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Abstract

In this note, we will construct a continuouly differentiable exact augmented Lagrangian
function for nonlinear semidefinite programming problems. This function is defined on

the product space of the problem�s variables and of the multipliers. The unconstrained

minimization of the proposed exact augmented Lagrangian gives a solution of the orig‐
inal problem, when the penalty parameter is large enough. We will show that the

exactness property holds when the nondegeneracy condition is assumed.

Keywords: Nonlinear semidefinite programming, exact augmented Lagrangian func‐

tions, exact penalty functions, nondegeneracy.

1 Introduction

The following nonlinear semidefinite programming (NSDP) problem is considered:

minimize f(x)
x (NSDP)

subject to G(x)\in \mathrm{S}_{+}^{m},

where f:\mathbb{R}^{n}\rightarrow \mathbb{R} and G:\mathbb{R}^{n}\rightarrow \mathrm{S}^{m} are twice continuously differentiable functions, \mathrm{S}^{m} is

the linear space of all real symmetric matrices of dimension m\times m , and \mathrm{S}_{+}^{m} is the cone of all

positive semidefinite matrices in \mathrm{S}^{m} . Here, we omit equality constraints just for simplicity.
The above formulation is considerably new, but it was already used in many application
fields, like control theory [2, 12], structural optimization [16, 18], truss design problems [3],
and finance [17]. The research associated to NSDP is, however, relatively scarce, if we

compare to the particular case of linear semidefinite programming problems.
We refer to [22] for a survey of numerical methods for NSDP problems. In particular,

it describes the augmented Lagrangian, the sequential quadratic programming, and the

primal‐dual interior point methods. In this paper, we propose another method for solving
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general NSDP problems. More precisely, we construct a continuously differentiable exact

augmented Lagrangian function for NSDP. By exact, we mean that an unconstrained mini‐

mization of this function recovers a solution of the original problem, when a certain penalty
parameter is large enough. The exact augmented Lagrangian function also differs from the

exact penalty one. In fact, the former is defined on the product space of the problem�s
variables and of the Lagrange multipliers, while the latter is defined in the same space of

the original constrained problem. Such a terminology is actually used in the literature of

the traditional nonlinear programming (NLP) [7, 8].
Exact augmented Lagrangian functions were introduced by Di Pillo and Grippo in [7]

and [8], respectively for equality‐constrained and for inequality‐constrained NLP problems.
Further investigations had been done in [4, 9, 10, 11, 19]. Recalling that NSDP problems
extend NLP problems, here we give the first step towards the augmented Lagrangian method

for NSDP. The proposed function is basically the classical augmented Lagrangian function

for NSDP problems, given in [6, 21], with an additional term that guarantees the exactness

property. Such term requires a function that estimates the Lagrange mutipliers associated

to a point. This estimator was originally given in [14], and extended further to NSDP

in [15]. We will show that the proposed function is in fact exact, if the nondegeneracy
condition is satisfied in the feasible set of the NSDP.

We finally observe that a more general class of these exact augmented Lagrangian
functions for NSDP is given in [13]. In fact, our paper is just an easy note associated

to it, so all the proofs of the results described here can be seen in this original manuscript.
This paper is organized as follows. In Section 2, we recall basic notations and definitions.

The exact augmented Lagrangian function is constructed in Section 3, and the exactness

results are given in Section 4. We conclude in Section 5, with some final remarks and future

works.

2 Preliminaries

Let us first present the main notations. We use x_{i} and Z_{ij} to denote the ith element of a

vector x\in \mathbb{R}^{r} and (i, j) entry (ith row and jth column) of a matrix Z\in \mathrm{S}^{s} , respectively. We

also use the notation [xi]í=1 and [Z_{ij}]_{i,j=1}^{s} to denote x and Z , respectively. For a function

p:\mathbb{R}^{S}\rightarrow \mathbb{R} , its gradient and Hessian at a point x\in \mathbb{R}^{S} are given by \nabla p(x)\in \mathbb{R}^{S} and

\nabla^{2}p(x)\in \mathbb{R}^{\mathrm{s}\times s} , respectively. For q:\mathrm{S}^{\ell}\rightarrow \mathbb{R}, \nabla q(Z) denotes the matrix with (i,j) term

given by the partial derivatives \partial q(Z)/\partial Z_{ij} . If  $\psi$:\mathbb{R}^{S}\times \mathrm{S}^{\ell}\rightarrow \mathbb{R} , then its gradient at (x, Z)\in
\mathbb{R}^{S}\times \mathrm{S}^{\ell} with respect to x and Y are denoted by \nabla_{x} $\psi$(x, \mathrm{Y})\in \mathbb{R}^{S} and \nabla_{Y} $\psi$(x, Y)\in \mathrm{S}^{p},
respectively. Similary, the Hessian of  $\psi$ at (x, Z) with respect to x is written as \nabla_{xx}^{2} $\psi$(x, \mathrm{Y}) .

For any linear operator \mathcal{G}:\mathbb{R}^{S}\rightarrow \mathrm{S}^{\ell} defined by \displaystyle \mathcal{G}v=\sum_{i=1}^{8}v_{i}\mathcal{G}_{i} with \mathcal{G}_{i}\in \mathrm{S}^{p}, i=1
,

. . . , s,

and v\in \mathbb{R}^{s} , the adjoint operator \mathcal{G}^{*} is defined by

\mathcal{G}^{*z=}(\{\mathcal{G}_{1}, Z\}, \ldots, \{\mathcal{G}_{s}, Z\rangle)^{\mathrm{T}}, Z\in \mathrm{S}^{l}.

Moreover, given a mapping \mathcal{G}:\mathbb{R}^{S}\rightarrow \mathrm{S}^{\ell} , its derivative at a point x\in \mathbb{R}^{s} is denoted by
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\nabla \mathcal{G}(x):\mathbb{R}^{8}\rightarrow \mathrm{S}^{p} and defined by

\displaystyle \nabla \mathcal{G}(x)v=\sum_{i=1}^{s}v_{i}\frac{\partial \mathcal{G}(x)}{\partial x_{i}}, v\in \mathbb{R}^{s},
where \partial \mathcal{G}(x)/\partial x_{i}\in \mathrm{S}^{l} are the partial derivative matrices.

One important operator that is necessary when dealing with NSDP problems is the

Jordan product associated to the space \mathrm{S}^{m} . For any Y, Z\in \mathrm{S}^{m} , it is defined by

Y\displaystyle \circ Z:=\frac{YZ+ZY}{2}.
Taking Y\in \mathrm{S}^{m} , we also denote by \mathcal{L}_{Y}:\mathrm{S}^{m}\rightarrow \mathrm{S}^{m} the linear operator given by

\mathcal{L}_{Y}(Z):=Y\circ Z.

Since we are only considering the space \mathrm{S}^{m} of symmetric matrices, we have \mathcal{L}_{Y}(Z)=\mathcal{L}_{Z}(Y) .

Now, let the trace of Z\in \mathrm{S}^{m} be given by \mathrm{t}\mathrm{r}(Z) :=\displaystyle \sum_{i=1}^{s}Z_{ii} and define \langle Y,  Z\rangle :=\mathrm{t}\mathrm{r}(YZ)
as the inner product of symmetric matrices Y and Z . Then, define L:\mathbb{R}^{n}\times \mathrm{S}^{m}\rightarrow \mathbb{R} as the

Lagrangian function associated to problem (NSDP), that is,

L(x,  $\Lambda$):=f(x)-\{G(x) ,  $\Lambda$\rangle.

The pair (x,  $\Lambda$)\in \mathbb{R}^{n}\times \mathrm{S}^{m} satisfies the Karush‐Kuhn‐Tucker (KKT) conditions of prob‐
lem (NSDP) (or, it is a KKT pair) if the following conditions hold:

\nabla_{x}L(x,  $\Lambda$) = 0,
 $\Lambda$\circ G(x) = 0,

G(x) \in \mathrm{S}_{+}^{m},
 $\Lambda$ \in \mathrm{S}_{+}^{m},

where \nabla_{x}L(x,  $\Lambda$) denotes the gradient of L with respect to x , that is,

\nabla_{x}L(x,  $\Lambda$)=\nabla f(x)-\nabla G(x)^{*} $\Lambda$.

The above conditions are necessary for optimality under a constraint qualification. More‐

over, it can be shown that the condition  $\Lambda$\circ G(x)=0 can be replaced by \{ $\Lambda$, G(x)\}=0 or

 $\Lambda$ G(x)=0 because G(x)\in \mathrm{S}_{+}^{m} and  $\Lambda$\in \mathrm{S}_{+}^{m} hold [22, Section 2].
In this paper, we will replace the problem (NSDP) with the following problem, which

is just a nonlinear programming:

\mathrm{m}\mathrm{i}\dot{\mathrm{m}}\mathrm{m}x, $\Lambda$ize  $\Psi$_{c}(x,  $\Lambda$)
(1)

subject to (x,  $\Lambda$)\in \mathbb{R}^{n}\times \mathrm{S}^{m},

where $\Psi$_{c}:\mathbb{R}^{n}\times \mathrm{S}^{m}\rightarrow \mathbb{R} , and c>0 is a penalty parameter. Observe that the above problem
is unconstrained, with both x and  $\Lambda$ as variables. As usual, we say that a point  x\in \mathbb{R}^{n}

is stationary of $\Psi$_{c} when \nabla$\Psi$_{\mathrm{c}}(x)= O. We use G_{\mathrm{N}\mathrm{L}\mathrm{P}}(c) and L_{\mathrm{N}\mathrm{L}\mathrm{P}}(c) to denote the sets of

global and local minimizers, respectively, of the above problem. We also define G_{\mathrm{N}\mathrm{S}\mathrm{D}\mathrm{P}} and

L_{\mathrm{N}\mathrm{S}\mathrm{D}\mathrm{P}} as the set of global and local minimizers of problem (NSDP), respectively. Using such

notations, we present below the formal definition of exact augmented Lagrangian functions.
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Definition 1. A function $\Psi$_{c}:\mathbb{R}^{n}\times \mathrm{S}^{m}\rightarrow \mathbb{R} is called an exact augmented Lagrangian
function associated to (NSDP) if, and only if, there exists \hat{c}>0 satisfying the following:

(a) For all c>\hat{c}, if (\overline{x},\overline{ $\Lambda$})\in G_{NLP}(c) , then \overline{x}\in G_{NsDP} and \overline{ $\Lambda$} is a corresponding Lagrange
multiplier. Conversely, if \overline{x}\in G_{NSDP} with \overline{ $\Lambda$} as a corresponding Lagrange multiplier,
then (\overline{x},\overline{ $\Lambda$})\in G_{NLP}(c) for all c>\hat{c}.

(b) For all c>\hat{c}, if (\overline{x},\overline{ $\Lambda$})\in L_{NLP}(c) , then \overline{x}\in L_{NSDP} and \overline{ $\Lambda$} is a corresponding Lagrange
multiplier.

Basically, the above definition shows that $\Psi$_{\mathrm{c}} is an exact augmented Lagrangian function

when there are equivalence between the global minimizers, and if all local solutions of (1) are

local solutions of (NSDP), for penalty parameters greater than a threshold value. It means

that the original constrained conic problem (NSDP) can be replaced with an uncontrained

nonlinear programming problem (1) when the penalty parameter is chosen appropriately.
In order to construct such an exact augmented Lagrangian function, we will suppose that

the following assumption holds in the whole paper. It is well‐known that the nondegeneracy
condition, defined below, extends the classical linear independence constraint qualification
for nonlinear programming [5, 20].

Assumption 2. Every x\in \mathbb{R}^{n} feasible for (NSDP) \dot{u} nondegenerate, that is,

\mathrm{S}^{m}=1\mathrm{i}\mathrm{n}T_{\mathrm{S}_{+}^{m}}(G(x))+{\rm Im}\nabla G(x) ,

where T_{\mathrm{S}_{+}^{m}}(G(x)) denotes the tangent cone of \mathrm{S}_{+}^{m} at G(x) , {\rm Im}\nabla G(x) is the image of the

linear map \nabla G(x) , and lin means lineality space.

3 The proposed augmented Lagrangian function

The exact augmented Lagrangian function considered in [8] takes into account an estimation

of the Lagrange multipliers, given in [14]. An extension of it for NSDP problems were

proposed in [15]. Given x\in \mathbb{R}^{n} ,
we solve the following unconstrained problem:

\displaystyle \min_{ $\Lambda$}imize \Vert\nabla_{x}L(x,  $\Lambda$)\Vert^{2}+$\zeta$_{1}^{2}\Vert \mathcal{L}_{G(x)}( $\Lambda$)\Vert_{F}^{2}+$\zeta$_{2}^{2}r(x)\Vert $\Lambda$\Vert_{F}^{2}
(2)

subject to  $\Lambda$\in \mathrm{S}^{m},

where $\zeta$_{1}, $\zeta$_{2}\in \mathbb{R} are positive scalars, \Vert\cdot\Vert denotes the Euclidean norm, \Vert\cdot\Vert_{F} is the Frobenius

norm, and r:\mathbb{R}^{n}\rightarrow \mathbb{R} denotes the residual function associated to the feasible set, that is,

r(x) :=\displaystyle \frac{1}{2}\Vert P_{\mathrm{S}_{+}^{m}}(-G(x))\Vert_{F}^{2}=\frac{1}{2}\Vert P_{\mathrm{S}_{+}^{m}}(G(x))-G(x)\Vert_{F}^{2},
with P_{\mathrm{S}_{+}^{m}} denoting the projection onto \mathrm{S}_{+}^{m} . Observe that r(x)=0 if, and only if, x is

feasible for (NSDP).
Lemma 3. [15, Lemma 2.2 and Proposition 2.31 Suppose that Assumption 2 holds. For

any x\in \mathbb{R}^{n} , define N:\mathbb{R}^{n}\rightarrow \mathrm{S}^{m} as

N(x) :=\nabla G(x)\nabla G(x)^{*}+$\zeta$_{1}^{2}\mathcal{L}_{G(x)}^{2}+$\zeta$_{2}^{2}r(x)I , (3)

where I denotes the identity matrix. Then, the following statements are true.
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(a) N is continuosly differentiable and for all x\in \mathbb{R}^{n} , the matrix N(x) is positive
definite.

(b) The solution of problem (2) is unique and it is given by

 $\Lambda$(x)=N(x)^{-1}\nabla G(x)\nabla f(x) . (4)

(c) If (x,  $\Lambda$)\in \mathbb{R}^{n}\times \mathrm{S}^{m} is a KKT pair of (NSDP), then  $\Lambda$(x)= $\Lambda$.

(d) The operator  $\Lambda$ is continuously differentiable, and \nabla $\Lambda$(x)=N(x)^{-1}Q(x) , where

Q(x) := \nabla^{2}G(x)\nabla_{x}L(x,  $\Lambda$(x))+\nabla G(x)\nabla_{xx}^{2}L(x, $\Lambda$(x))
-$\zeta$_{1}^{2}\nabla_{x}[\mathcal{L}_{G(x)}^{2}( $\Lambda$(x))]-$\zeta$_{2}^{2}\nabla r(x) $\Lambda$(x) .

Based on the above lemma, we propose the following augmented Lagrangian function.

L_{\mathrm{c}}(x,  $\Lambda$) :=f(x)+\displaystyle \frac{1}{2c}(\Vert P_{\mathrm{S}_{+}^{m}}( $\Lambda$-cG(x))\Vert_{F}^{2}-\Vert $\Lambda$\Vert_{F}^{2})+\Vert N(x)( $\Lambda$(x)- $\Lambda$)\Vert_{F}^{2} . (5)

Note that it is equivalent to the augmented Lagragian function for nonlinear semidefinite

programs, except for the last term \Vert N(x)( $\Lambda$(x)- $\Lambda$)\Vert_{F}^{2} . From (3) and (4), observe that

N(x)( $\Lambda$(x)- $\Lambda$) = \nabla G(x)\nabla f(x)-\nabla G(x)\nabla G(x)^{*} $\Lambda-\zeta$_{1}^{2}\mathcal{L}_{G(x)}^{2}( $\Lambda$)-$\zeta$_{2}^{2}r(x) $\Lambda$
= \nabla G(x)\nabla_{x}L(x,  $\Lambda$)-$\zeta$_{1}^{2}\mathcal{L}_{G(x)}^{2}( $\Lambda$)-$\zeta$_{2}^{2}r(x) $\Lambda$ . (6)

Also, consider the following auxiliar function  Y_{c}:\mathbb{R}^{n}\times \mathrm{S}^{m}\rightarrow \mathrm{S}^{m} defined by

Y_{c}(x, $\Lambda$):=P_{\mathrm{S}_{+}^{m}}(\displaystyle \frac{ $\Lambda$}{c}-G(x))-\frac{ $\Lambda$}{c}.
Then, the gradient of L_{c}(x,  $\Lambda$) with respect to x is given by

\nabla_{x}L_{c}(x, $\Lambda$) = \nabla f(x)-\nabla G(x)^{*}P_{\mathrm{S}_{+}^{m}}( $\Lambda$-cG(x))+2K(x, $\Lambda$)^{*}N(x)( $\Lambda$(x)- $\Lambda$)
= \nabla_{x}L(x,  $\Lambda$)-c\nabla G(x)^{*}Y_{c}(x,  $\Lambda$)+2K(x,  $\Lambda$)^{*}N(x)( $\Lambda$(x)- $\Lambda$) ,

with

K(x,  $\Lambda$) := \nabla_{x}[N(x)( $\Lambda$(x)- $\Lambda$)]
= \nabla_{x}[\nabla G(x)\nabla_{x}L(x, $\Lambda$)-$\zeta$_{1}^{2}\mathcal{L}_{G(x)}^{2}( $\Lambda$)-$\zeta$_{2}^{2}r(x) $\Lambda$],

where the second equality follows from (6). Some calculations show that

\nabla_{x}L_{c}(x, $\Lambda$)=\nabla_{x}L(x,  $\Lambda$)-c\nabla G(x)^{*}Y_{c}(x,  $\Lambda$)+2\nabla_{xx}^{2}L(x,  $\Lambda$)\nabla G(x)^{*}N(x)( $\Lambda$(x)- $\Lambda$)

+2[\displaystyle \langle\frac{\partial^{2}G(x)}{\partial x_{i}x_{j}}, N(x)( $\Lambda$(x)- $\Lambda$)\rangle]_{i,j=1}^{n}\nabla_{x}L(x,  $\Lambda$)
-2$\zeta$_{1}^{2}[\displaystyle \langle\frac{\partial G(x)}{\partial x_{i}}\circ(G(x)\circ $\Lambda$)+G(x)\circ(\frac{\partial G(x)}{\partial x_{i}}\circ $\Lambda$) , N(x)( $\Lambda$(x)- $\Lambda$ i=1n
-2$\zeta$_{2}^{2}\langle $\Lambda$, N(x)( $\Lambda$(x)- $\Lambda$)\rangle\nabla r(x) .

Moreover, the gradient of L_{c}(x,  $\Lambda$) with respect to A can be written as follows:

\nabla_{ $\Lambda$}L_{\mathrm{c}}(x,  $\Lambda$)=Y_{c}(x,  $\Lambda$)-2N(x)^{2}( $\Lambda$(x)- $\Lambda$) .
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4 Exactness results

In this section, we will first establish the relation between the KKT points of the original
(NSDP) problem with the following unconstrained one:

\displaystyle \min_{x}imize L_{c}(x,  $\Lambda$)
(7)

subject to (x,  $\Lambda$)\in \mathbb{R}^{n}\times \mathrm{S}^{m}.

We refer to [13] for details and proofs of the subsequent results. As it can be seen in the next

three propositions, a KKT pair of (NSDP) is stationary of (7), but the converse implication
only holds when the penalty parameter is greater than a threshold value. Moreover, as in

the classical augmented Lagrangian methods or exact penalty methods [1], we may also end

up with a stationary point of the residual function r that is infeasible for (NSDP).

Proposition 4. If (x,  $\Lambda$)\in \mathbb{R}^{n}\times \mathrm{S}^{m} is a KKT pair of (NSDP), then, for all c>0 , it is

stationaw of (7), that is, \nabla_{x}L_{c}(x,  $\Lambda$)=0 and \nabla_{ $\Lambda$}L_{\mathrm{c}}(x,  $\Lambda$)=0.

Proposition 5. Let \hat{x}\in \mathbb{R}^{n} be feasible for (NSDP). Assume that there exist \{x^{k}\}\subset \mathbb{R}^{n},
\{$\Lambda$_{k}\}\subset \mathrm{S}^{m} , and \{ck\}\subset \mathbb{R}++ with x_{k}\rightarrow\hat{x} and  c_{k}\rightarrow\infty such that (x_{k}, $\Lambda$_{k}) is stationary
of (7) for all k . Then, there is \hat{k}>0 such that (x^{k}, $\Lambda$_{k}) is KKT of (NSDP) for all k>\hat{k}.

Proposition 6. Let \{x^{k}\}\subset \mathbb{R}^{n}, \{$\Lambda$_{k}\}\subset \mathrm{S}^{m} , and \{ck\}\subset \mathbb{R}++be sequences such that

 c_{k}\rightarrow\infty and (x $\Lambda$) is stationary of (7) for all k . Assume that there is a subsequence
\{x^{k_{j}}\} of \{x^{k}\} such that x^{k_{j}}\rightarrow\hat{x} for some \hat{x}\in \mathbb{R}^{n} . Then, either there exists \hat{k}>0 such

that (x^{k_{j}}, $\Lambda$_{k_{j}}) is a KKT pair of (NSDP) for all k_{j}>\hat{k} , or \hat{x} is a stationary point of the

residual function r that is infeasible for (NSDP).

We now use the notations G_{\mathrm{N}\mathrm{S}\mathrm{D}\mathrm{P}}(L_{\mathrm{N}\mathrm{S}\mathrm{D}\mathrm{P}}) and G_{\mathrm{N}\mathrm{L}\mathrm{P}}(c)(L_{\mathrm{N}\mathrm{L}\mathrm{P}}(c)) for the sets of global
(local) minimizers of problems (NSDP) and (7), respectively. The following theorems show

that the proposed function L_{\mathrm{c}} given in (5) is in fact an exact augmented Lagrangian func‐

tion.

Theorem 7. Let \{x^{k}\}\subset \mathbb{R}^{n}, \{$\Lambda$_{k}\}\subset \mathrm{S}^{m} , and \{ck\}\subset \mathbb{R}++be sequences such that  c_{k}\rightarrow\infty

and (x_{k},$\Lambda$_{k})\in L_{NLP}(c_{k}) for all k . Assume that there is a subsequence \{x^{k_{\mathrm{j}}}\} of \{x^{k}\} such

that x^{k_{j}}\rightarrow\hat{x} for some \hat{x}\in \mathbb{R}^{n} . Then, either there exists \hat{k}>0 such that x^{k_{j}}\in L_{NSDP},
with an associated Lagrange multiplier $\Lambda$_{k_{j}} for all k_{j}>\hat{k} , or \hat{x} is a stationary point of the

residual function r that is infeasible for (NSDP).

Theorem 8. Assume that there exists \overline{c}>0 such that \displaystyle \bigcup_{\mathrm{c}\geq\overline{\mathrm{c}}}G_{NLP}(c) is bounded. Then,
there exists \hat{c}>0 such that G_{NLP}(c)=G_{NSDP} for all c\geq\hat{c}.

5 Final remarks

We proposed an exact augmented Lagrangian function for general nonlinear semidefinite

programming problems, and we proved the exactness result under the nondegeneracy con‐

dition. Thus, by solving the unconstrained problem (7) with an appropriate penalty param‐

eter, it is possible to recover solutions of (NSDP). The nonlinear programming problem (7)

155



can be solved using a second‐order method, like the semismooth Newton. In such a case,

convergence results should be established, and a way to avoid the third‐order terms of the

problem data, that appear in the Hessian of L_{\mathrm{c}} , should be also considered. These facts and

the numerical experiments are under investigation.

References

[1] R. Andreani, E. H. FUkuda, and P. J. S. Silva. A Gauss‐Newton approach for solving
constrained optimization problems using differentiable exact penalties. Journal of
optimization Theory and Applications, 156(2):417-449 , 2013.

[2] P. Apkarian, D. Noll, and H. D. Tuan. Fixed‐order H_{\infty} control design via a par‐

tially augmented Lagrangian method. International Journal of Robust and Nonlinear

Control 13(12): 1137‐1148, 2003.

[3] A. Ben‐Tal, F. Jarre, M. Kočvara, A. Nemirovski, and J. Zowe. Optimal design of

trusses under a nonconvex global buckling constraint. optimization and Engineering,

1(2):189-213 , 2000.

[4] D. P. Bertsekas. Constrained 0ptimization and Lagrange Multipliers Methods. Aca‐

demic Press, New York, 1982.

[5] J. F. Bonnans and A. Shapiro. Perturbation Analysis of 0ptimization Problems.

Springer‐Verlag, New York, 2000.

[6] R. Correa and H. Ramírez C. A global algorithm for nonlinear semidefinite program‐

ming. SIAM Journal on optimization, 15(1):303-318 , 2004.

[7] G. Di Pillo and L. Grippo. A new class of augmented Lagrangians in nonlinear pro‐

gramming. SIAM Journal on Control and 0ptimization, 17(5):618-628 , 1979.

[8] G. Di Pillo and L. Grippo. A new augmented Lagrangian function for inequality con‐

straints in nonlinear programming. Journal of 0ptimization Theory and Applications,
36(4):495-519 , 1982.

[9] G. Di Pillo, G. Liuzzi, S. Lucidi, and L. Palagi. An exact augmented Lagrangian
function for nonlinear programming with two‐sided constraints. Computational Opti‐
mization and Applications, 25:57−83, 2003.

[10] G. Di Pillo and S. Lucidi. On exact augmented Lagrangian functions in nonlinear

programming. In G. Di Pillo and F. Giannessi, editors, Nonlinear 0ptimization and

Applications, pages 85‐100. Springer, Boston, MA, 1996.

[11] G. Di Pillo and S. Lucidi. An augmented Lagrangian function with improved exactness

properties. SIAM Journal on optimization, 12(2):376-406 , 2001.

156



[12] B. Fares, P. Apkarian, and D. Noll. An augmented Lagrangian method for a class of

LMI‐constrained problems in robust control theory. Intemational Journal of Control,

74(4):348-360 , 2001.

[13] E. H. Fukuda and B. F. Lourengo. Exact augmented Lagrangian functions for nonlinear

semidefinite programming. 2016. Submitted.

[14] T. Glad and E. Polak. A multiplier method with automatic limitation of penalty
growth. Mathematical Programming, 17(2):140-155 , 1979.

[15] L. Han. The differentiable exact penalty function for nonlinear semidefinite program‐

ming. Pacific Journal of optimization, 10(2):285-303 , 2014.

[16] Y. Kanno and I. Takewaki. Sequential semidefinite program for maximum robust‐

ness design of structures under load uncertainty. Journal of optimization Theory and

Applications, 130(2):265-287 , 2006.

[17] H. Konno, N. Kawadai, and D. Wu. Estimation of failure probability using semi‐definite

logit model. Computational Management Science, 1(1):59-73 , 2003.

[18] M. Kočvara and M. Stingl. Solving nonconvex SDP problems of structural optimization
with stability control. 0ptimization Methods \mathcal{B} Software, 19(5):595-609 , 2004.

[19] S. Lucidi. New results on a class of exact augmented Lagrangians. Journal of Opti‐
mization Theory and Applications, 58(2), 1988.

[20] A. Shapiro. First and second order analysis of nonlinear semidefinite programs. Math‐

ematical Programming, 77(1):301-320 , 1997.

[21] D. Sun, J. Sun, and L.W. Zhang. The rate of convergence of the augmented La‐

grangian method for nonlinear semidefinite programming. Mathematical Programming,

114(2):349-391 , 2008.

[22] H. Yamashita and H. Yabe. A survey of numerical methods for nonlinear semidefinite

programming. Journal of the Operations Research Society of Japan, 58(1):24-60 , 2015.

157


