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Distributions of the determinants of Gaussian beta ensembles*
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Abstract

A central limit theorem for the log-determinants of Gaussian beta ensembles is established.
Moreover, the log-determinants of Gaussian unitary ensembles and Gaussian orthogonal
ensembles are shown to be equal to a sum of independent random variables, from which the
central limit theorem also follows.

1 Tridiagonal matrix models

Gaussian beta ensembles are referred to as ensembles of ‘particles’ on the real line distributed
according to a distribution with the following joint probability density function
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Here A()) = [];;(Aj — Ai) denotes the Vandermonde determinant and Z, g is a normalizing
constant. Three specific values of beta, 8 = 1,2, 4, correspond to Gaussian orthogonal ensembles
(GOE), Gaussian unitary ensembles (GUE) and Gaussian symplectic ensembles (GSE), respec-
tively. These three ensembles are related to certain classes of invariant random matrices whose
eigenvalues are distributed as pp g, (8 = 1,2,4). For instance, GOE is the ensemble of random
real symmetric matrices with independent Gaussian components,

£ij = Eji NN(O,l)v z7é.7’

GOE;, = (§i);'j=1, where {ﬁ,-,- ~ N(0,2).

These matrices are invariant under orthogonal conjugation, that is, H(GOE,)H® has the same
distribution with GOE,, for any orthogonal matrix H, hence the name.
By tridiagonalizing a GOE matrix, we get the following tridiagonal form,

N(O’ 2) Xn-1

Xn—1 N(O,z) Xn-2
Tn1= " .. "’

x1. N(O, 2)

This means that there is a random orthogonal matrix H of order n:— 1 such that

((1) g) (GOE,) ((1) ;t) —T,..

*This work is supported by JSPS Grant-in-Aid for Young Scientists (B) no. 16K17616




78

Here the matrix T, is a random real symmetric tridiagonal matrix, called a random Jacobi
matrix, with i.i.d. (independent identically distributed) Gaussian random variables N(0,2) on
the diagonal and independent chi distributed random variables off the diagonal.

The new matrix model for GOE is not invariant under orthogonal conjugation. However,if
the parameters of the chi distributions off the diagonal are replaced by (n—1)8, (n—2)8,...,8,
respectively, we get a matrix model for (scaled) Gaussian beta ensembles. To be more precise,
the eigenvalues of the following random Jacobi matrix,

N(0,2) Xn-1)8
. 1 | X1 N(0,2) X(n-2)8
np = ﬁ . . - )
\ X3 N(O, 2)

are distributed as Gaussian beta ensembles. This fact was discovered in [3].
Global spectral properties of Gaussian beta ensembles have been well studied. Among them,
Wigner’s semicircle law states that the empirical distribution

n

1
Lop == 8,/
j=1

converges weakly to the semicircle distribution. Here §, denotes the Dirac measure at z. This
means that for any bounded continuous function f: R — R,

Lpg, f)= Zf(\/_) —>/ fl@)——— d:l:, almost surely as n — oo,

where v/4 — z2/(2n) is the density of the semicircle distribution. The Gaussian fluctuation
around the limit was studied by analysing the joint probability density function [8]. It was
shown that for a ‘nice’ function f, the linear statistics

N
Jz:;f(\/—),

after centering, converges weakly to a Gaussian distribution whose variance can be written as a
quadratic functional of f. For polynomials f, the problem was reconsidered in [4] by exploiting
the tridiagonal matrix model. An analogous result for spectral measures of Gaussian beta
ensembles was also investigated [5].

The purpose of this paper is to study the limiting behaviour of the determinants of Gaussian
beta ensemble matrices. The log-determinants (more precisely, the logarithms of the absolute
values of the determinants) are linear statistics of eigenvalues with respect to f(z) = log|z|.
Since the test function log |z| is not a ‘nice’ one, the Gaussian fluctuation mentioned above is not
applicable. However, with different normalizing factors, we will show that the log-determinants
converge to a Gaussian limit as the matrix size tends to infinity. Furthermore, for the GUE
and GOE cases, the log-determinants can be written as a sum of independent random variables.
This interesting result also implies the central limit theorem for log-determinants.

2 The determinants of Gaussian beta ensemble matrices

Let {ap}n>1 be an iid. sequence of Gaussian random variables N(0, 2) and let {b,},>1 be
a sequence of independent random variables, which is also independent of {an}n>1, with b, ~
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Xng/vB. Then the sequence of Gaussian beta ensemble matrices can be coupled in the following

way,
an by
bn—l Ap—1 bn—2
Top = .. N 2
b1 ay

Let D,, = det T, 4 be the determinant of T,, 3. By expressing the determinant in terms of its
minors along the first row, we obtain a recursion relation

D, =a,Dp 1 —b2_Dp_s.
If we write

X2
bh(= =50) =+ Vinen,

then {cp}n>1 becomes a sequence of independent random variables with mean 0 and variance
2. Therefore, the same argument as in [12] yields a central limit theorem for log-determinants
of Gaussian beta ensembles.

Theorem 2.1. For fized 8 > 0, as n — oo,
log | det(GBE,)| — 3 logn! + 1logn 4y

\/5logn

d e .
Here “=7” denotes the convergence in distribution of random variables.

N(0,1).

We will study distributions of the determinants of GUE and GOE in detail in the next
two subsections. The purpose is to show that the distributions of the (absolute values of)
determinants coincide with the distribution of a product of independent random variables. Then
the above central limit theorem follows as a consequence.

2.1 GUE
The Mellin transform of the determinant of GUE was calculated in [9], (cf. Eq. (2.18)),
n
1T
E[| det(GUE,)* ' =[] 2*7 (2 L5)) s€C,Res > 0. (3)
=1 3+ 15D

Here I denotes the gamma function. Each factor on the right hand side of the above expression
is exactly the Mellin transform of a chi distribution. Indeed, the chi distribution with k degrees
of freedom, Xy, is a distribution on (0, 00) with the probability density function

ak-le~ %
flz k) = — , x>0,
2371r(£)
for which )
) k-1,—% o1 [(2tk=1
N B
0 22711(%) I'(3)

provided that Re s > 1 — k. Consequently, the absolute value of the determinant of GUE has the
same distribution with a product of n independent chi-distributed random variables, namely,



Theorem 2.2. d
|det(GUER)| = x1x3X3 " * X2|2|+1 -
N !

n

Let us now prove the formula (3). The argument here is taken from [9]. First of all, the
Mellin transform of the determinant of GUE can be written as,

E[| det(GUE,)[*Y] = / / M- Ml A e B0R R, -,
2

n,
Then the desired formula is a direct consequence of the following result.

Lemma 2.3. For a > 0, (or for « € C with Rea > 0), it holds that

ﬁ / e / 21+ - 2on |27 | A7) [P~ @ +o30) d) - - iz,
=T(2)r3)%. - - I'n)’ (@)l (a+1)% -T(a+n-1)°T(a+n), (4
(2n+ ! / /le - Bon1[22 7 Aw) Pem @) day - - dmgpi

=T(2)’1(3)%-- - T(n)’T(n + YI(a)(a+ 1)?-- - T(a+n - 1)*T(a+n)*. (5)

Proof of the formula (3). We give here a proof for the even case. The odd case is similar. From
the formula (4), if we use the change of variables 2; = \;/v/2,i = 1,...,2n, then for s(= 2a) € C
with Res > 0,

Ion(s) :=/---/|)\1---A2n|s_1|A(A)Ize_%(’\%+"'+)‘§n)d)\1---d)\gn
= Con2™T(HT(5 + 1% T(5 +n— 1’I(5 +n)
2n .
= A 42
= CanE[l 2:T(5 + 131,

where Cyy, is a constant which does not depend on s. Note that the normalizing constant Zsy 2
is nothing but I, (1). Thus we have

1y _ Bn(8) _ Ty, PG+ 1)
E[|det(GUE,,)|*~ 1 = 2222 = [ 27 —2— 2=/
[| det(GU Ezp)|°~7] Ion(1) ]131 o+ 1))
which completes the proof. O

Proof of Lemma 2.3. We begin with the following formula (called Heine’s formula)

Lo [18@Pdute) - duten) = dettesns 152, ®)

where (4 is a measure on R and ¢, = [ 2™dp(z) is the nth moment of . The proof of that formula
can be found in many books or papers, for example, in [11]. Our task is now to calculate the
determinant in the right hand side of (6) for the measure u,

| mlza—l e—zz

Helz) = , z€R,(a>0).



The moments of u, are given by

I'(n+a), ifk=2n,
Cp —
* o, if k=2n+1.

Thus by rearranging rows and columns of the matrix (c,-+j):t;=10, we have

det(cit;)i520 = det(c'm'+2j)iL,(]-n:_ol)/zJ det(¢2i+2j+2)},§§2)/2j-

The proof is complete by showing
ne1 n—1
det (H,,(a) = (I‘(a +i +j))‘ ) ) = H I'(G + I« + 7)- (N
1,7=0 =0
Now let us prove the above formula. By subtracting (a+ ¢ — 1) times the (¢ — 1)th row from the
ithrowfori=n—-1,n-2,...,1, the ith row, for 1 <7 <n — 1, changes to
Fa+i+j)—(a+i— 1 a+i+j—1)=T(a+i+j—1).

Note that the determinant does not change by the transformation and the first column j = 0
now has only one non-zero element. Thus we get the recurrence relation

det(H,()) = T()T'(n) det(Hp_1 (o + 1)),
from which the formula (7) is derived. O

Remark 2.4. Let p be a probability measure on R with all finite moments. Assume that y is not
supported on finitely many points. Then the set of monomials {1, z,x?,...,} is independent in
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L%*(R, 1). By the Gram—Schmidt orthogonalization, we obtain a sequence of orthogonal monic R

polynomials {P,(z)}n>0,
Pn(x) = z" + lower order terms; Py = 1,

/RP,,(w)Pm(z)u(dz) =0, if m#n.

If we let pn := Po/||PullL2m ), then {pn}n>0 becomes an orthonormal system. Moreover, the
sequence {pn}n>0 satisfies the famous three-term recurrence relation

TPn . = bpPp—_1 + Ap+1Pn + bn.+1pn+1,
zpo = a1po + by,

where {a, }n>1 are real numbers and {b, }n>1 are positive real numbers. In other words, multi-
plication by z in the orthonormal set {p,}n>0¢ has the transformation matrix

a1 by
J=|b1 a b

J is called the Jacobi matrix of u and their relation is given by

TH(L,1) = (Jer, e1) = / Fu(de),
R
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where e; = (1,0,...)". Denote by H, = det(ci;)}j=o- Then the coefficients {bn}.>1 can be

calculated from {H,},
H, .H,

H;
See [11] for more details about Jacobi matrices.
Now for the symmetric probability measure uq/T'(a), it follows from Lemma 2.3 that

Vatk, ifn=2k+1,
by =4 -
vk, if n = 2k.

Note that a, = 0 because the measure is symmetric. Thus, we get the Jacobi matrix of the
probability measure po/T'(c),

by = ,(H_1:=0). ®

0 Va
Ja 0 V1
V1 0 va+1
Ja = 2+l 0 2
vV2 0

It is worth mentioning that from the relation (8), the determinant H, = det(ci+;)7;—0 can be
expressed in terms of {b,}n>1 as

Hy =80 8, (n=1,2,...)

which gives an easy way to remember the statements in Lemma 2.3.

22 GOE
The Mellin transform of the determinant of GOE was calculated explicitly in [2] as follows.
(i) n odd. For s € C with Res > 0, (cf. Eq. (19)),
(n-1)/2 .
l-f/ s D(s+35— %)‘
(i +3)

41 T()
r})

(i) n even. For s € C with Res > 0, (cf. Eq. (26)),
E(| det(GOE,)|*™!]

2s—1)/2F( )I‘(n+1)F( -5 s+n 1 ("H/Zzs__ll‘(s+j—%)).

E[| det(GOE,)|*"!] = 2°7!

) 1 "') . N
THTEE 22 2 2 \MP gD

Here F(-) is a hypergeometric function.

The factor 23—1_?(%_?_ is the Mellin transform of the chi-squared distribution with 25 + 1

degrees of freedom. Thus for odd n,

: d

|det(GOE,)| = (vV2x1) X3x3 -+~ Xz, - ©)

. e
(n-1)/2

For even n, by the following result, the (absolute value of) determinant can be also expressed
as a product of independent random variables.



Lemma 2.5. Let £ be the beta distribution with parameters % and 5. Let

f(f) — £1/2(2 _ E)l/2~

Then r(s )F(n+1) A
]E[f(g)s_l] = 2(5_1)/21-\(2) Iw(s-;n) (— 2 ) 2)

Proof. This proof is for more general case. Let ¢ be the beta distribution with parameters a > %
and 8 > 0. Let z be a real number in (0,1). We will calculate the Mellin transform of

9(8) = €/2(1 — 26)'/2,
by using Formula 3.197 in [7],
1
=0 — o) e = BOWF@ A A+ 1 B),
(for ReA > 0,Rep > 0,|8] < 1).

Here B(), 1) denotes the beta function. The calculation is straight forward as follows. Note
that the probability density function of ¢ is given by

pe(z) =

Thus, for s € C with Res > 0,

E s—1 =/ 2(8=1D/2(1 _ ,p)(s-D/2 2°-1(1 — 2)lda
0@ = [ 20— sy L

/ (a+(s-1)/2—- 1)(1 )ﬂ 1( )(s 1)/2dx

11 -2)f1 0<z<l.

B(a B)

aﬁ)
_B(a+2 2,ﬁ) s 8 1_8 1
___EG?T—'5_55+“‘?5+“+ﬂ—@a
_Meti-y (o + B8) 1 ss 1 s L
I'(a) F(a+ﬂ+___ (§_§’§+a—§§+a+ﬁ 2).

Here we have used the relationship between beta function and gamma function,

| I(a)T'(8)

B ==

@8) =TT p)
Note that our problem is a special case in which a = %,ﬂ = % and z = % The proof is
complete. O

Consequently, for even n,
d
|det(GOE,)| £ €22 =€)/ X3x3 - Xas, (10)
——

n/2
where ¢ ~ Beta(3, %). Recently, it was shown in [1] that for even n,
|det(GOE,)| £ X1(x1 ARG IR an
(n—2)/2 |

The two identities are equivalent by observing that
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Lemma 2.6. Let £ ~ Beta(%, 2) be independent of X2 +1- Then

/22— 2 1 £ 303 + 2802
We need the following lemma.
Lemma 2.7. Let X and Y be independent random variables hamng X3, X2 distributions.
(i) Then 5 = X/(X +Y) ~ Beta(}, 3).
(if) Let

X(X+2Y
U,v) = (_(—g(f}—,?—),x+y).

Then V has x2 41 dist'ribution and is independent of U.

Proof. (i) is a well-known relation. (ii) follows by calculating the joint probability density
function of U and V. v O

Proof of Lemma 2.6. Let X ~ x2 and Y ~ x2 be independent random variables. Then

X 1 n|

Thus,
XX 4202 g
(X+Y)

Moreover, V =X +Y ~ x2 11 is independent of U. Therefore,

RN

V(2 - 6)1/2X%+1 4 2y XY2(X 4 2Y )Y 2=x1 (52 + 2x2) 2.
The lemma is proved. O
Combining (9) and (11), we have the following.
Theorem 2.8.

(V2x1) X3¢ -+ X5, if n is odd,.
det(GOE,)| < (n=1)/2
| det ) x108 +x2) Y2 xExE - x2_y,  if nis even.
(n=2)/2

Here the right hand side is a product of independent random variables.

Remark 2.9. (1) The above results for GUE and GOE were derived in [6], [1], respectively by
investigating the singular values.

(ii) Since the determinants of GUE and GOE can be written as a product of independent
random variables, the central limit theorem for log-determinants can be derived as a con-
sequence of the following result.

Theorem (cf. [10, Theorem 1]). Let {Xk;}i=1,..n;k = 1,2,... be a triangular array of
i.4.d. positive random variables with finite moment of orderp > 2. Let Sk := X1+ -+ Xy, .
Suppose that



() &= Zzln—lkﬁooasn——)o,p;
(ii) E,‘:‘_’__lglka<oofor alla>1.

Then as n — oo,

n 2,2
;lc; (Z(ng S — log ngp) + 726") —d>N(0, 1).

k=1
Here y=o/u, p=E[X1] > 0, and 0% = Var[X]].
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