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1 Introduction

Supply chains are connections of process including procurement of raw materials, production, ship‐
ping and selling for a product. Supply chain management is one of main objects in management

science, and hence many researchers have proposed mathematical models to optimize or analyze
supply chain networks. In this paper, we focus on competitive supply chain networks. Because

supply chains involve many decision‐makers (called players) and they independently decide their

behaviors, competitive situations often occur. To analyze, Nagurney et al. [10] proposed a supply
chain network equilibrium (SCNE) model which is constructed by the manufacturers, the retailers

and the demand markets. Yamada et al. [18] extended the SCNE model by considering the behav‐

iors of the distribution centers. Hammond and Beullens [5] developed a model for closed‐loop supply
chain with the manufacturers and the consumer markets considering returns of the products and

evaluated the effect of a legislation. Yang et al. [19] extended this closed‐loop model to a general
closed‐loop supply chain network with the raw material suppliers, the manufacturers, the retailers,
the recovery centers and the demand markets. Li and Nagurney [8] treated a quality competition
with the suppliers, the producing firms and the demand markets and evaluated the quality of the

products. Nagurney [9] considered a freight service provision network model with the disaster relief

organizations, the freight service providers and the demand points. Nagurney et al. [11] dealt with

a network model for post‐disaster humanitarian relief by NGOs which is constructed by NGOs,
victims and donors.

Recently, particular attention is paid to the risk management of supply chains. Supply chain has

many vulnerabilities as to natural disasters, business fluctuations, demand and cost uncertainties

and so on. Wu et al. [17] suggested that supply chains face the many kinds of risk factor and

there are many cases that supply chains were disrupted, so it is necessary to deal with these risks.

Kleindorfer and Saad [7] pointed out the necessities of three tasks which are �Specifying sources

of risk and vulnerabilities, Assessment, and Mitigation� (SAM). Tang [16] defined �supply chain

risk management (SCRM)� as �the management of supply chain risks through coordination or

collaboration among the supply chain partners so as to ensure profitability and continuity�. Also,
there are many researches analyzing the optimal behavior as to risks by using a mathematical

model. Dong et al. [4] expanded the SCNE model in [10] to a equilibrium model with a demand
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uncertainty. Bertsimas and Thiele [3] analyzed inventory management problems under the demand

and cost uncertainties. Qiang et al. [13] developed a supply chain network model with uncertainty
in costs and demand. In addition, they proposed a supply chain network performance measure.

Pishvaee et al. [12] dealt with a market to market closed‐loop supply chain network. In their

research, demands, returns and transportation costs are assumed as uncertain factors. Baghalian
et al. [1] developed a multi‐supply chain network model considering demand uncertainties and

disruption risks.

These researches analyzed a supply chain network with uncertainties in demand or cost. But

they did not consider a model which has uncertainties in the other players� strategies. In actually,
there are many cases which players in the supply chain can not know the others� strategies exactly.
The aim of this paper is to consider the case that there are uncertainties in competitors� strategies
in the SCNE model in [10]. In this paper, we assume that some firms can not know the exact value

of competitors� strategies. We also assume that under these uncertainties, they minimize their cost

for the worst case. This approach is called robust optimization or robust methodology. According to

Bertsimas and Thiele [3], �the robust methodology can be understood as a �reasonable worst‐case�

approach�. So we call the model considered in this paper �robust SCNE model�.

2 Robust SCNE model

In this section, we develop a robust supply chain network equilibrium model. The network that we

consider is shown in Figure 1. In this model, there are m manufacturers, n retailers (or wholesalers)
and 0 demand markets. The manufacturers produce products and delivery them to the retailers.

The retailers buy the products from the manufacturers and sale them to the demand markets.

The demand markets buy the products from the retailers. Each manufacturer minimizes his total

cost by deciding the amount of the products shipped to the retailers. Each retailer minimizes his

total cost by deciding the amount of the products ordered to each manufacturer and the products
sold to each demand market. Each demand market decides the purchase volume and the market

price which satisfies the equilibrium conditions described later. We assume that each manufacturer

and retailer cannot know exactly strategies of the other manufacturers and retailers respectively.
We also assume that they minimize their cost for the worst case. We formulate their problems as

second‐order cone programming problems and also reformulate them as a VIP.

Figure 1: Supply chain network equilibrium model.

First, we define the variables for this model. For i=1, \cdots

,  m, j=1, \cdots, n, k=1, \cdots, 0 :

q_{ij}(\geq 0) : the amount of the products shipped by manufacturer i to retailer j,

w_{jk}(\geq 0) : the amount of the products sold by retailer j to demand market k,
p_{k}(\geq 0) : the market price at demand market k.
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As for these variables, we define some vectors as follows:

q_{i}. := (q_{i1}, \cdots, q_{in})^{T},
q_{j} := (q_{1j}, \cdots, q_{mj})^{T}

w_{j}. := (w_{j1}, \cdots, w_{jo})^{T\prime},
w.k := (w_{1k}, \cdots, w_{nk})^{T},

q_{-i}. := (q_{1}^{T}, \cdots, q_{i-1}^{T}., q_{i+1}^{T}., \cdots, q_{m}^{T}.)^{T},
q-j := (q_{1}^{T}, \cdots, q_{\dot{}-1}^{T}, q_{j+1}^{T}, \cdots, q_{n}^{T})^{T},

w_{-\mathrm{j}}. := (w_{1}^{T}, \cdots, w_{j-1}^{T}., w_{j+1}^{T}., \cdots, w_{n}^{T}.)^{T}
w_{-k} := (w_{1}^{T}, \cdots, w_{k-1}^{T}, w_{k+1}^{T}, \cdots, w_{o})^{T},

p := (p_{1}, \cdots,p_{0})^{T}

Note that q_{i} . is a variable of manufacturer i, q_{j} and w_{j} . are variables of retailer j , and w_{k} and p_{k}

are variables of demand market k . As for the price of each product, we define as follows:

$\rho$_{ij} : the price of the product charged by retailer j to manufacturer i,

$\pi$_{j} : the price of the product charged by demand market k to retailer j.

We also use the following notations:

$\rho$_{i}. := ($\rho$_{i1}, \cdots, $\rho$_{in})^{T},
$\rho$_{j} := ($\rho$_{1j}, \cdots, $\rho$_{mj})^{T}

2.1 The problems solved by the manufacturers

We consider the problem solved by the manufacturers. We define the following functions for man‐

ufacturer i(i=1, \cdots, m) :

f_{i}(q_{i}., q_{-i}.) : a production cost function of manufacturer i,

c_{ij}(q_{ij}) : a transaction cost between manufacturer i and retailer j(j=1, \cdots, n) .

We assume that \mathrm{c}_{ij} is convex. A product function depends on not only the decision variable of

manufacturer i (namely, q_{i}. ) but also that of the other manufacturers (namely, q_{-i}. ), that is, if the

manufacturers procure the raw materials of the products from a same supplier, a competition for

the raw materials may occur and affect the production cost. In this paper, we define f_{i}(q_{i}., q_{-i}.) as

follows:

f_{i}(q_{i}., q_{-i}.) :=(\displaystyle \sum_{j=1}^{n}q_{ij})(a_{ii}+b_{i1}\sum_{j=1}^{n}q_{1j}+\cdots+b_{ii}\sum_{j=1}^{n}q_{ij}+\cdots+b_{im}\sum_{j=1}^{n}q_{mj}) ,

where a_{ii} and b_{is} (s=1, \cdots , m) are nonnegative scalars. Let a_{i} denote a column vector in n

dimensions whose all components are a_{ii} and B_{is}\in \mathbb{R}^{n\times n} denote a matrix whose all components
are b_{is} . Then it follows that

f_{i(q_{i}.,q_{-i}.)=a_{i}^{$\tau$_{q_{i}.+q_{i}^{$\tau$_{B_{ii}}}q_{i}.+\sum_{l\neq\dot{\circ}}^{m}q_{i}^{T}B_{ilq_{l}}}}}.l=1^{\cdot} . .
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where T:=\{(q^{T}, s^{T})^{T}|0\leq q, \Vert M_{it}B_{il}q_{i}.\Vert\leq s_{il}(l=1, \cdots, i-1, i+1, \cdots, m, i=1, \cdots, m)\}, q:=

(q_{1}^{T}, \cdots

,  q_{m}^{T}.)^{T} and s :=(s_{1}^{T}, \cdots, s_{m}^{T})^{T}

2.2 The problems solved by the retailers

Next, we consider the problem solved by the retailers. We define the following function for retailer

j(j=1, \cdots, n) :

hj (q.j, q_{-j}) : a handling cost of retailer j.

According to Nagurney et al. [10], the handling cost may include � the display and storage cost

associated with product �. In this paper, we define h_{j}(q_{\dot{}}, q_{-j}) as below:

h_{j}(q_{j}, q_{-j}):=(\displaystyle \sum_{i=1}^{rn}q_{ij})($\delta$_{ii}+$\gamma$_{j1}\sum_{i=1}^{m}q_{i1}+\cdots+$\gamma$_{jj}\sum_{i=1}^{m}q_{ij}+\cdots+$\gamma$_{jn}\sum_{i=1}^{m}q_{in}) , (2.4)

where $\delta$_{jj} and $\gamma$_{jt} (t=1, \cdots , n) are nonnegative scalars. Let $\delta$_{j} denote a column vector in m

dimensions whose all components are $\delta$_{jj} and $\Gamma$_{jt}\in \mathbb{R}^{m\times m} denote a matrix whose all components
are $\gamma$_{jt} . Then, the function (2.4) is rewritten as

h_{j} (q.j, q_{-j})=$\delta$_{j}^{T}q_{j}+q_{j}^{T}$\Gamma$_{jj}q_{j}+\displaystyle \sum_{r=1,r\neq \mathrm{j}}^{n}q_{j}^{T}$\Gamma$_{jr}q_{r}.
Note that the total sales for the products of retailer j is $\pi$_{j}\displaystyle \sum_{k=1}^{o}w_{jk} and the total stocking cost

is $\rho$_{j}^{T}q_{\dot{}} We assume that the retailers must not cause an absence of the goods. That is, for

retailer j , the total stock of the products (=\displaystyle \sum_{i=1}^{m}q_{ij}) must not be less than the total sales amounts

(=\displaystyle \sum_{k=1}^{o}w_{jk}) . If we denote the total cost of retailer j by $\Phi$_{j}(q_{j}, q_{-j} , wj the total cost of him is

given by

$\Phi$_{j}(q_{j}, q-j, w_{j}.)=-$\pi$_{j}\displaystyle \sum^{o}w_{jk}+$\rho$_{j}^{T}q_{j}+$\delta$_{j}^{T}q_{j}+q_{j}^{T}$\Gamma$_{jj}q_{j}+\sum_{r\neq j}^{n}q_{j}^{T}$\Gamma$_{jr}q_{r}k=1^{\cdot}\cdot\cdot.\cdot r=1^{\cdot}\cdot\cdot
We assume that retailer  j cannot know the exact value of q.-j but estimates q_{r} as \tilde{q}_{r} :=q_{r}+

N_{jr} $\Delta$ v_{r} (r=1, \cdots , j-1, j+1, \cdots, n) , where N_{jr}\in \mathbb{R}^{m\times m} is a symmetric positive defimte matrix

and  $\Delta$ v_{r}\in \mathbb{R}^{m} satisfies \Vert $\Delta$ v_{r}\Vert\leq 1 . We also assume that he minimizes his cost for the worst case

by using the robust approach same as the problems solved by the manufacturers. Then, retailer j �s

cost function for the worst case \tilde{ $\Phi$}_{i}(q_{j}, q_{-j} , wj. ) is

\displaystyle \tilde{ $\Phi$}_{j}(q.j, q_{-j}, w_{j}.)=\max\{$\Phi$_{i} (q .j , \tilde{q}_{-j}, w_{j} \tilde{q}.-j\in V_{-j}\},

where \tilde{q}.-j := ((\tilde{q}_{1})^{T}, \cdots

, (\tilde{q}_{j-1})^{T}, (\tilde{q}_{j+1})^{T}, \cdots, (\tilde{q}_{n})^{T})^{T}, V_{-j}:=\displaystyle \prod_{r\neq j}^{n}r=1V_{\dot {}r}. and V_{jr} :=\{\tilde{q}_{r}=

q_{r}+N_{jr} $\Delta$ v_{r}|\Vert\triangle v_{r}\Vert\leq 1\} . Here, V_{-j} is the uncertainty set for retailer j . So the function which

retailer j should minimize is

\displaystyle \tilde{ $\Phi$}_{i}(q_{j}, q_{-j}, w_{j}.)=-$\pi$_{j}\sum_{k=1}^{o}w_{jk}+$\rho$_{j}^{T}q_{j}+$\delta$_{j}^{T}q_{j}
+q_{j}^{T}$\Gamma$_{jj}q_{j}+\displaystyle \sum_{r\neq jr\neq \mathrm{j}}^{n $\tau$.n}r=1q_{j}$\Gamma$_{jr}q_{r}+\sum r=1\Vert\triangle\max_{v_{r}||\leq 1}q_{j}^{T}$\Gamma$_{jr}N_{jr} $\Delta$ v_{r}.
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Note that \displaystyle \Vert\triangle\max_{v_{r}||\leq 1}q_{j}^{T}$\Gamma$_{jr}N_{jr}\triangle v_{r}=\Vert N_{jr}^{T}$\Gamma$_{jr}^{T}q_{j}\Vert=\Vert N_{jr}$\Gamma$_{jr}q_{j}\Vert . Accordingly, retailer  j solves the

following second‐order cone programming problem:

\displaystyle \min_{q_{j},w_{j}.,t_{j}} \hat{ $\Phi$}_{j}(q_{j}, q-j, w_{j}., t_{j})=-$\pi$_{j}\sum_{k=1}^{o}w_{jk}+$\rho$_{j}^{T}q_{j}+$\delta$_{j}^{T}q_{j}+q_{j}^{T}$\Gamma$_{jj}q_{j}
+\displaystyle \sum_{r=1}^{n}q_{j}^{T}$\Gamma$_{jr}q_{r}+\sum_{r=1}^{n}t_{jr}r\neq j.\cdot f\neq j (2.5)

\mathrm{s} .t. 0\leq q_{j}, 0\leq w_{j}., \displaystyle \sum_{k=1}^{o}w_{jk}\leq\sum_{i=1}^{m}q_{ij}, \Vert N_{jr}$\Gamma$_{jr}q_{j}\Vert\leq t_{jr}
(r=1, \cdots,j-1,j+1, \cdots, n) ,

where t_{j} := (t_{j1}, \cdots , t_{jj-1}, t_{jj+1}, \cdots, t_{jn})^{T} . Let S_{j} denote the feasible set of (2.5), and then S_{j} is

given by

S_{j}:=\displaystyle \{(q_{j}^{T}, w_{j}^{T}, t_{j}^{T})^{T}|0\leq q_{j}, 0\leq w_{j}., \sum_{k=1}^{o}w_{jk}\leq\sum_{i=1}^{m}q_{ij}, \Vert N_{jr}$\Gamma$_{jr}q_{j}\Vert\leq t_{jr}
(r=1, \cdots,j-1,j+1, \cdots, n)\}.

Because S_{j} is a nonempty convex set and the objective function \hat{ $\Phi$}_{j} is convex with q_{j}, w_{j} . and t_{j},
(2.5) is a convex programming problem. By using a Lagrange multiplier $\xi$_{j}\in \mathbb{R}+ , for given q.-j,
the optimal condition for (2.5) is given by the following (see [2], for example) :

+\displaystyle \sum_{k=1}^{o}\{($\xi$_{j}^{*}\sum_{i=1}^{m}\{($\rho$_{ij}^{*}+-\frac{\partial h_{j}(q^{*}q.)}{$\pi$_{j}^{*})^{\partial q_{i\mathrm{j}}}(w_{jk}}-$\xi$_{j}^{*}(q_{ij}-q_{ij}^{*})\}-w_{jk}^{*\{\}}
+(\displaystyle \sum_{i=1}^{m}q_{ij}^{*}-\sum_{k=1}^{o}w_{jk}^{*})($\xi$_{j}-$\xi$_{j}^{*}) (2.6)

+\displaystyle \sum_{r\neq \mathrm{j}}^{n}r=1(t_{jr}-t_{jr}^{*})\geq 0,
\forall(q_{j}^{T}, w_{j}^{T}, $\xi$_{j}, t_{j}^{T})^{T}\in\hat{S}_{j},

where

\hat{S}_{j}:=\{(q_{j}^{T}, w_{j}^{T}, $\xi$_{\dot{}}, t_{j}^{T})^{T}|0\leq q_{\mathrm{j}}, 0\leq w_{j}., 0\leq$\xi$_{j}, \Vert N_{jr}$\Gamma$_{jr}q_{\mathrm{j}}\Vert\leq t_{jr}
(r=1, \cdots,j-1,j+1, \cdots, n)\}.

Also, by gathering (2.6) as for all retailers, we get the following equilibrium condition:

+\displaystyle \sum_{j=1}^{n}\sum_{k=1}^{o}\{($\xi$_{j}^{*}--w_{jk}^{*\{\}}\sum_{j=1}^{n}\sum_{i=1}^{m}\{($\rho$_{ij}^{*}+\frac{\partial h_{j}(q_{\mathrm{j}}^{*},q_{-}^{*}\cdot)}{$\pi$_{j}^{*})^{q_{ij}}(w_{jk}}-$\xi$_{j}^{*}(q_{ij}-q_{ij}^{*})\}
+\displaystyle \sum_{j=1}^{n}(\sum_{i=1}^{m}q_{ij}^{*}-\sum_{k=1}^{o}w_{jk}^{*})($\xi$_{j}-$\xi$_{j}^{*}) (2.7)

+\displaystyle \sum_{j=1}^{n}\sum_{r\neq j}^{n}r=1(t_{jr}-t_{jr}^{*})\geq 0,
\forall(q^{T}, w^{T}, $\xi$^{T},t^{T})^{T}\in\hat{S},

where :=\{(q^{T}, w^{T}, $\xi$^{T}, t^{T})^{T}|0\leq q, 0\leq w, 0\leq $\xi$, \Vert N_{jr}$\Gamma$_{jr}q_{j}\Vert\leq t_{jr}(r=1, \cdots

,  j-1,j+1, \cdots

,  n,

j=1, \cdots

,  n)\}, w :=(w_{1}^{T}, \cdots, w_{n}^{T}.)^{T},  $\xi$ :=($\xi$_{1}, \cdots, $\xi$_{n})^{T} and t:=(t_{1}^{T}, \cdots, t_{n}^{T})^{T}
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2.3 The conditions for the demand markets

Finally, we consider conditions which should be satisfied in the demand markets. For k=1, \cdots, 0,

we define the following functions:

d_{k}(p) : a demand function of demand market k,

g_{jk}(w_{k}, w_{-k}) : a transaction cost between demand market k and retailer j(j=1, \cdots , n) .

We assume that on the equilibrium, the following conditions are satisfied for demand market

k(k=1, \cdots, 0) :

\left\{\begin{array}{l}
$\pi$_{j}+g_{jk}(w.k, w_{-k})=p_{k} \mathrm{i}\mathrm{f} w_{jk}>0,\\
$\pi$_{j}+g_{jk}(w_{k}, w_{-k})\geq p_{k} \mathrm{i}\mathrm{f} w_{jk}=0,
\end{array}\right. (2.8)

\left\{\begin{array}{l}
d_{k}(p)=\sum_{j=1}^{n}w_{jk} \mathrm{i}\mathrm{f} p_{k}>0,\\
d_{k}(p)\leq\sum_{j=1}^{n}w_{jk} \mathrm{i}\mathrm{f} p_{k}=0.
\end{array}\right. (2.9)

Condition (2.8) means that, when a demand market purchases the products from retailer j , sum of

the transaction cost and the price of the product equals to the market price and when the demand

market does not buy any products, sum of the transaction cost and the price of the product surpasses

the market price. Condition (2.9) means that, when the market price is positive, the market demand

equals to the purchase volume of the products from the retailers and when the market price is 0,
the market demand belows the purchase volume of the products from the retailers.

For given w_{-k} and p_{-k} , the conditions (2.8) and (2.9) can be rewritten as follows:

\displaystyle \sum_{j=1}^{n}\{($\pi$_{j}^{*}+g_{jk}(w_{k}^{*}, w_{-k})-p_{k}^{*})(w_{jk}-w_{jk}^{*})\}
+(\displaystyle \sum_{j=1}^{n}w_{jk}^{*}-d_{k}(p_{k}^{*},p_{-k}))(p_{k}-p_{k}^{*})\geq 0 ,

(2.10)

\forall w_{k}\in \mathbb{R}_{+}^{n}, p_{k}\in \mathbb{R}_{+}.

By gathering (2.10) for all demand markets, we obtain

\displaystyle \sum_{k=1}^{o}\sum_{j=1}^{n}\{($\pi$_{j}^{*}+g_{jk}(w_{k}^{*}, w_{-k}^{*})-p_{k}^{*})(W_{jk-w_{jk}^{*})\}}
+\displaystyle \sum_{k=1}^{o}\{(\sum_{j=1}^{n}w_{jk}^{*}-d_{k}(p_{k}^{*},p_{-k}^{*}))(p_{k}-p_{k}^{*})\}\geq 0 ,

(2.11)

\forall w\in \mathbb{R}_{+}^{no}, p\in \mathbb{R}_{+}^{k}.

2.4 Reformulation as a VIP

By gathering (2.3), (2.7) and (2.11), we get

\displaystyle \sum_{i=1}^{m}\sum_{j=1}^{n}\{(\frac{\partial f_{i}(q_{i}^{*}.,\mathrm{q}_{-i}^{*}.)}{\partial q_{ij}}++(q_{ij}-q_{i.i}^{*})\}

+\displaystyle \sum_{j=1}^{n}^{+\sum_{j=1}^{n}}(\sum_{i=1}^{m}^{\sum_{k=1}^{o}}q_{ij^{*}}-\sum_{k=1}^{o}^{\{(g_{jk}}w_{jk^{*}})($\xi$_{j}-$\xi$_{j}^{*})(w_{k}^{*},w_{-k}^{*})-p_{k}^{*}+$\xi$_{j}^{*})\backslash ^{w_{jk}-w_{jk}^{*})\}}
+\displaystyle \sum_{k=1}^{o} (\sum_{j=1}^{n}w_{jk}^{*}-d_{k}(p_{k}^{*},p_{-k}^{*}))(p_{k}-p_{k}^{*})\}
+\displaystyle \sum_{i=1}^{m} \sum_{ $\iota$\neq i}^{m}l=1(s_{il}-s_{il}^{*})\}
+\displaystyle \sum_{j=1}^{n} \sum_{r\neq j}^{n}r=1(t_{jr}-t_{jr}^{*})\}\geq 0,
\forall(q^{T}, w^{T}, $\xi$^{T}, p^{T}, s^{T}, t^{T})^{T}\in K,
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where

K:=\{(q^{T}, w^{T}, $\xi$^{T},p^{T}, s^{T}, t^{T})^{T}|0\leq q, 0\leq w, 0\leq $\xi$, 0\leq p, \Vert M_{il}B_{il}q_{i}.\Vert\leq s_{il}
(l\neq i, i=1, \cdots , m) , \Vert N_{jr}$\Gamma$_{jr}q_{j}\Vert\leq t_{jr}(r\neq j, j=1, \cdots , n

Therefore the all players� problems are reformulated as the VIP:

Find x^{*}\in K such that F(x^{*})^{T}(x-x^{*})\geq 0, \forall x\in K , (2.12)

where

x:=\left(\begin{array}{l}
q\\
w\\
 $\xi$\\
 p\\
s\\
t
\end{array}\right) and F(x):=\ovalbox{\tt\small REJECT} -$\xi$_{1}\displaystyle \frac{\partial f_{1}(q_{1}.\cdot,q-1\cdot)}{\partial q_{1n}}\frac{\partial f_{1}(\mathrm{q}\mathrm{z}.\cdot,\mathrm{q}-1.\cdot)}{\partial q_{11}}+\frac{dc_{11}(q_{11})}{dq_{1.\cdot\cdot\cdot 1}}+\frac{\partial h_{1}(q_{1},.q_{-1})}{\partial q_{11}}-$\xi$_{1}g_{n}(w_{1},w_{-1})_{o}-p^{o}+$\xi$_{n}g_{n}o^{+\frac{\partial c_{rnn}(q_{mn}):}{1^{\partial q_{mn}}w_{-1})}+\frac{\partial h_{n}(\mathrm{q}_{n},q_{-n})}{1+$\xi$_{1}\partial q_{mn}}-$\xi$_{n}}(w_{o},w_{-0})-p_{0}+\cdot$\xi$_{n}g_{0}1_{1}(w_{O},w_{-0})-p_{1}+\cdot$\xi$_{1}\sum^{n}j=1:i_{o_{1}}^{1-d_{1^{O}}}(p_{1},p_{-1})\sum_{j=1}^{n}^{+}.w_{j-d}(p_{0},p_{-0})\sum^{m}^{\frac{\frac{d}{}\mathrm{c}_{1ndq_{1n}}(q_{1n}.)+\partial c_{ $\tau$ n1}(q_{m1})::}{\partial q_{m1}}}i=1_{w}qin_{1}-.\cdot\cdot\sum_{k=1}^{+}w_{nk}\sum_{i=1}^{m}^{\frac{\partial f_{m}(\mathrm{q}_{m},q-m)}{\partial q_{mn}g_{1}}\frac{\partial f_{m}(q_{m},q_{-m})}{\partial q_{m1}}}q_{i1}-.\sum_{k=1}^{o}^{\frac{\partial h_{1}(q_{1},q_{-1})}{\partial q_{m1}}}w_{1k}1^{+.\frac{\partial h_{n}(q_{n},q_{-.n})}{\partial q_{1n}}-$\xi$_{n}}(w.\cdot\cdot,-p:::.\cdot::.:\cdots \ovalbox{\tt\small REJECT}.
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3 Numerical experiments

Now we introduce the solution method of VIP (2.12). It is difficult to solve VIP (2.12) directly
because this problem has non‐differentiaule functions in set K . In the paper, we reformulate (2.12)
as a second‐order cone complementarity problem. Note that K can be written as follows:

K:=\{(q^{T}, w^{T}, $\xi$^{T},p^{T}, s^{T}, t^{T})^{T}|(q^{T},w^{T},$\xi$^{T},p^{T})^{T}\in \mathbb{R}_{+}^{ $\sigma$},
(s_{il}, q_{i}^{T}B_{il}M_{il})^{T}\in \mathcal{K}^{1+n}(t=1, \cdots, i-1, i+1, \cdots, m, i=1, \cdots, m) ,

(t_{\dot {}r}, q_{j}^{T}$\Gamma$_{jr}N_{jr})^{T}\in \mathcal{K}^{1+m}(r=1, \cdots,j-1,j+1, \cdots, n, j=1, \cdots, n)\},
where  $\sigma$ :=mn+no+n+0 , and \mathcal{K}^{1+n} and \mathcal{K}^{1+m} are 1+n and 1+m dimensional second‐order

cone respectively. Generally, the  1+ $\zeta$ dimensional second‐order cone \mathcal{K}^{1+ $\zeta$} is defined by

\mathcal{K}^{1+ $\zeta$}:=\{y=(y_{1}, y_{2}^{T})^{T}|y_{1}\geq\Vert y_{2}\Vert, y_{1}\in \mathbb{R}, y_{2}\in \mathbb{R}^{ $\zeta$}\}.
We define \mathcal{K}^{1} by \mathbb{R}+\cdot We define \mathcal{K} and  $\theta$(x) as

\displaystyle \mathcal{K}:=\mathbb{R}_{+}^{ $\sigma$}\times\prod_{i=1}^{m}\prod_{l=1,l\neq i}^{m}\mathcal{K}^{n+1}\times\prod_{j=1}^{n}\prod_{r=1,r\neq j}^{n}\mathcal{K}^{m+1},  $\theta$(x):=\left\{\begin{array}{l}
q\\
w\\
 $\xi$\\
 p\\
s_{12}\\
M_{12}B_{12}q_{1}\\
\\
s_{mm-1}\\
M_{mm-1}B_{mm-1}q_{m}\\
t_{12}\\
N_{12}$\Gamma$_{\mathrm{l}2}q_{1}\\
\\
t_{nn-1}\\
N_{nn-1}$\Gamma$_{nn-1}q_{n}
\end{array}\right\}.
Then, the set K appearing in (2.12) is rewritten by K=\{x| $\theta$(x)\in \mathcal{K}\} . Therefore, from KKT

conditions of VIP (2.12), VIP (2.12) can be reformulated as the following mixed second‐order cone

complementarity problem (see [14] and [15]):

Find (x,  $\lambda$)\in \mathbb{R}^{ $\nu$}\times \mathbb{R}^{ $\tau$}
such that F(x)-\nabla $\theta$(x) $\lambda$=0 , (3.1)

 $\theta$(x)\in \mathcal{K},  $\lambda$\in \mathcal{K},  $\theta$(x)^{T} $\lambda$=0,
where \mathrm{v} := $\sigma$+m(m-1)+n(n-1) and  $\tau$ := $\sigma$+m(m-1)(n+1)+n(n-1)(m+1) .

We solve (3.1) by ReSNA [6] to analyze the impact of uncertainties on the shipments, the prices,
the profits and the total supply chain cost per unit. We choose the parameters same as Nagurney
et al. [10] for each cost function and demand function. The number of the manufacturers, the

retailers and the demand markets are two respectively. In these numerical experiments, we consider

the following two cases with a constant  $\alpha$ :
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Case 1. Manufacturer 1 does not know the exact behavior of manufacturer 2 and the parameters
for the uncertainties are given by

 M_{12}= $\alpha$\times\left(\begin{array}{ll}
1 & 0\\
0 & 2
\end{array}\right), M_{21}=\left(\begin{array}{ll}
0 & 0\\
0 & 0
\end{array}\right).
Case 2. Neither manufacturer 1 nor manufacturer 2 knows the exact value of the opponent each

other and the parameters for the uncertainties are given by

M_{12}= $\alpha$\times\left(\begin{array}{ll}
1 & 0\\
0 & 2
\end{array}\right), M_{21}= $\alpha$\times\left(\begin{array}{ll}
1 & 0\\
0 & 1
\end{array}\right).
For both the cases, we change  $\alpha$ from  0 to 5. When  $\alpha$ equals to  0 , each manufacturer knows the

exact behavior of the opponent. The larger  $\alpha$ gets, the larger the uncertainties get too. Also for

both the cases, there are not uncertainties between the retailers.

The results of the experiments are shown in Figures 2‐9. In Figure 2 and Figure 6, [circles
and solid line] and [diamonds and solid line], and [triangles and solid line] and [squares and solid

line] are overlapping respectively. The rest four dashed lines are overlapping too. In Figure 3 and

Figure 7, the line of [circles and solid line] and [diamonds and solid line], [triangles and solid line]
and [squares and solid line], [circles and dashed line] and [diamonds and dashed line], and [triangles
and dashed line] and [squares and dashed line] are overlapping respectively. In Figure 4 and Figure
8, [triangles and solid line] and [squares and solid lines] are overlapping.

Seeing Figure 2, the larger the uncertainty gets, the fewer the amount of the products shipped
by manufacturer 1 gets. But the amount of the products shipped by manufacturer 2 is increasing.
Sum of the amount of the products shipped by retailer 1 and 2 get fewer. In Figure 3, the prices
charged by the demand markets to the retailers are getting higher. We see that the profit of

manufacturer 1 is decreasing while the profit of manufacturer 2 is decreasing from Figure 4, and the

total cost per unit is getting higher from Figure 5. Seeing Figure 6, if both the manufacturers have

the uncertainties, they decrease the amounts of the products. But manufacturer 1, who has more

uncertainty than manufacturer 2, produces fewer. We see that the price charged by the retailers to

manufacturer 2 is getting lower from Figure 6, and the profit of manufacturer 2 is decreasing from

Figure 8. Comparing Figure 5 and Figure 9, the total supply chain cost per unit for the case 2 is

higher than case 1. In both the cases, the larger the uncertainties get, the more retailers get profit.
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 2 $\alpha$\} ..

0 1 2 3 4 5

 $\alpha$

\cdots the market price set by demand market 1 \blacksquare\cdots the market  $\mu$ \mathrm{i}\mathrm{o}\mathrm{e} set \mathrm{b} 何mand matket2

Figure 3: The effects of uncertainties on the prices (case 1).
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0 1 2  $\alpha$ 3 4 \mathrm{s}
1

\rightarrow manubdurer 1 -\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{u}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t} $\iota \kappa$ \mathrm{e}\mathrm{r}2

—

retailer 1

-\mathrm{r}.\mathrm{e}\mathrm{t}\mathrm{a}.\mathrm{i}.|\mathrm{e}r2\wedge\cdot\cdot\sim--\cdot\cdot-\cdot-\cdot\backslash \cdot\backslash \cdots\cdot\vee\cdot-
Figure 4: The effects of uncertainties on the profits (case 1).

147.5012345\underline{|}
 $\alpha$

\cdots--\cdot\cdot-

Figure 5: The effects of uncertainties on the total supply chain costs (case 1).
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 $\alpha$

\rightarrow manufacturer 1‐retailer 1

— manufadurer 2‐retai|er 1

\cdots retailer 1‐demand market 1

\mathrm{b}\cdots retailer 2‐ demand market 1

— manufacturer 1‐retailer 2

‐ltl manufacturer 2‐retai er 2

*\cdots retailer  1- demand \mathrm{m}\mathrm{a}*\mathrm{e}\mathrm{t}2

\cdots retailer  2-\mathrm{d}\mathrm{e}\mathrm{m}\mathrm{a}\mathfrak{n}\mathrm{d} \mathfrak{m}atket2

Figure 6: The effects of uncertainties on the shipments (case 2).

0 1 2 3 4 5

—manufadurer 1‐ retailer 2

--manufadurer 2-\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{e} $\tau$ 2

\cdots retailer 2‐ demand market

\blacksquare\cdots the market price set Uy demand market 2

Figure 7: The effects of uncertainties on the prices (case 2).
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 0 1 2 3 4 5

 $\alpha$

\rightarrow—manufacturef1 \rightarrow- manufadurer 2

— retailer 1 — retailer 2

Figure 8: The effects of uncertainties on the profits (case 2).

147.\mathrm{S}\mathrm{L}_{-}
0 1 2 3 4 \mathrm{s}

 $\alpha$

Figure 9: The effects of uncertamties on the total supply chain costs (case 2).
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4 Conclusions

In the paper, we have developed a robust SCNE model which some players cannot know the exact

value of other players� strategies. In addition, we have given some numerical experiments. For a

future research, to consider the model with uncertainties in players� variables and demands such as

[4] simultaneously is an interesting topic. Also numerical experiments with realistic parameters is

an important issue.
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