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1 Introduction

Supply chains are connections of process including procurement of raw materials, production, ship-
ping and selling for a product. Supply chain management is one of main objects in management
science, and hence many researchers have proposed mathematical models to optimize or analyze
supply chain networks. In this paper, we focus on competitive supply chain networks. Because
supply chains involve many decision-makers (called players) and they independently decide their
behaviors, competitive situations often occur. To analyze, Nagurney et al. [10] proposed a supply
chain network equilibrium (SCNE) model which is constructed by the manufacturers, the retailers
and the demand markets. Yamada et al. [18] extended the SCNE model by considering the behav-
iors of the distribution centers. Hammond and Beullens [5] developed a model for closed-loop supply
chain with the manufacturers and the consumer markets considering returns of the products and
evaluated the effect of a legislation. Yang et al. [19] extended this closed-loop model to a general
closed-loop supply chain network with the raw material suppliers, the manufacturers, the retailers,
the recovery centers and the demand markets. Li and Nagurney (8] treated a quality competition
with the suppliers, the producing firms and the demand markets and evaluated the quality of the
products. Nagurney [9] considered a freight service provision network model with the disaster relief
organizations, the freight service providers and the demand points. Nagurney et al. [11] dealt with
a network model for post-disaster humanitarian relief by NGOs which is constructed by NGOs,
victims and donors.

Recently, particular attention is paid to the risk management of supply chains. Supply chain has
many vulnerabilities as to natural disasters, business fluctuations, demand and cost uncertainties
and so on. Wu et al. [17] suggested that supply chains face the many kinds of risk factor and
there are many cases that supply chains were disrupted, so it is necessary to deal with these risks.
Kleindorfer and Saad [7] pointed out the necessities of three tasks which are “Specifying sources
of risk and vulnerabilities, Assessment, and Mitigation” (SAM). Tang [16] defined “supply chain
risk management (SCRM)” as “the management of supply chain risks through coordination or
collaboration among the supply chain partners so as to ensure profitability and continuity”. Also,
there are many researches analyzing the optimal behavior as to risks by using a mathematical
model. Dong et al. [4] expanded the SCNE model in [10] to a equilibrium model with a demand



uncertainty. Bertsimas and Thiele [3] analyzed inventory management problems under the demand
and cost uncertainties. Qiang et al. [13] developed a supply chain network model with uncertainty
in costs and demand. In addition, they proposed a supply chain network performance measure.
Pishvaee et al. [12] dealt with a market to market closed-loop supply chain network. In their
research, demands, returns and transportation costs are assumed as uncertain factors. Baghalian
et al. [1] developed a multi-supply chain network model considering demand uncertainties and
disruption risks.

These researches analyzed a supply chain network with uncertainties in demand or cost. But
they did not consider a model which has uncertainties in the other players’ strategies. In actually,
there are many cases which players in the supply chain can not know the others’ strategies exactly.
The aim of this paper is to consider the case that there are uncertainties in competitors’ strategies
in the SCNE model in [10]. In this paper, we assume that some firms can not know the exact value
of competitors’ strategies. We also assume that under these uncertainties, they minimize their cost
for the worst case. This approach is called robust optimization or robust methodology. According to
Bertsimas and Thiele [3], “the robust methodology can be understood as a “reasonable worst-case”
approach”. So we call the model considered in this paper “robust SCNE model”.

2 Robust SCNE model

In this section, we develop a robust supply chain network equilibrium model. The network that we
consider is shown in Figure 1. In this model, there are m manufacturers, n retailers (or wholesalers)
and o demand markets. The manufacturers produce products and delivery them to the retailers.
The retailers buy the products from the manufacturers and sale them to the demand markets.
The demand markets buy the products from the retailers. Each manufacturer minimizes his total
cost by deciding the amount of the products shipped to the retailers. Each retailer minimizes his
total cost by deciding the amount of the products ordered to each manufacturer and the products
sold to each demand market. Each demand market decides the purchase volume and the market
price which satisfies the equilibrium conditions described later. We assume that each manufacturer
and retailer cannot know exactly strategies of the other manufacturers and retailers respectively.
We also assume that they minimize their cost for the worst case. We formulate their problems as
second-order cone programming problems and also reformulate them as a VIP.

Figure 1: Supply chain network equilibrium model.

First, we define the variables for this model. For i =1,---,;m, j=1,---,n, k=1,---,0:

¢;;(>0) : the amount of the products shipped by manufacturer i to retailer j,
w;x(>0) : the amount of the products sold by retailer j to demand market k,
pk(>0) : the market price at demand market k.
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As for these variables, we define some vectors as follows:

T
¢ = (G, %n) 2
a5 = (q, -, qm5)
wj. = (wjl’ "’ij)T
wg = (Wi, -, Wnk) ,
- T T T T\T
qg—i. = (Q1 PR/ S qi+1-a Tty qm) T7
— T T T T
q.—; = (q17 ,q.j—laq.j+1,"'7q-n) )
T
— T wl T T
w_j. = (wl, Wi_1.,W j+1""7w'n~) )
— T T
wg = (wh,- wk l’wk+1""7w'0) ’
p = (p1.-,p0) .

Note that g;. is a variable of manufacturer 4, ¢.; and w;. are variables of retailer j, and w.; and pi
are variables of demand market k. As for the price of each product, we define as follows:

pij : the price of the product charged by retailer j to manufacturer 4,
mj : the price of the product charged by demand market & to retailer j.

We also use the following notations:

pi. = (pil,"',ﬂm)TT,
pj = (P15, Pmg)

2.1 The problems solved by the manufacturers

We consider the problem solved by the manufacturers. We define the following functions for man-
ufacturer ¢ (i = 1,---,m):

fi(gi,q—i.) : a production cost function of manufacturer 1,
cij(gi;) : a transaction cost between manufacturer ¢ and retailer j (j =1,---,n).

We assume that c;; is convex. A product function depends on not only the decision variable of
manufacturer ¢ (namely, g;.) but also that of the other manufacturers (namely, g_;.), that is, if the
manufacturers procure the raw materials of the products from a same supplier, a competition for
the raw materials may occur and affect the production cost. In this paper, we define f;(g;.,q—;.) as
follows:

n n n
fi(gi-,9-i.) Zng aii+bilzq1j+"‘+biizq1j+""f‘bimZ‘Imj )
=1 j=1 j=1
where a;; and b;s (s = 1,---,m) are nonnegative scalars. Let a; denote a column vector in n

dimensions whose all components are a;; and B;s € R™ " denote a matrix whose all components
are b;s . Then it follows that

m
fil@ir0-i) = a] g + ¢} Bagi. + Y _ ¢ Buqi. -

=1

14
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The total sales of manufacturer 4 is p} ¢;, . When we denote the total cost of manufacturer ¢ by
¥, (gi., g—i.), the total cost of him is as follows:

n m
Ui(gio i) = —prai + 3 cij(aij) + af & + af Bagi. + »_ at Baau. -
=t o
We assume that manufacturer i cannot know the exact value of g_;. but estimates g;. as gj. :=
q.+MyAuy (I=1,---,i—1,i+1,---,m), where My € R™*™ is a symmetric positive definite matrix
and Ay; € R™ satisfies |[Awy|| < 1. We also assume that under this uncertainty, the manufacturer
minimizes his cost based on the robust approach, that is, he minimizes his cost for the worst case.

Then, manufacturer i’s cost function for the worst case ¥;(g;., g—i.) is
¥i(g., g—i.) = max {¥i(gi., —s.)| G-i. € Ui},
- - ~ . - T
where §_;. := ((@)7, . (@-1)7, (@) -, (@m)T) U= = "i Uy and Uy == {@1. = q1. +

MyAuy| ||Aw|| < 1}. Generally, ¥;(g;.,q—;.) is defined by the supremum of ¥;(gi.,d—:.). But
W;(gi.,d—s.) is continuous and U_; is compact, U;(gi., g—i.) can be denoted as the maximum of
W,(g;.,G—:.). Note that U_; implies the uncertainty set for manufacturer i. So the function which
manufacturer ¢ should minimize is
‘I’ (‘h s q—i- ) - 7pz . + Zg_l Cij (‘h]) + a‘ -
+ g7 Bigs. +Zz -1 4! Buqu. +Z« 1 max g} ByMyAu .
1 ||Aw|<1

Since s nqltax q; T ByMyAuy = | M, Bg ;.|| = ||MiBugi. ||, manufacturer ¢ solves the following second-
order cone programming problem:
min Ui (gi, i, 8i) = —PL i + Z)}‘ 1 ¢ (@) + al ¢i. + ¢f Biigs.
+Zt =1 af Bag. +Ez 1S (2.1)

st. 0<gq, |MyBug| <Szl (l— 1,- ,%—1 i+1,---,m),

where s; := (8i1,** , Sii—1, Sii+1, " *» Sim)” -
By letting the feasible set of (2.1) be T;, this set can be written by

{(Q1 731) IOSqi-s”MilBilqi~“ < 83 (l=l)11_1’7‘+1:7m)}

Because T} is a nonempty convex set and the objective function \fli is convex with ¢;. and s;, the
problem (2.1) is a convex programming problem. So, for given g_;., the optimal condition of (2.1)

is
i(g,9-4: deij(g; *
z;’b=1 {(af (gquf ) + J(q]) p’l,]) X (qij - ql])}
+Zﬁ1 (su—sj) 20, (2:2)
V (qf, 5! ) eT;.

Here, (g}, sf) denotes the solution. By gathering (2.2) as for all manufacturers, we get the following
equilibrium condition:

a' i-) iv. dc‘ : £ *
St S { (8 + SR - ) < (a0 - a5)}
+Xim Zz =1 (s = ) 20, (2.3)
V(q 3) ET
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WhereT'-—{(qT ST)T |0Sq’ Hlele(h“ < sy (l:]-;"'71:_1a7:+1a"'7m) i:]-a""m)}7q::

(F--, %) and s := (sT,---, L)

2.2 The problems solved by the retailers

Next, we consider the problem solved by the retailers. We define the following function for retailer
J (.7: 1;"'1‘”):

hj(g5,9—;) : ahandling cost of retailer j.
According to Nagurney et al. [10], the handling cost may include “ the display and storage cost
associated with product ”. In this paper, we define h;(g.,g.—;) as below:

m m m m
hj(a;,q-5) = (Z qij) <5jj F Yy Gt D G+ Ve Y qm) , (24)
i=1 i=1 i=1 i=1
where d;; and ;¢ (¢ = 1,---,n) are nonnegative scalars. Let d; denote a column vector in m
dimensions whose all components are d;; and I'j; € R™*™ denote a matrix whose all components
are ;¢ . Then, the function (2.4) is rewritten as

n
hi(95,9-3) = 8] 45+ a5T3505+ 3 a5 jrgr -

o
Note that the total sales for the products of retailer j is m; > p_; w;x and the total stocking cost
is p,rq.j . We assume that the retailers must not cause an absence of the goods. That is, for
retailer j, the total stock of the products (= > ;" ¢;;) must not be less than the total sales amounts
(= Y71 wjx). If we denote the total cost of retailer j by ®;(g.,q.—j, w;.), the total cost of him is
given by

o n
Qj(q.j,q._j,wj.) = -7 z Wik + p.i;-q.j + 6}"11.3' + q?;rjjq.j + Z qgl‘jr_q., .
i =
We assume that retailer j cannot know the exact value of ¢._; but estimates g., as G, := q., +
NjpAv, (r=1,---,j—1,j+1,---,n), where Nj, € R™*™ is a symmetric positive definite matrix
and Av, € R™ satisfies |Av,|| < 1. We also assume that he minimizes his cost for the worst case
by using the robust approach same as the problems solved by the manufacturers. Then, retailer j’s
cost function for the worst case &)i(q.j, g—j,wj.) is

8;(a.4,0.—j»wj.) = max{®i(q, d—j, w;.)| G- € Vj},

T
where &—j = ((ql)T Ty (‘j‘j—l) (‘j]+l)T I (“in) ) y = I—If~ i and Vj'r = {QT =
qr + NjrAvy| ||Avy|| < 1}. Here, V_; is the uncertainty set for retailer ] So the function which
retailer j should minimize is

®i(q.4,q—jrwj.) = - k=1 Wik + £ ‘1:+5 q;

+q]F”q] +Zr_1 q I‘JTqT + 3

max g TP NirAvy .
i IAvrll<1 I
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Note that ' Azgal.lx< lq?;l"erjrAvr = ||N1;I’3;q 4l = [INjzTjrqj|l- Accordingly, retailer j solves the

following second-order cone programming problem:

min &, (g5,¢—j, Wi, t;) = ~m5 Ly Wik + PLa5 + 6] 45+ a5Ts544

q.55Wj- o5
+ Zr-l qJ Jfrq'r + Er;l t]T (2.5)
s.t. 0<gj, 0<wj, > g1 Wik < < Ez_l gij, |NjT' JTqJ” < tr
(r=1,- -1,7+1,---,n),

where tj = (tjl, syt B, ,tjn)T, Let Sj denote the feasible set of (2.5), and then Sj is
given by

T T
S] {(q11 ]a J |O<q]70<wjvzw]k<quj7||N]7'F]7'qJ||<t.77'
k=1 i=1

(7‘=l,~-,j—1,j+l,~-~,n)}.

Because S; is a nonempty convex set and the objective function $; is convex with g, w;. and t;,
(2.5) is a convex programming problem. By using a Lagrange multiplier £; € Ry, for given ¢._j,
the optimal condition for (2.5) is given by the following (see [2], for example) :

:7;1{( 1,]+_hl%'7—__]) 5; (Qij”qz‘j)}

+Za (g -m) (wﬂf‘ wh)}
+ (Zi’il DY) w;k) & -¢) (2.6)
+ 50 (1 = ) >0,
V(Q.j, j.,gj, J) € S]7
where

8= {(Q3} wl, &, t] ) [0<¢4,0<w;,0 <&, [INwDjrg ]l < tyr
(7‘=1,,]—1,]+1,,n)}

Also, by gathering (2.6) as for all retailers, we get the following equilibrium condition:

Ohi(alat ;)

Sy S { (o + L — ) (g — a3}
+ 35 2k= 1{( ”J*) (wjk—w;k }
+ 21 (Zi:l @ — 2k=1 “’;k) & —¢&) 2.7
X X (6~ 1) 20
v (%, w ,§T,tT) €8s,

where § := {(qT wT, €T, tT)T |0<q,0<w,0<E|[[N;Djrgjll <tjr (r=1,---,5—1,j+1,---,n,
. T
J= 1, 1n)} w = ('LU]_, o T) £ = 51) 7§n)T and t := (tfvatz) .
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2.3 The conditions for the demand markets

Finally, we consider conditions which should be satisfied in the demand markets. For k=1,---,0,
we define the following functions:

dr(p) : ademand function of demand market % ,
gjk(wg,w._g) : atransaction cost between demand market k and retailer j (j =1,---,n) .

‘We assume that on the equilibrium, the following conditions are satisfied for demand market
k(k=1,---,0):
{ w5 + gjk(w.k,w_k) =p if Wik > 0, (2 8)
i + gip(wr, w_g) > pr if wjr =0,
{ dr(p) = Yj—ywie if pe>0, (29)
dr(p) < i wik if pe=0. '

Condition (2.8) means that, when a demand market purchases the products from retailer j, sum of
the transaction cost and the price of the product equals to the market price and when the demand
market does not buy any products, sum of the transaction cost and the price of the product surpasses
the market price. Condition (2.9) means that, when the market price is positive, the market demand
equals to the purchase volume of the products from the retailers and when the market price is 0,
the market demand belows the purchase volume of the products from the retailers.

For given w._; and p_g, the conditions (2.8) and (2.9) can be rewritten as follows:

>t {(W}“ + gk (W, w—k) — pi) (Wi — w;-‘k)}
+ (S wh — el p)) (06— 1) 2 0, (2.10)
Vwi € RY,pr € Ry
By gathering (2.10) for all demand markets, we obtain
S S {07 + g w) — P i — wi) |
+ 301 {(Z}Ll wh, — dk(p,‘;,pik)) (o — p;)} >0, (211)
vw e RY,pe RE.
2.4 Reformulation as a VIP
By gathering (2.3), (2.7) and (2.11), we get
ofiafat,) | deij(ey) | Ohilahat ;) * *
my o { (R 4 o) Do) _ s (g - ) }
+ 51 i { (o w) = pp +€5) (wie —wii) }
+ 351 1 (i 5™ — ke win®) (&5 — &)
+ 50 { (s e — i pte)) (o — )
+3 i 2%1 (sit — s3))
+ Z?=1 Z?_;; (tjr - t;r)} 20,

v (qT? wT7 €T1 pT’ ST, tT)T 6 K?
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where
T
K := {(qT,wT,fT,pT,sT,tT) [0<¢,0<w,0<¢&0<p, || MyBugi.|| < s
(l 7é i’i = 17" '7m)5 ||NJT'FJTqJ“ < tj"' (T %]7] = 17 7n)}

Therefore the all players’ problems are reformulated as the VIP:

Find z* € K such that F(z*)T(z —2*) >0, Vz € K , (2.12)
where
0fi(g1-9-1.) | denn(gqu) | Oh1(g1,g.-1)
: 3;11 =+ llqnll += qlu -4
afl(Ql ,4-1.) dcln(an) Bhn(g-n,q.—n)
q1n + + dq1n gn
Ofm(gm-,g—m-) acml(q"ll) 3h1§q .1,9.~1)
3‘]7"1 + le + 'Im1 &1
afm!‘lm qd—m. Z ngq;nn! hn(q n,q- —n]
'Imn + Imn 9gmn gn’
gu(w.i,w_1) —p1+ &
910(Wo, W.—0) — Po + &1
T = and F(z):=

gni(wi,w_31) —p1+&

R e~ B S )

Gno(W.o, W.—0) — Do+ &n

die1 i1 — Zk 1 Wik

Zz 1 Qin — 22—1 Wnk
D1 Wil — dl(Pl,ZD 1)

E] 1 Wjo — do(pmp o)
1




3 Numerical experiments

Now we introduce the solution method of VIP (2.12). It is difficult to solve VIP (2.12) directly
because this problem has non-differentiable functions in set K. In the paper, we reformulate (2.12)
as a second-order cone complementarity problem. Note that K can be written as follows:
K= {(qT$ wT’ €T1pT1 ST, tT)T I (qT, wT7 €T7pT)T € Riv
(Si[,quilMil)T € IC1+7L (l = 17' ot 77: - 1,Z+ 17' ce, M, 1= 1>' ) '7m)7
T
(tJT1q’€F]7‘N]’I‘) € K1+m (7‘ = 17" '1j - 17] + 11 e, N, J = 17" 171’)} )

where ¢ := mn 4+ no+n + o, and K+ and K+ are 1 4+ n and 1 + m dimensional second-order
cone respectively. Generally, the 1+ ¢ dimensional second-order cone K!*< is defined by

T
KL+ . {y= (v1,93) ln> w2l €Rp € ]RC}-

We define X! by R;. We define K and 6(z) as

q
w
3

P
512
Mi3B12q1.

m m n n
K :=Rq x l—[l_‘[lC""'1 x H HIC’”+1, 6(z) ==

i=1 I=1 j=1r=1
# r#] Myum—1Bmm—1Gm.

t12
N1oT'12q4

Smm—1

tan—1

Non-1Tnn-1qn

Then, the set K appearing in (2.12) is rewritten by K = {z | 8(z) € K}. Therefore, from KKT
conditions of VIP (2.12), VIP (2.12) can be reformulated as the following mixed second-order cone
complementarity problem (see [14] and [15]):

Find (z,A) e R xR"
such that F(z) — Vé(z)A =0, (3.1)
6(z)eK, xek, 6(x)TA=0,

where v:=c+m(m—1)+n(n—1) and 7 := 0 + m(m — 1)(n + 1) + n(n — 1)(m + 1).

We solve (3.1) by ReSNA [6] to analyze the impact of uncertainties on the shipments, the prices,
the profits and the total supply chain cost per unit. We choose the parameters same as Nagurney
et al. [10] for each cost function and demand function. The number of the manufacturers, the
retailers and the demand markets are two respectively. In these numerical experiments, we consider
the following two cases with a constant a:
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Case 1. Manufacturer 1 does not know the exact behavior of manufacturer 2 and the parameters
for the uncertainties are given by

10 00
Mlz—aX(O 2),M21—<0 O)

Case 2. Neither manufacturer 1 nor manufacturer 2 knows the exact value of the opponent each
other and the parameters for the uncertainties are given by

10 10
Mlz—ax(o 2),M21—a><<0 1).

For both the cases, we change a from 0 to 5. When « equals to 0, each manufacturer knows the
exact behavior of the opponent. The larger a gets, the larger the uncertainties get too. Also for
both the cases, there are not uncertainties between the retailers.

The results of the experiments are shown in Figures 2—9. In Figure 2 and Figure 6, [circles
and solid line] and [diamonds and solid line], and [triangles and solid line] and [squares and solid
line] are overlapping respectively. The rest four dashed lines are overlapping too. In Figure 3 and
Figure 7, the line of [circles and solid line] and [diamonds and solid line], [triangles and solid line]
and [squares and solid line], [circles and dashed line] and [diamonds and dashed line], and [triangles
and dashed line] and [squares and dashed line] are overlapping respectively. In Figure 4 and Figure
8, [triangles and solid line] and [squares and solid lines] are overlapping.

Seeing Figure 2, the larger the uncertainty gets, the fewer the amount of the products shipped
by manufacturer 1 gets. But the amount of the products shipped by manufacturer 2 is increasing.
Sum of the amount of the products shipped by retailer 1 and 2 get fewer. In Figure 3, the prices
charged by the demand markets to the retailers are getting higher. We see that the profit of
manufacturer 1 is decreasing while the profit of manufacturer 2 is decreasing from Figure 4, and the
total cost per unit is getting higher from Figure 5. Seeing Figure 6, if both the manufacturers have
the uncertainties, they decrease the amounts of the products. But manufacturer 1, who has more
uncertainty than manufacturer 2, produces fewer. We see that the price charged by the retailers to
manufacturer 2 is getting lower from Figure 6, and the profit of manufacturer 2 is decreasing from
Figure 8. Comparing Figure 5 and Figure 9, the total supply chain cost per unit for the case 2 is
higher than case 1. In both the cases, the larger the uncertainties get, the more retailers get profit.
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Figure 2: The effects of uncertainties on the shipments (case 1).
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Figure 3: The effects of uncertainties on the prices (case 1).
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Figure 4: The effects of uncertainties on the profits (case 1).
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Figure 5: The effects of uncertainties on the total supply chain costs (case 1).
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Figure 6: The effects of uncertainties on the shipments (case 2).
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Figure 7: The effects of uncertainties on the prices (case 2).
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Figure 8: The effects of uncertainties on the profits (case 2).
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Figure 9: The effects of uncertainties on the total supply chain costs (case 2).
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4 Conclusions

In the paper, we have developed a robust SCNE model which some players cannot know the exact
value of other players’ strategies. In addition, we have given some numerical experiments. For a
future research, to consider the model with uncertainties in players’ variables and demands such as
[4] simultaneously is an interesting topic. Also numerical experiments with realistic parameters is
an important issue.
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