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1. Introduction

Ecologically‐conscious fishery resources management is currently a major issue all over the world.

Designing and carrying out an appropriate management plan of migratory fish species in a river, which

are major inland fishery resources, requires comprehending hydrological and hydraulic characteristics

of their habitats and migration processes. An example of such fish species is Plecoglossus altivelis

(Ayu) living in Japan, which is a key aquatic species in the country from economical, ecological, and

cultural viewpoints [1‐3]. Huge transverse hydraulic structures installed across river cross‐sections,
which are often equipped with fishways to improve passage efficiency of fishes, serve as physical
barriers for upstream fish migration [4]. A weir not equipped with any fishways or those with poorly
designed fishways possibly fragments a river into hydraulically disconnected reaches [5]. Operating a

large dam for human activities would significantly alter its downstream river environment and lead to

regime shifts of hydraulic [6] and ecological conditions in rivers [7], both of which critically affect life

histories of migratory fishes [8‐9]. Establishment of an effective management strategy for the

migratory fish species should consider complex ecological and environmental systems that affect their

migration and habitation. Ecosystem dynamics is inherently subject to stochastic enviromnental noises

resulting from complex internal and external interactions [10‐11]. From this standpoint, stochastic

process models can potentially serve as effective mathematical tools to analyze, predict, and control

both local swimming behaviour and global population dynamics of migratory fish species.
Fish migration in water bodies have often been analyzed with individual‐Uased models that track

movements ofindividual fishes in water bodies [12, 13]. \mathrm{M}\mathrm{o}\mathrm{s}\mathrm{t} of such models have to a priori specify
the swimming velocity as a function of hydraulic variables, which would actually be dynamically and

adaptively controlled by the individual fish itself during its migration process. Yoshioka et al. [14]
proposed a mathematical model of upstream fish migration of individual fishes in 1‐D rivers based on

a stochastic differential equation (SDE) combined with a dynamic programming principle [15]. Their

mathematical model assumes that the optimal swimming velocity of individual fishes is the minimizer

of a value function based on both biological and ecological considerations. Finding the optimal
swimming velocity reduces to solving a Hamilton‐JacoUi‐Uellman equation (HJBE), which is a

nonlinear and nonconservative partial differential equation (PDE) [15]. Mathematical and numerical

analyses on solutions to the HJBE governing upstream fish migration from the viewpoint of viscosity
solution [16] have been performed [17, 18]. The authors also analyzed stochastic population dynamics
of released migratory fishes in a river system subject to predation pressure from waterfowls and

fishing pressure from human using a different HJBE derived from an economic and ecological value

function [19]. Both of the mathematical models, which are the migration dynamics models and the
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population dynamics models, have individually been developed and analyzed; however, we consider

that some links can be found between the two models, which is a main motivation of this paper.
The main objective of this paper is to present the above‐mentioned migration dynamics model and

population dynamics model, and to consider links between them The rest of this paper is organized as

follows. Section 2 briefly introduces a stochastic control theory to derive an HJBE from an SDE based

on a dynamic programming principle. Section 3 presents the migration dynamics model and the

population dynamics model discussed in this paper. Section 4 presents demonstrative computational
examples of these models focusing on their applìcations to fishery resources management in Hii River,
San‐in area, Japan. Section 5 discusses links between the two models. Section 6 concludes this paper

and presents future perspectives of our research.

2. Stochastic control theorv

2.1 Stochastic differential equation

To formulate the upstream fish migration, all the processes and random variables are defined on the

usual filtered complete probability space with a right‐continuous filtration \mathcal{F}_{t} [15]. Consider an n

‐dimensional real‐valued continuous stochastic process \mathrm{X}_{t}=[X_{\mathrm{i},t}] (1\leq i\leq n) in the bounded

domain  $\Omega$\in \mathbb{R}^{n} with the boundary \partial $\Omega$ where  t(\geq 0) is the time. The boundary (isr2 contains the

absorbing boundary \partial$\Omega$_{\mathrm{A}} and the reflecting boundary \partial$\Omega$_{\mathrm{R}} , which do not intersect with each other.

The stochastic process \mathrm{X}_{t} is assumed to be a controlled Markov process. It is assumed that the initial

condition \mathrm{X}_{0}^{\cdot}=\mathrm{x}=[x_{i}] is deterministically specified at the time t=0 . The governing equation of

\mathrm{X}_{\mathrm{t}} in the domain  $\Omega$ is the Itô�s SDE

\mathrm{d}\mathrm{X}_{t}=\mathrm{a}(t,\mathrm{X}_{t},u_{l})\mathrm{d}t+b(t,\mathrm{X}_{t},u_{l})\mathrm{d}\mathrm{B}_{l} (1)

where \mathrm{B}_{\mathrm{t}}=[B_{i,t}] is the n ‐dimensional standard Brownian motion [15], u_{t} is the control variable

that belongs to an admissible set of control \ovalbox{\tt\small REJECT}=L^{\infty}([0,+\infty ) ;U) with the range U, \mathrm{a}=[a_{i}] is the

n ‐dimensional drift coefficient vector, b=[b_{i,j}] is the nx n ‐dimensional diffusivity matrix that is

assumed to be non‐negative definite. The infinitesimal generator A^{u} associated with the SDE(I) is

expressed for generic sufficiently regular function \emptyset= $\phi$(s,\mathrm{x}) as

A^{u} $\phi$=\displaystyle \sum_{i=1}^{n}a_{i}\frac{\partial $\phi$}{\partial x_{i}}+\sum_{jj,=1}^{n}D_{i,j}\frac{\partial^{2}\emptyset}{\partial x_{i}\partial$\kappa$_{j}} (2)

with D_{i,j}=\displaystyle \frac{1}{2}\sum_{k=1}^{n}b_{i.k}b_{k,j} . The variable u_{\mathrm{t}} is assumed to be a Markov control.

2.2 Value function

In the stochastic control theory, the objective function to be maximized through choosing an

appropriate control variable u_{t} is expressed as [15]

v(s,\displaystyle \mathrm{x},u)=\int_{s}^{\overline{T}}f(t,X_{\mathrm{t}},u_{t})\mathrm{d}t+g(\overline{T},X_{\overline{T}}) , \overline{T}=\dot{\mathrm{m}}\mathrm{f}(T, $\tau$) (3)

with the first hitting time  $\tau$ defined as
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 $\tau$=\mathrm{m}\mathrm{f}\{t|t>s,\mathrm{X}_{s}=x,\mathrm{X}_{l}\in\partial$\Omega$_{\mathrm{A}}\} (4)

where f and g represent the profit (or the cost) per time unit and that gained at the terminal time

T , respectively. The goal of the stochastic control problem is to find an optimal control u=u^{*}\in \mathscr{K}
that maximizes an expectation of the objective function. The maximized objective function umder the

expectation is referred to as the value function, which is expressed as

 $\Phi$(s,\displaystyle \mathrm{x})=\sup_{u\in ff}\mathrm{E}[v(s,\mathrm{x},u)]=\mathrm{E}[v\left(s,\mathrm{x},u & *\right)] (5)

with

u=\displaystyle \mathrm{a}r\mathrm{g}\max_{u\mathrm{e}A}\mathrm{E}[v(s,\mathrm{x},u)] (6)

where \mathrm{E} represents the expectation.

2.3 Hamilton‐Jacobi‐Bellman equation

Application of the dynamic programming principle [15] to the value function in (5) leads to the

goveming equation of the value function  $\Phi$ , which, is the HJBE expressed as

\displaystyle \frac{\partial $\Phi$}{\partial s}+\sup_{u\in U}\{A^{u} $\Phi$+f(s,\mathrm{x},u)\}=\frac{\partial $\Phi$}{\partial s}+A^{u} $\Phi$+f\left(s,\mathrm{x},u & *\right)=0 \mathrm{i}\mathrm{n}  $\Omega$ (7)

subject to the boundary conditions

\displaystyle \frac{\partial $\Phi$}{\partial \mathrm{n}}(s,\mathrm{x})=0 for 0<s<T and \mathrm{x}\in\partial$\Omega$_{\mathrm{R}} (8)

and

 $\Phi$(s,\mathrm{x})=g(s,\mathrm{x}) for 0<s<T and \mathrm{x}\in\partial$\Omega$_{\mathrm{A}} , (9)

and the terminal condition

 $\Phi$(T,\mathrm{x})=g(s,\mathrm{x}) \mathrm{i}\mathrm{n}  $\Omega$ (10)

where \displaystyle \frac{\partial}{\partial \mathrm{n}}=\sum_{i=1}^{n}n_{i}D_{i,j}\frac{\partial}{\partial x_{j}} and \mathrm{n}=[n_{i}] is the outward normal vector on the boundary \partial $\Omega$ . For

stationary problems where the coefficients and value functions are time‐independent, (7) reduces to

 A^{u} $\Phi$+f(s,\mathrm{x},u^{*})=0 \mathrm{i}\mathrm{n}  $\Omega$ (11)

subject to the boundary conditions (8) and (9).

3. Mathematical model

3.1 Mitration dvnamics model

The SDE that governs horizontally 2‐D swimmmng behaviour of individual fishes in a river reach is

considered in this section. In the domain  $\Omega$\in \mathbb{R}^{2} of shallow water flows, the 2‐D stochastic process

\mathrm{X}_{t} describes a position of an individual fish at each time t . The swimming velocity \mathrm{u}_{t}=(u_{1,\mathrm{t}},u_{2,t})
of the fish is considered as a control variable. The governing equation of the process \mathrm{X}_{t} is given as
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\mathrm{d}\mathrm{X}_{l}=(\mathrm{V}(t,X_{t})-\mathrm{u}_{t})\mathrm{d}t+b(t,X_{t},u_{l})\mathrm{d}\mathrm{B}_{\mathrm{t}} (12)

where V is the 2‐D flow velocity vector and the 2‐D square matrix b modulates stochastic

swimming behaviour ofthe fish. The SDE(12) is a spatially2‐D extension ofthe 1‐D model [17]. The

positive direction of \mathrm{u} is taken opposite to that of V to focus on upstream fish migration.
Experimental results suggest that the diffusivity matnix D would be a decreasing function of the

swimming speed |\mathrm{u}| [20]; however, here it is assumed not to depend on |\mathrm{u}| for the sake of

simplicity. It is also assumed that the coefficients V and b are time‐independent given functions,
which can be valid when considering the migration with significantly shorter timescale than

hydrological changes of river flows.

The range U of the control \mathrm{u} is set as the 2‐D closed ball

|\mathrm{u}|\leq u^{(\mathrm{M})} , (13)

which is based on the trivial fact that the fish has a biologically determined maximum swimming
speed u^{(\mathrm{M})} . Yoshioka et al. [17, 21] considered an HJBE associated with the 1‐D model assuming
unbounded u^{(\mathrm{M})} and found that to well‐pose the problem requires regularization of a nonlinear term,

which �artificially� truncates the swimming speed. Therefore, boundedness of u^{(\mathrm{M})} is a reasonable

assumption from both mathematical and biological viewpoints.
The value function  $\Phi$= $\Phi$(\mathrm{x}) , which is assumed to be time‐independent, is set as

 $\Phi$(\displaystyle \mathrm{x})=\sup_{\mathrm{u}\mathrm{e}\ovalbox{\tt\small REJECT}}\mathrm{E}[v(\mathrm{x},\mathrm{u})] (14)

with the objective function

v(\displaystyle \mathrm{x},\mathrm{u})=-\int_{0}^{r}f(\mathrm{u}_{\mathrm{t}})\mathrm{d}t+g(\mathrm{X}_{ $\tau$}) (15)

where

f(\displaystyle \mathrm{u}_{t})=\frac{1}{m+1}|\mathrm{u}_{l}|^{m+1} (16)

with m\geq 1 represents the consumed physiological energy per time during the migration, which is

assumed to be an increasing and convex function of the swimming speed following the theoretical and

experimental results [22, 23], and g(\mathrm{X}_{ $\tau$}) represents the profit obtained when approaching the

absorbing boundary \partial$\Omega$_{\mathrm{A}} at the first hitting time  $\tau$ . The absorbing boundary \partial$\Omega$_{\mathrm{A}} is decomposed
into the upstream boundary \partial$\Omega$_{\mathrm{A}\mathrm{U}} where the flow is inward (\mathrm{V}\cdot \mathrm{n}<0) and the downstream

boundary \partial$\Omega$_{\mathrm{A}\mathrm{D}} where the flow is outward (\mathrm{V}\cdot \mathrm{n}>0) . The reflecting boundary \partial$\Omega$_{\mathrm{R}} in the present

case represents the wall boundary where the flow does not penetrate (\mathrm{V}\cdot \mathrm{n}=0) . It is also assumed that

no profit is obtained at the downstream boundary \partial$\Omega$_{\mathrm{A}\mathrm{D}}(g=0) .

Application of the dynamic programming principle to (14) leads to the HJBE

\displaystyle \sum_{i=1}^{n}(V_{i}-\mathcal{U}_{i}^{*})\frac{\partial $\Phi$}{\partial x_{\dot{ $\eta$}}}+\sum_{:}^{n}D_{i,j}\frac{\partial^{2} $\Phi$}{\partial x_{i}\partial x_{j}}-\frac{1}{m+1}|\mathrm{u}|^{m+1}ij=1=0 \mathrm{i}\mathrm{n}  $\Omega$ (17)

with the optimal swimming velocity \mathrm{u}^{n} as a function of the gradient ofthe value function \nabla $\Phi$ :
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\displaystyle \mathrm{u}^{*}=-\frac{\nabla $\Phi$}{|\nabla $\Phi$|}\mathrm{m}\mathrm{j}\mathrm{n}\{u^{(\mathrm{M})},|\nabla $\Phi$|^{\frac{1}{m}}\} in  $\Omega$ . (18)

The gradient \nabla $\Phi$ thus determines both the direction and magnitude of the optimal swimming
velocity \mathrm{u} . Heuristically, the fish swims with the maximum swimming speed u^{(\mathrm{M})} where |\nabla $\Phi$| is

larger than u^{(\mathrm{M})} and swims with the speed |\nabla $\Phi$|^{\frac{1}{m}} when |\nabla $\Phi$| is smaller than u^{(\mathrm{M})}.

3.2 Population dvnamics model

The stochastic process model for annual population dynamics of released P. altivelis in a river is

presented following Yaegashi et al. [19]. Let (0,T) with the terminal time T be a period during
which the population dynamics of released P. altivelis in a river is considered. The initial time t=0

and the terminal time t=T are set in the spring and the autumn within a year, respectively. The total

biomass of P. altivelis in this river at the time t is denoted as the 1‐D non‐negative continuous

stochastic process X_{\mathrm{t}} . The initial condition X_{0} at the time t=0 , which is the release amount of the

juveniles, is assumed to be deterministic. This is valid for the case where most part of the population
of P. altivelis in the river is introduced through intensive release events. The initial population X_{0} is

expressed as X_{0}=NW_{0} where N is the number of individuals released at the time t=0 and W_{0}
is the average weight of the juveniles at that time. The governing Itô�s SDE of the stochastic process

X_{\mathrm{t}} is given as

\mathrm{M}_{t}=(a(t,X_{l})-l_{l}X_{t})\mathrm{d}t+b(t,X_{l})\mathrm{d}B_{\ell} with l_{t}=R+k(u_{l})+$\chi$_{\{l\geq T_{\mathrm{c}}\}}c_{\mathrm{t}} (19)

and the growth‐curve based Verhulst model [24, 25]

a(t,x)=r(1-K^{-1}X_{t})X_{t} and b(t,x)= $\sigma$ X_{t} (20)

where B_{\mathrm{t}} is the 1‐D standard Brownian motion [15], R is the natural mortality rate, k(u_{t}) is the

predation pressure from a waterfowl as a function ofthe effort to reduce the pressure u=u_{t} , c is the

fishing pressure from human, T_{\mathrm{c}}<T is the opening time of harvesting P altivelis, and $\chi$_{s} is the

characteristic function for generic set S . The capacity K
, the intrinsic growth rate r , and the noise

intensity  $\sigma$ are positive model parameters. The noise intensity a implicitly models influences of

the natural and artificial environmental changes in the river to the population dynamics as a

multiplicative noise.[26]. Assuming that the population dynamics is limited by the released amount

rather than by the enviromnental capacity, the parameter  K is expressed as [19]

K=M_{0}=mNW_{0} (21)

with a positive constant m . This assumption can be valid for a river where the population ofreleased

P. altivelis dominates the natural counterparts and they do not saturate in the habitat.

The variables u and c are taken as the controls variables in the model. The admissible set of

the controls u and c are \mathrm{a}=L^{\infty}([0,+\infty) ;U) and  C=L^{\infty}([0,+\infty) ;C) , respectively. The range

U and C ofthe controls u and c are specified as

U=\{u|0\leq u\leq 1\} and C=\{c|0\leq c\leq c_{\mathrm{M}}\} , (22)

respectively where c_{\mathrm{M}} is the maximum fishing pressure. The objective function to be maximized
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v=v(s,x,u,c) is assumed to represent the profit of the local fishery cooperatives. The objective
function is proposed as

v=\displaystyle \int_{s}^{T}\{-f(u_{t})+$\chi$_{\{t\geq T_{\mathrm{c}}\}} $\theta$ c_{t}X_{\mathrm{t}}\}\mathrm{d}t- $\eta$ X_{0} (23)

where f(\geq 0) with f(0)=0 is an increasing function,  $\theta$ is the price of matured P. altivelis per

weight and  $\eta$ is the cost of larval P. altivelis per weight, both of which are assumed to be constant.

The first and second integrands of Eq.(23) are the cost of operating countermeasures to exterminate
the predator and the total benefit of harvesting P. altivelis, respectively. The term - $\eta$ X_{0} represents
the cost to buy larval P. altivelis to be released at the time t=0 . The two functions k(u) and f(u)
on the control variable u are simply specified as

k(u)=k_{0}(1- $\alpha$ u) and f(u)=0Xl , (24)

respectively where k_{0} is the predation pressure from the waterfowl without any coumtermeasures, a

with 0<a\leq 1 modulates efficiency to decrease the predation pressure with the control u , and  $\omega$

modulates the cost to decrease the predation pressure.

The value function is presented as

 $\Phi$(s,x)=\displaystyle \sup_{u\in Z/,c\in \mathcal{C}}\mathrm{E}[v(s,x,u,c)] (25)

whose governing HJBE is

\displaystyle \frac{\partial $\Phi$}{\partial s}+\sup_{u\in$\theta$^{!},c\in \mathcal{C}}\{A^{u,c} $\Phi$-f(u)+$\chi$_{\{s\geq T_{\mathrm{c}}\}} $\theta$ cx\}=\frac{\partial $\Phi$}{\partial s}+A^{u.\mathcal{C}} $\Phi$-f(u^{*})+$\chi$_{\{s\geq T,\}}$\theta$_{\mathcal{C}^{*}}x=0 in  $\Omega$ (26)

where the optimal controls  u^{*} and c^{*} via the value function  $\Phi$ as

 u^{*}=1(k_{0} $\alpha$ r- $\omega$\geq 0) , u^{*}=0 (Otherwise) and c^{*}=c_{\mathrm{M}}( $\theta$ x- $\gamma$\geq 0) , c^{*}=0 (Otherwise) , (27)

respectively where  $\gamma$=x\displaystyle \frac{\partial $\Phi$}{\partial x} . Both of the optimal controls are thus the bang‐bang type. The domain

of the population of P. altivelis x is set as  $\Omega$=(0,L) with L(>0) determined later. Substituting

u=u^{*} and c=c into (26) fully specifies the HJBE in the domain  $\Omega$ . The terminal condition for

the HJBE is set as  $\Phi$_{s=T}=0 and the boundary conditions as V_{\mathrm{x}=0}=0 and \displaystyle \frac{\partial $\Phi$}{\partial x}|_{x=L}=0 . Solving the

HJBE yields the optimal controls u^{*} and c^{*} over (0,T)\mathrm{x}(0,L) .

4. Applications

4.1 Studv area

Demònstrative application examples of the migration dynamics model and population dynamics model

focusing on P. altivelis in Hii River, San‐in area, Japan are presented. Population ofthe fish in the river

is thought to have been considerably decreasing due to degradation of river environment by dam and

weir constructions and excessive predation pressure from waterfowls: Phalacrocorax carbo (Great
Cormorant) [27, 28] (Photo. 1). The total length of the mainstream and the catchment area of Hii

River are 153 (km) and 2,070 (km2), respectively [29]. Hydrological characteristics of Hii River is
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Photo 1: P. altivelis (left panel) and P. carbo (right panel).
(The photo \mathrm{o}\mathrm{f}P. carbo is taken from \mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}.yunphoto. \mathrm{n}\mathrm{e}\mathrm{t}).

described and analyzed in detail in Sato et al. [30, 31], and not explained in this paper. Two

downstream brackish lakes named Lake Shinji and Lake Nakaumi from upstream are connected to the

river. Being different from the cases of the rivers that directly flow into the sea, hatched larvae of P.

altivelis are thought to descend to Lake Shinji; however, it is not well‐known where they survive

during winter season.

4.2 Migration dvnamics model

The HJBE for the migration dynamics model is applied to numerical computation of spatial
distribution of the optimal swimming velocity of individual P. altivelis in the downstream area of

Yoshii Weir installed at a midstream reach of Hii River, which is a weir to control channel erosion with

the width of 80 (m) and the height of 3 (m) (Photo 2). A field survey carried out by the authors during
June, 2015 found that the mainstream of Hii River has a number of weirs and Yoshii Weir is relatively
larger one among them. Photo 3 shows fishways currently that are installed to Yoshii Weir. The

previous Yoshii fishway consisted solely of the pool‐type fishway. Downstream pools of this fishway
suffered from severe depositions of fine soil particles. This might be due to its geometry of shaping
flow recirculation that traps the particles. Such depositions were considered to be a cause of degrading
fluid transport capacity of the fishway, which might have further lead to degradation of its attraction

ability and passage efficiency for migratory fish species. The downstream part of the pool‐type
fishway was renovated in 2013 in order to reduce the sediment deposition. Around the same time, the

nature‐like fishway was installed at the same side of the weir so that migratory fishes can more

efficiently find the way to passage the weir. Currently, Hii River Fisheries Cooperatives, who manage

fishery resources in middle and upstream reaches of Hii River, are concerned with attraction ability
and passage efficiency of the renovated Yoshi Weir. Assessing attraction ability and passage

efficiency of the weir is therefore a highly important issue.

A2‐D time‐independent shallow water flow field in the domain is numerically computed with the

2‐D shallow water equations using the verified finite element/volume scheme [32]. The computational
domain was extracted from Google Earth (Google Inc., Mountain View, Calif.) has been discretized

into 57,443 triangular elements and 113,609 nodes using the free software named VORO (available at

http://wwwyss‐aya.com/voro.html). The HJBE is numerically solved with a 2‐D counterpart of the

Petrov‐Galerkin finite element scheme [33] that has already been verified with simpler HJBEs. The
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maximum swimming speed u^{(\mathrm{M})} is set as 2 (\mathrm{m}/\mathrm{s}) , which is approximately same with the burst

swimming speed observed at laboratorial experimental results [34]. The parameter m for the cost

function is set to be 3 considering the identification result based on laboratorial experiments [17]. The

downstream‐end of the domain is considered as the downstream boundary \partial$\Omega$_{\mathrm{A}\mathrm{D}} . The entrance of the

pool‐type fishway and the top of the nature‐like fishway where the individual fishes can passage are

considered as the upstream boundary \partial$\Omega$_{\mathrm{A}\mathrm{U}} . The remaining parts of the boundary \partial $\Omega$ is considered

as the reflecting boundary \partial$\Omega$_{\mathrm{R}} . The value function  $\Phi$ is specified as  $\Phi$=0 on \partial$\Omega$_{\mathrm{A}\mathrm{D}} and

 $\Phi$=P_{0} ( = const >0 ) on \partial$\Omega$_{\mathrm{A}\mathrm{U}} where P_{0} is the ecological profit to be gained on \partial$\Omega$_{\mathrm{A}\mathrm{U}} . The

parameter P_{0} is set as P_{0}=20,000(\mathrm{m}^{4}/\mathrm{s}^{3}) . Preliminary computational investigations implied that

the optimal swimming velocity \mathrm{u}^{*} does not significantly depend on the P_{0}>10,000(\mathrm{m}^{4}/\mathrm{s}^{3}) ; namely,
\mathrm{u}^{*} is almost independent of P_{0} when it is sufficiently large. This tendency of \mathrm{u}^{*} is consistent with

the theoretical analysis results for the 1‐D model [18]. A steady state numerical solution is computed
with a Picard iteration method for solving nonlinear equations.

Figures 1(\mathrm{a}) through 1(\mathrm{d}) show the computational results with the migration dynamics model.

Figures 1(\mathrm{a}) and 1(\mathrm{b}) present the computed flow field based on the shallow water equations, which

qualitatively agree with field observation results. Figures 1(\mathrm{c}) shows the computed value fUnction

whose maximum value is normalized to 1 and the optimal swimming velocity vectors. Figure 1(\mathrm{d})
shows the expectation of the first hitting time  $\tau$ of the individual fishes from each point in the

domain  $\Omega$ to either of the two open boundaries (the entrance of the pool‐type fishway and the top of

the nature‐like fishway). Figure  1(\mathrm{d}) indicates that the computational results show that the first hitting
time has a sharp interior layer along the downstream of Yoshii Weir. As indicated in Figure 1(\mathrm{c}) , this

is considered to be due to that individual fishes are attracted to the currents from Yoshi Weir serving
as a reflecting boundary. The computational results imply that the current from the pool‐type fishway
is too weak to attract the migrating fishes. The individual fishes at downstream of the layer may be

able to find the entrance of the pool‐type fishway with non‐zero, but very small probability. In

addition, the flow speed in the nature‐like fishway is too high for fishes to ascend: exceeding almost 3

(\mathrm{n}\sqrt{}\mathrm{s}) , which is larger than u^{(\mathrm{M})}=2(\mathrm{r}\mathrm{r}\sqrt{}\mathrm{s}) . The presented computational results suggest a possibility
that the current fishways are not effectively working as passages for P. altivelis.

Photo 2: Plane view of Yoshii Weir and associated fishways.
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the pool‐type fishway (right panel). Both of the

photographs are taken from downstream.

Figure 1: Computed water depth (upper left panel), water surface elevation and horizontal flow

velocity vectors (upper right panel), value function and the optimal swimming velocity vectors (lower
left panel), and first hitting time to the fishways (lower right panel).
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4.3 PoIJulation dvnamics model

The population dynamics model is applied to numerical computation of optimal strategy for harvesting
and extermination of P. carbo in order to sustain released P. altivelis population in Hii River. Table 1

summarizes the parameter values determined based on information from officers in Hii River Fishery
Cooperatives. On the other parameters, the natural mortality rate R is estimated as 4.6\times 10^{-3}

(1/\mathrm{d}\mathrm{a}\mathrm{y})[35] . The value of a is estimated as 0.50 [19]. The maximum fishing pressure c_{\mathrm{M}} is set

as 0.01 (1/\mathrm{d}\mathrm{a}\mathrm{y}) following Yaegashi et al. [19] and it has preliminary been checked that this parameter
does not significantly affect quality of the value function and the controls than the other parameters.
Assuming that the SDE (19) with k=c_{\mathrm{M}}=0 admits a non‐trivial and non‐singular probability

density for large T[36] ,
the range ofthe noise intensity  $\sigma$ is set as  0.04\leq $\sigma$\leq 0.32(1/\mathrm{d}\mathrm{a}\mathrm{y}^{1/2}) . The

value of the parameter k_{0} is estimated from an exact solution to a deterministic counterpart of the

SDE(19) with c_{\mathrm{M}}=0 and given X_{0} for each computation ] 19[ . Based on the weights of matured

and released P. altivelis [37, 38] the parameters r
,  $\sigma$ , and  X_{0} are set as 6.8\times 10^{-2}(1/\mathrm{d}\mathrm{a}\mathrm{y}) , 0.18

(1/\mathrm{d}\mathrm{a}\mathrm{y}^{1/2}) , and 2,250 (kg), respectively. The domain of the population of P. altivelis x is set as

 $\Omega$=(0,6.0\times 10^{4}) (kg) and is uniformly discretized into a mesh with 300 elements and 301 nodes.

The time increment for temporal integration is 0.01 (day). The HJBE(26) is numerically solved with

the verified Petrov‐Galerkin finite element scheme [33]. Increasing computational resolution in space

and time does not significantly affect the computational results presented below.

The optimal management strategy is numerically computed for a set of parameters as a

demonstrative example. Figures 2(a) through 2(c) plot the computed value function  $\Phi$ and the

optimal controls  u^{*} and c^{*}, respectively. Figure 2(a) shows that the value function  $\Phi$ does not

have spurious oscillations, indicating that the numerical scheme can reasonably handle the HJBE.

Figure 2(b) shows that the optimal strategy for the extermination of P. carbo is to intensively reduce

the predation pressure mainly after the opening time  T_{\mathrm{c}} except the terminal time T
,

and before the

opening time T_{c} for the case of small biomass of P. altivelis. Figure 2(c) indicates that the optimal
harvesting strategy is to harvest P. altivelis after the opening time T_{\mathrm{c}} except for small population x.

Table 1: Specified values ofthe model parameters in the population dynamics model.

\overline{\frac{T(\mathrm{d}\mathrm{a}\mathrm{y})T_{\mathrm{c}}(\mathrm{d}\mathrm{a}\mathrm{y})m(-)W_{0}(\mathrm{k}\mathrm{g}) $\eta$(\mathrm{y}\mathrm{e}\mathrm{n}/\mathrm{k}\mathrm{g}) $\theta$(\mathrm{y}\mathrm{e}\mathrm{n}/\mathrm{k}\mathrm{g})}{180905.49.4\times 10^{-3}4.4\times 10^{3}4.0\times 10^{3}}}

\bullet u1 \bullet c0.01
口 0 口 0

10^{4} 0 6.0\times 10^{4}

x (kg) x (kg) x (kg)
Figure 2: Computational results of (a) value function  $\Phi$

, (b) optimal effort to reduce the predation
pressure  u^{*}, and (c) optimal fishing pressure c^{*}

143



5. Links between the two models

The migration dynamics model and the population dynamics model deal with the dynamics of fishery
resources in rivers based on different spatial and temporal scales. The migration dynamics model

tracks local swimming behaviour of migratory individual fishes in river flows, while the population
dynamics model assesses temporal evolution of the population of the fishes in rivers as habitats. There

should be some links between the two models since they describe the same dynamics from different

viewpoints. The authors consider that it is possible to see the population dynamics model as a

coarse‐scaled migration dynamics model. Spatially‐distributed statistics, such as ascending probability
and first hitting time of individual fishes for physical barriers, computed with the migration dynamics
model would be used for identifying the model parameters r, K, and  $\sigma$ in the population dynamics
model. In addition, the above‐mentioned two statistics are directly related with migration rate of the

fishes between habitats partially fragmented by physical barriers. Considering hydraulic regimes at

and around the physical barriers can support reasonably evaluating their attraction ability and passage

efficiency. A multi‐habitat counterpart of the population dynamics model, as presented in the literatureJ

[39], can then be developed with such local and crucial ecological information.

6. Conclusions

A stochastic control theory was applied to dynamic mathematical modelling of local migration and

global population dynamics of migratory fishes in river environment. The migration dynamics model

assumed an energy minimization principle to determine the optimal swimming velocity of individual

fishes in shallow water flow fields. The population dynamics model considers temporal biomass

changes of released fishery resources in river environment subject to harvest by human and predation
from waterfowls. Linkages between the two models were discussed focusing on physical barriers

installed across river cross‐sections.

Future researches will address mathematical and numerical analyses of the models, their further

practical applications, and their improvements for more realistic analysis of fishery resources

dynamics. For example, objective functions, coefficients, and parameters involved in each

mathematical model should more close to realistic based on available field survey data and testimonies

from field workers. So far, Yoshioka et al. [40] addressed identification of more. biologically
reasonable cost function for the migration dynamics model, which has been applied to a number of

migratory fish species.
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