)*Adt) mod h. @
-R
We note that
A"}z —A; =0 (mod h) for large R. (5)

Considering the classical mechanics (CP), (A6) assures X = 1 X is essentially self-adjoint in L2(S). Here
S C H™Y(E — ¢, E + c) denotes the subset on which exptXy is complete. From (4) and (5), the leading symbol
of Ay satisfies

[ Feemtxurad = [ foetxn)
R R
= f(X)A(z,p) =0
for all A(z,p) (with supp(4) € H™Y(E — ¢, E + ¢)\(K x R™)).
Thus f(X) =0, that is, I, N Spec(S) = @ and so Spec(S) C Da(H). We need the following lemma :
Lemma 3.1. (Spectrum of X) Either Spec(X) = R or every Hamiltonian flow on S is periodic.

For the proofs of this lemma, see e.g. [7]. Thus Do(H) # R means that Spec(X) # R and every Hamiltonian
flow on S is periodic. (]

4 Examples

In this section we introduce concrete examples. These examples are fundamental physical objects of quantum
mechanics (See e.g. [14]).

(Example 7) (2-dim Harmonic oscillator)

Let H(x,p) = 3|p|?> + Az? + Bz} (A, B > 0). Then Spec(Hy) = {V2A(i + Ph+V2B(j + Hh | i,5 € Nxo}.
For fixed ¢ > 0 (even in the case ¢ = h!~?%),

Do(f)#R fory/EeQq,
Do(f) =R for\/5¢Q

We compare Do(H) with the classical mechanics : For Xg = {(z,p) € T* (R™)| H(z,p) = E}, the Hamiltonian
flow exptXy : ¥ g — X satisfies

exptXpy is always periodic for \/g €Q,
exptXy is non-periodic  for /2 ¢ Q.

(Example 8)(Hydrogen atom) Let H(z,p) = |p|? — L. Then Spec(Hx) NR_ = {E,(h) = ~ar557 | n € Nso}.
For instance, taking A(-1.5,0.5) (ie. -2 < E;(h) < —1), we have
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“2<Ej(h)<-1& 2< -z <-1® 5 <j< 7

Eﬁ(h)_Ejg(h)l_ 1|1 1‘

R WIE T
141 1
>
=2h3’j% (j1+1)2|

> Ll_l_ _ _1_,
Wy G "
2h + 22

> — 2v2 ash— 0.
2h2 +2v2h + 1

It follows Do(H) # R.
Regarding the classical mechanics whose orbits are all closed, followings are typical theorems.

Theorem 4.1 (J. Bertrand (1873)). Define 3-dim Hamiltonian with central force by H(z,p) = 3lp|* + V(r).
If all bound orbits are also closed orbits, then V{(r) = 4 or V(r) = Br2.

Theorem 4.2 ([12]). Let H(z1,22,p1,p2) = 3lpl> + U(z1) + U(z2) where U(z) = (o — B8)*{az — Blx® +
y(a?® — %))}, For suitable a, 3,7, every Hamiltonian flow for low energy is all periodic.

One can apply Theorem 2.5 for quantum mechanics with above potentials. Many other systems are known,
n

such as three charged particles with magnetic field [10], Lotka-Volterra system [6] H(x,p) = Y (r.@, —exp(p, +
=1

n
1 ¥ aijz;)) and ete.
=1

5 Remark

The assumption (A5) is too strong. We can replace (A5) by
(A5)’ 3 finite set K € R™, a bounded subset L D K and p > 0 s.t. a, € C®(T*R") is analytic in

Gk ={|Imz| < p, Rez € L\K}
and for some C' > 0 and M > 0,
laa()| S C(L+ 2™ in Gp\k.

Let us introduce two C-cutoff functions x and ¢, where ¢ is supported in a small neighborhood of T*R™\(K x
R™) and x = 1 on supp {. The distance between the supports of { and 1 — x is then positive. Consider the
pseudodifferential operator A with symbol suppA C T*R?\(K x R") and write the commutator [H, A as follows

(A, A = [H, Ax + HCAQ - x) + [HQ - ), A1 - x).

In the last term of the right-hand side, each operator has a smooth symbol so that we can use the same
computations as in the C*° pseudodiferential operators. The first terms give negligible contributions. Since

WA, Alx|lz2 + (HAQ - x)lz2 S Ch.

The standard proof techniques of Egorov theorem are applicable (See [2] for more precise). Thus taking suitable
partitions of unitiy of A, we obtain the Egorov theorem as in Lemma 2.3.

6 Conclusion

Simple Helton like theorems are discussed including when singular potentials. It is emphasized that the periods
of closed orbits will be explicitly characterized by Do(H) for the smooth potentials (See e.g. [5]). By using
Kustaanheimo-Stiefel transforms, the Hamiltonians with coulombic potentials are presumed to have the same
properties. We would like to mention about it in the future.
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