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1 Introduction

We devote this paper to an announcement about results in [9]. More precisely, we shall

introduce critical exponents with respect to the sign of radial solutions to Hénon type
equation on the hyperbolic space:

(H) -$\Delta$_{g}u=(\mathrm{s}\dot{\mathrm{m}}\mathrm{h}r)^{ $\alpha$}|u|^{\mathrm{p}-1}u in \mathbb{H}^{N},

where N \geq  2, p> 1
, and  $\alpha$ > -2 . We denote by \mathbb{H}^{N} the N‐dimensional hyperbolic

space, i.e., let \mathbb{H}^{N} be a manifold admitting a pole 0 and whose metric g is dcfincd, in

the polar coordinates around 0 , by

d_{\mathcal{S}^{2}}=dr^{2}+(\sinh r)^{2}d$\Theta$^{2}, r>0,  $\Theta$\in \mathrm{S}^{N-1},

where d$\Theta$^{2} denotes the canonical metric on the unit sphere \mathrm{S}^{N-1}, r is the geodesic
distance between 0 and a point (r,  $\Theta$) . Moreover, $\Delta$_{g} denotes the Laplace‐Ueltrami
operator on (\mathbb{H}^{N}, g) given by

$\Delta$_{g}f (r, $\theta$_{1}, , $\theta$_{N-1})=(\sinh r)^{-(N-1)}\partial_{r}\{(\sinh r)^{N-1}\partial_{r}f(r, $\theta$_{1}, , $\theta$_{N-1})\}
+(\sinh r)^{-2}$\Delta$_{\mathrm{S}^{N-1}}f(r, $\theta$_{1}, $\theta$_{N-1}) ,

where f : \mathbb{H}^{N}\rightarrow \mathbb{R} is a scalar function and $\Delta$_{\mathrm{S}^{N-1}} is the Laplace‐Beltrami operator on

the unit ball \mathrm{S}^{N-1} . In order to state known results on the sign of radial solutions to

(L)) we define several notations. We denote the Sobolev exponent by p_{s}(N.  $\alpha$) , i.e.,

p_{s}(N,  $\alpha$)=\displaystyle \frac{N+2+2 $\alpha$}{N-2}.
Furthermorc, we define several classes of radial sohitions to (H) as follows:

Definition 1.1. For each  $\beta$>0 , let u_{ $\beta$}=u_{ $\beta$}(r) be the radial solution of (H) satisfying
u_{ $\beta$}(0)= $\beta$.

(i) We say that u_{ $\beta$} is Type O , if u_{ $\beta$} has infinitely many zeros in (0, \infty) .

(ii) We say that u_{ $\beta$} is Type R
, if u_{ $\beta$} has finitely many zeros in (0, \infty) and satisfies

\displaystyle \lim_{r\rightarrow\infty}(\sinh r)^{N-1}|u_{ $\beta$}(r)|= $\gamma$ for some  $\gamma$>0.
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(iii) We say that u_{ $\beta$} is Type S, if u_{ $\beta$} has finitely many zeros in (0, \infty) and satisfies

\displaystyle \lim_{r\rightarrow\infty}(\sinh r)^{N-1}|u_{ $\beta$}(r)|=\infty.

We note that Definition 1.1 is inspired by [16]. First we introduce known results

on (H) for the case of  $\alpha$=0.

From 2000' \mathrm{s} , the following Lane‐Emden equation on the hyperbolic space is well‐

investigated ([1, 3) 10, 11, 12, 14, 15

(L) -$\Delta$_{g}u=|u|^{p-1}u in \mathbb{H}^{N},

where N \geq  3 and p > 1 . Here, for each  $\beta$ > 0 , we denote by u_{ $\beta$}^{L} = u_{ $\beta$}^{L}(r) the radial

solution of (L) satisfying  u_{ $\beta$}^{L}(0)= $\beta$ . Then the following result is obtained:

Proposition 1.1 ([4, 12 Let  N\geq 3 , and p> 1.

(i) Let p <p_{s}(N, 0) . Then there exists $\beta$_{L} = $\beta$_{L}(N,p) > 0 such that the following
hold:

If  $\beta$<$\beta$_{L} , then u_{ $\beta$}^{L} is positive in [0, \infty ) and is Type  S;

If  $\beta$=$\beta$_{L} , then u_{ $\beta$}^{L} is positive in [0, \infty ) and is Type  R ;

If  $\beta$>$\beta$_{L} , then u_{ $\beta$}^{L} is sign‐changing and has finitely many zeros in [0, \infty).

(ii) Let  p\geq p_{s}(N, 0) . Then for any  $\beta$>0, u_{ $\beta$}^{L} is positive in [0, \infty ) and is Type  S.

Remark that Proposition 1.1 implies that p_{s}(N, 0) is critical on the existence of

sign‐changing radial solutions to (L). However, p_{s}(N, 0) is not critical with respect to

the existence of positive solutions of (L).
Here, the assertion for the case of p<p_{s}(N, 0) and  $\beta$=$\beta$_{L} in Proposition 1.1 was

proved in [12]. Indeed, making use of the variational methods, they proved the existence

of the positive radial solution of Type S. The rest of the assertions of Proposition
1.1 were obtained in [4]. Furthermore, in [4] they obtained the precise result on the

asymptotic behavior of radial solutions. Indeed, they showed that the decay rate of

radial solutions of Type \mathrm{S} is given by

(1.1) r\displaystyle \rightarrow\infty \mathrm{h}\mathrm{m}r^{\frac{1}{p-1}}|u_{ $\beta$}^{L}(r)|= (\frac{N-1}{p-1})^{\frac{1}{p1}}
Next, we state known results on the stability of solutions to (L). In [2], it was

proved that there exist stable, positive, and radial solutions of (L) for any p>1 . This

result implies that critical exponents with respect to the stability of solutions do not

exist for (L).
On the other hand, we observe from the case of the Euclidean space that critical

exponents depend on a weight of equation. Indeed, we introduce the results on the

existence of critical exponents for the following Hénon equation in \mathbb{R}^{N} :

(E) - $\Delta$ u=|x|^{ $\alpha$}|u|^{p-1}u in \mathbb{R}^{N},
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where N\geq 3, p> 1 , and  $\alpha$>-2 . Then all regular radial solutions to (E) are positive
for p\geq p_{s}(N,  $\alpha$) and have infinitely many zeros for p<p_{s}(N,  $\alpha$) (e.g., see [16]). Hence,
p_{s}(N,  $\alpha$) is critical not only on the positivity of radial solutions but also on the existence

of sign‐changing radial solutions of (E). Moreover, there exists a critical exponent

p_{JL}(N,  $\alpha$) > p_{s}(N,  $\alpha$) on the stability of solutions to (E). Indeed, if p < p_{JL}(N,  $\alpha$) ,

then there exist no non‐trivial stable solutions, and if p\geq p_{JL}(N,  $\alpha$) , then there exist

stable, radial, and positive solutions ([5, 6 Here, the exponent p_{JL}(N, 0) is called the

Joseph‐Lundgren exponent.
The critical exponents of (E) depend on the weight. Thus, it is natural to investigate

the existence of critical exponents for (L) with a weight. Indeed, we considered the

Hénon type equation (H) on \mathbb{H}^{N} in [7]-[8] . Here the weight of (H) denotes the power

of the volume element of \mathbb{H}^{N}.
We have already obtained the result on the existence of a critical exponent on the

stability of solutions to (H) in [7]-[8] . Before we state our results for (H), we prepare

some notations. For each  $\beta$>0 , we denote by u_{ $\beta$}=u_{ $\beta$}(r) the family of radial regular
solutions of (H) with u_{ $\beta$}(0) =  $\beta$ ) i.e.)  u_{ $\beta$} is the solution of the following initial value

problem:

(Hr) \left\{\begin{array}{ll}
u''(r)+\frac{N-1}{\tanh r}u'(r)+(\sinh r)^{ $\alpha$}|u(r)|^{p-1}u(r)=0 \mathrm{i}\mathrm{n} & (0, +\infty) ,\\
u(0)= $\beta$. & 
\end{array}\right.
Moreover, we define the exponent p_{c}(N,  $\alpha$) by

p_{c}(N,  $\alpha$):= \left\{\begin{array}{ll}
+\infty & \mathrm{i}\mathrm{f} N\leq 1+4 $\alpha$,\\
\frac{(N-1)^{2}-2 $\alpha$(N-1)-2$\alpha$^{2}+2 $\alpha$\sqrt{2 $\alpha$(N-1)+$\alpha$^{2}}}{(N-1)(N-4 $\alpha$-1)} & \mathrm{i}\mathrm{f} N>1+4 $\alpha$.
\end{array}\right.
Then we obtained the following result:

Proposition 1.2 ([7, 8 Let N\geq 2 and  $\alpha$>0 . Then the following hold:

(i) If 1<p<p_{c}(N. a) , then (H) has no non‐trivial stable solutions;

(ii) If p >p_{c}(N. $\alpha$) , then there exists \overline{ $\beta$} = \overline{ $\beta$}(N,p,  $\alpha$) > 0 such that u_{ $\beta$} is stable for
any  $\beta$\in(0,  $\beta$

Here, we mention the case where  $\alpha$ \geq (N-1)/4 . The condition  $\alpha$ \geq (N-1)/4
yields p_{\mathrm{c}}(N,  $\alpha$) = +\infty from the definition of  p_{c}(N,  $\alpha$) . Therefore, the assertion (i)
in Proposition 1.2 implies that (H) has no non‐trivial stable solutions. Namely, if

 $\alpha$\geq(N-1)/4 , then the case of the assertion (ii) does not occur.

We observe from Proposition 1.2 that the exponent p_{c}(N,  $\alpha$) is critical on the exis‐

tence of non‐trivial stable solutions of (H) and the result is completely different from

that of (L). Hence, we can expect that there is also a critical exponent with respect to

the existence of sign‐changing radial solutions of (H).
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Following the motivation, we shall investigate the sign of solutions to (H). In order

to state our main results, we set the exponent p_{b}(N,  $\alpha$) as

p_{b}(N,  $\alpha$)=\displaystyle \frac{N-1+2 $\alpha$}{N-1}.
Then, focusing on radial solutions to (H), we obtain the following result on the existence

of critical exponents with respect to the sign of radial solutions:

Theorem 1.1 ([9]). Let N\geq 3, p> 1
, and  $\alpha$>0.

(i) Let p<p_{b}(N,  $\alpha$) . Then for any  $\beta$>0, u_{ $\beta$} is Type O.

(ii) Let p_{b}(N,  $\alpha$) <p<p_{s}(N,  $\alpha$) . Then there exists $\beta$_{H}=$\beta$_{H}(N, p,  $\alpha$) > 0 such that

the following hold:

If  $\beta$<$\beta$_{H} , then u_{ $\beta$} is positive in [0 , oo) and is Type S;

If  $\beta$=$\beta$_{H} ,
then u_{ $\beta$} is positive in [0, \infty ) and is Type  R ;

If  $\beta$>$\beta$_{H} , then u_{ $\beta$} is sign‐changing and has finitely many zeros in [0 , oo).

(iii) Let p>p_{s}(N,  $\alpha$) , then for any  $\beta$>0, u_{ $\beta$} is positive in [0, \infty ) and is Type  S.

Remark that Theorem 1.1 also holds true for (y=0 by Proposition 1.1. Here, there

exist two critical exponents on the sign of radial solutions to (H). Indeed, p_{b}(N,  $\alpha$)
is critical on the positivity of radial solutions, while p_{s}(N, c\ell) is also critical on the

existence of sign‐changing radial solutions.

We obtain further results on radial solutions of (H). Positive solutions of Type \mathrm{S}

satisfy the following asymptotic behavior:

Theorem 1.2 ([9]). Let N\geq 3,  $\alpha$>0 ,
and the pair (p,  $\beta$) satisfy

p_{b}(N,  $\alpha$)<p<p_{s}(N,  $\alpha$) , 0< $\beta$<$\beta$_{H} ,
or p>p_{s}(N,  $\alpha$) ,  $\beta$>0.

Then it holds that

\displaystyle \lim_{r\rightarrow+\infty}u_{ $\beta$}(r)(\sinh r)^{\frac{ $\alpha$}{\mathrm{p}-1}} =\{\frac{ $\alpha$}{p-1} (N-1-\frac{ $\alpha$}{p-1})\}^{\frac{1}{\mathrm{p}-1}}
We observe from (1.1) and Theorem 1.2 that the decay rate of radial positive

solutions of Type \mathrm{S} for the case of  $\alpha$>0 is different from that for the case of  $\alpha$=0.

For the equation (L)) the existence of sign‐changing solutions of Type \mathrm{S} has been

already proved by Theorem 2.4 in [4] for 1 <p<p_{s}(N, 0) . On the other hand, from the

result in the Euclidean space (e.g., see [16]), we expect that there exists sign‐changing
solutions of type \mathrm{R} for the equation (H). Indeed, the following result is obtained:

Theorem 1.3 ([9]). Let N\geq 3,  $\alpha$> -2_{f} and \displaystyle \max\{1, p_{b}(N,  $\alpha$)\} <p<p_{s}(N,  $\alpha$) . Then

there exist stnctly increasing positive divergent sequences \{$\beta$_{i}\}_{i\in \mathrm{N}} and \{$\gamma$_{i}\}_{i\in \mathrm{N}} such that

u_{$\beta$_{i}} has just i zeros on [0, +\infty ) and satisfies (\sinh r)^{N-1}u_{$\beta$_{i}}(r)\rightarrow(-1)^{i}$\gamma$_{i} as r\rightarrow\infty.

112



Remark that $\beta$_{0}=$\beta$_{L} if  $\alpha$=0 , and $\beta$_{0}=$\beta$_{H} if  $\alpha$>0 , where $\beta$_{L} and $\beta$_{H} are defined

in Proposition 1.1 and Theorem 1.1 respectively. Theorem 1.3 implies that there exist

radial solutions of Type \mathrm{R} for the case of p_{b}(N,  $\alpha$) < p < p_{s}(N,  $\alpha$) and  $\beta$ > $\beta$_{H} in

Theorem 1.1. Furthermore, for the equation (L) , i.e., for the case of  $\alpha$=0 , Theorem

1.3 also clarifies the existence of radial solutions of Type \mathrm{R} when 1 <p<p_{s}(N, 0) and

 $\beta$>$\beta$_{L} in Proposition 1.1.

In order to prove Theorems 1.1−1.3, we need to verify the existence and the unique‐
ness of a solution of (Hr). In particular, for the proof of Theorem 1.3, we shall study
a solution of the following initial value problem:

(1.2) \left\{\begin{array}{l}
u''(r)+\frac{N-1}{\tanh r}u'(r)+ $\lambda$ \mathrm{s} $\iota$(r)+(\sinh r)^{ $\alpha$}|u(r)|^{p-1}u(r)=0 \mathrm{i}\mathrm{n} (0, \infty) ,\\
u(0)= $\beta$.
\end{array}\right.
where N \geq  2

) p> 1,  $\alpha$ > -2
,

and  $\lambda$ \geq  0 . Remark that we impose only the value of

u(0) in (1.2) and do not impose the value of u'(0) . The existence of the solution to

(1.2) is proved as follows:

Theorem 1.4. Let N \geq  2, p> 1,  $\alpha$ > -2 , and  $\lambda$ \geq  0 . For each  $\beta$ > 0 , then there

exists a unique solution u_{ $\beta$}\in C([0, \infty))\cap C^{2}((0, \infty)) of the initial value problem (1.2).

Remark 1.1. In particular, the solution u_{ $\beta$}\in C([0, \infty))\cap C^{2}((0, \infty stated in The‐

orem 1.4, satisfies the following:

 u_{ $\beta$}\in C^{2}([0, \infty)) if  $\alpha$\geq 0 ;

u_{ $\beta$}\in C^{1}([0, \infty)) if -1\leq $\alpha$<0.

For the proof of Theorems 1.1−1.3, see [9]. We devote the rest of this paper to

proving Theorem 1.4 and Remark 1.1. More precisely, in Lemmas 2.1‐2.2, making
use of the successive approximation and the fixed point theorem, we shall show the

existence and the uniqueness of a solution to an integral equation in a local interval.

Moreover, we observe from Lemmas 2.3‐2.4 that a solution of the integral equation is

\mathrm{a} �local‐in‐time�� solution of (1.2). Lemmas 2.3‐2.4 are obtained by direct calculations

and the asymptotic behavior of the derivative of the solution at the origin. Then using
the fact that the solution is bounded in C^{1} , we prove that the solution can be extended

globally in Lemma 2.5. Hence we complete the proof of Theorem 1.4. For the proof
of Remark 1.1, using the integral equation, we study the asymptotic behaviors of the

derivative and the second derivative of the solution to (1.2) at the origin in Lemmas

2.6‐2.7. The proofs of Lemmas 2.6‐2.7 are the modification of Proposition 4.4 in [13].

2 Proof of Theorem 1.4 and Remark 1.1

In the following, for each  $\beta$>0 , we consider the initial value problem (1.2). To begin
with, we shall prove the existence and uniqueness of a solutions to (1.2).
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We start with the existence and the uniqueness of �local‐in‐time solution� to (1.2).
Now we study the solutions of the following integral equations:

(2.1) u(r)= $\beta$-\displaystyle \int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{p-1}u(t)\}dtds.
Lemma 2.1. Let N \geq  2, p > 1_{f} or > -2,  $\beta$ > 0 , and  $\lambda$ \geq  0 . Then there exists a

constant  $\delta$>0 such that the integral equation (2.1) has a unique solution u\in C([0. $\delta$])
with u(0)= $\beta$.

Proof. To begin with, we shall show the existence of solution to (2.1) by the successive

approximation. For this purpose, we define notations. Set the function space X by

X:=\{u\in C([0,  $\delta$]) : |u| \leq M in [0, \tilde{ $\delta$}

where  $\delta$>0 is sufficiently small and M>0 is the constant satisfying

(2.2) 2 $\beta$<M.

Moreover, we define the mapping  $\Phi$ :  C([0,  $\delta$])\rightarrow C([0,  $\delta$]) by

 $\Phi$(u)(r)= $\beta$-\displaystyle \int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{\mathrm{p}-1}u(t)\}dtds.
Furthermore, we define inductively the sequence \{u_{i}\}_{i\in \mathrm{N}} as

u_{0}= $\beta$, u_{i+1}= $\Phi$(u_{i}) in [0,  $\delta$].

Then we claim that

(2.3) |u_{l}(r)| \leq M for any i\in \mathbb{N} and  r\in [0,  $\delta$].
When i=0

,
we observe from (2.2) that

u_{0}(r)= $\beta$<M in [0 )
 $\delta$].

Next, we assume that (2.3) holds for the case of  i . Recalling  $\alpha$> -2
, we find

(2.4) |u_{i+1}(r)|

\displaystyle \leq $\beta$+\int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}\{ $\lambda$ M(\sinh t)^{N-1}+M^{p}(\sinh t)^{N-1+ $\alpha$}\}dtds
\displaystyle \leq $\beta$+\int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}\{ $\lambda$ M(\sinh t)^{N}+M^{p}(\sinh t)^{N+\prime y}\}\frac{dt}{\tanh t}ds
= $\beta$+\displaystyle \int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\{\frac{ $\lambda$ M}{N}(\sinh_{\mathcal{S}})^{N}+\frac{M^{p}}{N+ $\alpha$}(\sinh s)^{N+ $\alpha$}\}ds
= $\beta$+\displaystyle \int_{0}^{r}\{\frac{ $\lambda$ M}{N}(\sinh_{\mathcal{S})}+\frac{M^{p}}{N+ $\alpha$}(\sinh s)^{ $\alpha$+1}\}ds
\displaystyle \leq $\beta$+\int_{0}^{r}\{\frac{ $\lambda$ 1M}{N}(\sinh s)^{2}+\frac{M^{p}}{N+ $\alpha$}(\sinh_{\mathcal{S}})^{ $\alpha$+2}\}\frac{d_{\mathcal{S}}}{\tanh s}
= $\beta$+\displaystyle \frac{ $\lambda$ M}{2N}(\sinh $\delta$)^{2}+\frac{M^{p}}{(N+ $\alpha$)( $\alpha$+2)}(\sinh $\delta$)^{ $\alpha$+2}
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Since we may take  $\delta$>0 satisfying

\displaystyle \frac{ $\lambda$}{2N}(\sinh $\delta$)^{2}+\frac{M^{p-1}}{(N+ $\alpha$)( $\alpha$+2)}(\sinh $\delta$)^{ $\alpha$+2}<\frac{1}{2},
we deduce from (2.2) and (2.4) that

(2.5) |u_{i+1}(r)|<M.

Therefore (2.3) holds for any i\in \mathbb{N} and r\in[0,  $\delta$] , i.e., u_{i}\in X for any i\in \mathbb{N} . Next, we

shall show that the mapping  $\Phi$ :  X \rightarrow X is the contraction mapping. Making use of

the mean value theorem, we observe that for u , ũ \in X and  r\in[0\text{）}  $\delta$],

| $\Phi$(u) (r)—  $\Phi$ (ũ) (r)|

\displaystyle \leq\int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}\{ $\lambda$|u(t)-\~{u} (t)|(\sinh t)^{N-1}+|u^{p}(t)-\~{u} p (t)|(\sinh t)^{N-1+ $\alpha$}\}dtds
\displaystyle \leq\int_{0}^{r}\frac{1}{(\sinh_{\mathcal{S}})^{N-1}}\int_{0}^{s}\{ $\lambda$(\sinh t)^{N-1}+pM^{p-1}(\sinh t)^{N-1+ $\alpha$}\}dtds . || u—ũ || C([0,  $\delta$])

\displaystyle \leq\int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}\{ $\lambda$(\sinh t)^{N}+pM^{p-1}(\sinh t)^{N+cy}\}\frac{dt}{\tanh t}d_{\mathcal{S}} . || u—ũ || C([0,  $\delta$])

=\displaystyle \int_{0}^{r}\{\frac{ $\lambda$}{N}\sinh s+\frac{pM^{p-1}}{N+ $\alpha$}(\sinh_{\mathcal{S})^{ $\alpha$+1}}\}ds . | u—ũ || C([0,  $\delta$])

\displaystyle \leq\int_{0}^{r}\{\frac{ $\lambda$}{N}(\sinh_{\mathcal{S})^{2}}+\frac{pM^{p-1}}{N+ $\alpha$}(\sinh s)^{ $\alpha$+2}\}\frac{ds}{\tanh s}\cdot\Vert u-\~{u}\Vert_{C([0, $\delta$\rfloor)}
=\displaystyle \{\frac{ $\lambda$}{2N}(\sinh $\delta$)^{2}+\frac{pM^{p-1}}{(N+ $\alpha$)( $\alpha$+2)}(\sinh $\delta$)^{ $\alpha$+2}\}\Vert u-\~{u}\Vert_{C([0, $\delta$])}.

Taking  $\delta$>0 sufficiently small, we obtain

(2.6) || $\Phi$ (  u)—  $\Phi$ (ũ) ||C ([0,  $\delta$]) \displaystyle \leq\frac{1}{2} \Vert u —ũ \Vert_{C([0, $\delta$])}.

Hence  $\Phi$ :  X \rightarrow  X is the contraction mapping. Therefore, \{u_{i}\}_{i\in \mathrm{N}} is the Cauchy
sequence in C([0,  $\delta$]) and there exists u\in X satisfying (2.1). Here, we shall verify that

 u(0)= $\beta$ . From  u\in C([0,  $\delta$ there exists  C>0 such that |u| \leq C in [0,  $\delta$] . Then, for

r\in(0\text{）}  $\delta$) , the following estimate holds:

(2.7) |u(r)- $\beta$| \displaystyle \leq\int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}\{ $\lambda$ C(\sinh t)^{N-1}+C^{p}(\sinh t)^{N-1+ $\alpha$}\}dtds
\displaystyle \leq\int_{0}^{r}\frac{1}{(\sinh_{\mathcal{S}})^{N-1}}\{\frac{ $\lambda$ C}{N}(\sinh s)^{N}+\frac{C^{p}}{N+ $\alpha$}(\sinh s)^{N+ $\alpha$}\}ds
\displaystyle \leq\int_{0}^{r}\{\frac{ $\lambda$ C}{N}(\sinh s)^{2}+\frac{C^{p}}{N+ $\alpha$}(\sinh s)^{ $\alpha$+2}\}\frac{ds}{\tanh s}
\displaystyle \leq\frac{ $\lambda$ C}{2N}(\sinh r)^{2}+\frac{C^{p}}{(N+ $\alpha$)( $\alpha$+2)}(\sinh r)^{ $\alpha$+2}.
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Therefore we obtain u(r) \rightarrow  $\beta$ as  r \rightarrow  0 , i.e., u(0) =  $\beta$ . Finally, we shall show the

uniqueness of the solution to (2.1) in [0,  $\delta$] . In particular, we claim that there exists

\tilde{ $\delta$}\in (0,  $\delta$] such that the solution of (2.1) is unique in C([0,  $\delta$ Suppose not, for any
 $\epsilon$\in (0. $\delta$] , there exist u , ũ \in  C([0,  $\epsilon$]) satisfying (2.1) and u\not\equiv\~{u} in [0,  $\epsilon$] . Here, by the

same calculation as in (2.7), we can verify that u(0) =\~{u}(0) =  $\beta$ . Thus we observe

from (2.2) that there exists \tilde{ $\delta$}\in(0,  $\delta$] such that

|u| \leq M and |\~{u}|\leq M in [0,  $\delta$

Then, we deduce from (2.6) that

||u —ũ ||C ([0,  $\delta$‐])
= || $\Phi$ ( u)—  $\Phi$ (ũ) ||C ([0,\overline{ $\delta$}]) \displaystyle \leq\frac{1}{2}\Vert u-\tilde{u}\Vert_{C([0,\overline{ $\delta$}])}.

This is a contradiction. Hence, there exists \tilde{ $\delta$}\in (0,  $\delta$] such that the solution of (2.1) is

unique in  C([0 )  $\delta$ and we complete the proof. \square 

Lemma 2.2. Let  N\geq  2, p> 1, R> 0, (x > -2, $\beta$_{1}, $\beta$_{2} \in \mathbb{R} , and  $\lambda$ \geq  0 . Then there

exists a constant  $\delta$>0 such that the integral equation

(2.8) u(r)=$\beta$_{1}+\displaystyle \int_{R}^{r}\frac{$\beta$_{2}(\sinh R)^{N-1}}{(\sinh s)^{N-1}}ds
-\displaystyle \int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{R}^{s}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{p-1}u(t)\}dtds.

has a unique solution u\in C([R )  R+ $\delta$

Proof. To begin with, we shall show the existence of solution to (2.8) by the successive

approximation. For this purpose, we define notations. We define  X as

X:=\{u\in C([R, R+ $\delta$]) : |u| \leq M in [R,  R+ $\delta$

where  $\delta$>0 is sufficiently small and M>0 is the constant with

(2.9) |$\beta$_{1}|+|$\beta$_{2}| \displaystyle \leq\frac{M}{2}.
Moreover we denote by  $\Phi$ :  C([R, R+ $\delta$])\rightarrow C([R,  R+ $\delta$

 $\Phi$(u)(r)=\displaystyle \prime^{:;_{1}}+\int_{R}^{r}\frac{$\beta$_{2}(\sinh R)^{N-1}}{(\sinh_{\mathcal{S}})^{N-1}}ds
-\displaystyle \int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{R}^{s}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{\mathrm{p}-1}u(t)\}dtds.

Set inductively the sequence \{u_{i}\}_{i\in \mathrm{N}} as

u_{0}(r)=$\beta$_{1}+\displaystyle \int_{R}^{r}\frac{$\beta$_{2}(\sinh R)^{N-1}}{(\sinh s)^{N-1}}d_{\mathcal{S}}, u_{i+1}(r)= $\Phi$(u_{i})(r) in [R, R+ $\delta$].
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Then we claim that

(2.10) |u_{i}(r)| \leq M for any i\in \mathbb{N} and  r\in [R, R+ $\delta$].

For the case of i=0 , it follow from  $\delta$<1 and (2.9) that

|u_{0}(r)| \displaystyle \leq |$\beta$_{1}|+\frac{|$\beta$_{2}|(\sinh R)^{N-1}}{(\sinh R)^{N-1}}(r-R) \leq |$\beta$_{1}|+|$\beta$_{2}| $\delta$< |$\beta$_{1}|+|$\beta$_{2}| <M.
Next, we assume that (2.10) holds for the case of i . For the case of i+1 , we derive

(2.11) |u_{i+1}(r)|

\displaystyle \leq |$\beta$_{1}|+|$\beta$_{2}|+\int_{R}^{r}\frac{1}{(\sinh_{\mathcal{S}})^{N-1}}\int_{R}^{S}\{ $\lambda$ M(\sinh t)^{N-1}+M^{p}(\sinh t)^{N-1+cx}\}dtd_{\mathcal{S}}
\displaystyle \leq |$\beta$_{1}|+|$\beta$_{2}|+\int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{R}^{S}\{ $\lambda$ M(\sinh t)^{N}+M^{p}(\sinh t)^{N+ $\alpha$}\}\frac{dt}{\tanh t}ds
\displaystyle \leq|$\beta$_{1}|+|$\beta$_{2}|+\int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\{\frac{ $\lambda$ M}{N}(\sinh s)^{N}+\frac{M^{p}}{N+ $\alpha$}(\sinh_{\mathcal{S})^{N+ $\alpha$}\}d_{S}}
\displaystyle \leq|$\beta$_{1}|+|$\beta$_{2}|+\int_{R}^{r}\{\frac{ $\lambda$]1[}{N}(\sinh s)^{2}+\frac{M^{p}}{N+ $\alpha$}(\sinh s)^{ $\alpha$+2}\}\frac{ds}{\tanh s}
\displaystyle \leq |$\beta$_{1}|+|/i_{2}|+\frac{ $\lambda$ M}{2N}\{(\sinh(R+ $\delta$))^{2}-(\sinh R)^{2}\}

+\displaystyle \frac{M^{p}}{(N+ $\alpha$)( $\alpha$+2)}\{(\sinh(R+ $\delta$))^{ $\alpha$+2}-(\sinh R)^{ $\alpha$+2}\}.
Here, we may take  $\delta$>0 such that

(2.12) \displaystyle \frac{M^{p-1}}{(N+ $\alpha$)( $\alpha$+2)}\{(\sinh(R+ $\delta$))^{ $\alpha$+2}-(\sinh R)^{ $\alpha$+2}\}
+\displaystyle \frac{ $\lambda$}{2N}\{(\sinh(R+ $\delta$))^{2}-(\sinh R)^{2}\}\leq\frac{1}{2}.

Using (2.9) and (2.11)-(2.12) , we see that

|u_{i+1}(r)| <M.

Therefore (2.10) holds for any i \in \mathbb{N} and r \in [R, R+ $\delta$] , i.e., u_{i} \in  X for any i \in \mathbb{N}.

Next, we shall show that  $\Phi$ :  X\rightarrow X is the contraction mapping. We observe from the
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mean value theorem that for u , ũ \in X and  r\in[R, R+ $\delta$],

| $\Phi$(u) (r)—  $\Phi$ (ũ) (r)|

\displaystyle \leq\int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{R}^{S}\{ $\lambda$|u(t)-\~{u}(t)|(sinh t)^{N-1}+|u^{p}(t)-\tilde{u}^{p}(t)|( sirih t )^{N-1+ $\alpha$}\}dtd_{\mathcal{S}}

\displaystyle \leq\int_{R}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{R}^{s}\{ $\lambda$(\sinh t)^{N}+pM^{p-1}(\sinh t)^{N+ $\alpha$}\}\frac{dt}{\tanh t}ds\cdot\Vert u —ũ || C ([R,R+ $\delta$])

\displaystyle \leq\int_{R}^{r}\{\frac{ $\lambda$}{N}(\sinh_{\mathcal{S})^{2}}+\frac{pM^{p-1}}{N+ $\alpha$}(\sinh s)^{ $\alpha$+2}\}\frac{ds}{\tanh_{\mathcal{S}}} . || u—ũ \Vert C([R,R+ $\delta$])

\leq\{(\sinh(R\underline{ $\lambda$}+ $\delta$))^{2}-(\sinh R)^{2}\}\Vert u-\tilde{u}\Vert_{C([R,R+ $\delta$])}2N

+\displaystyle \frac{pM^{p-1}}{(N+ $\alpha$)( $\alpha$+2)}\{(\sinh(R+ $\delta$))^{ $\alpha$+2}-(\sinh R)^{ $\alpha$+2}\}\Vert u-\tilde{u}\Vert_{C([R,R+ $\delta$])}.
Hence, by the smallness of  $\delta$>0 ,

the following inequality holds:

(2.13) \Vert $\Phi$(u)- $\Phi$ (ũ) \Vert_{C([R,R+ $\delta$])} \displaystyle \leq\frac{1}{2}\Vert u- ũ ||C ([R ,  R+ $\delta$

Therefore  $\Phi$ :  X \rightarrow  X is the contraction mapping. Thus, \{u_{l}\cdot\}_{i\in \mathrm{N}} is the Cauchy
sequence in C([R, R+ $\delta$]) and there exists u \in  C([R, R+ $\delta$]) satisfying (2.8). Then

u(R) = $\beta$_{1} . Finally, we show the uniqueness of the solution to (2.8) in [R, R+ $\delta$].
Now, we claim that there exists \tilde{ $\delta$}\in (0,  $\delta$] such that the solution of (2.8) is unique in

 C([R,  R+ $\delta$ Suppose not, for any  $\epsilon$\in(0,  $\delta$], there exist  u , ũ \in C ([R, R+ $\epsilon$]) satisfying
(2.8) and u\not\equiv\~{u} in [R, R+ $\epsilon$] . Then we see that u(R) = ũ(R) =$\beta$_{1} . Thus we observe

from (2.9) that there exists \tilde{ $\delta$}\in(0,  $\delta$] such that

|u| \leq M and |\~{u}|\leq M in [R, R+\tilde{ $\delta$}].

Then, we derive from (2.13)

\Vert u- ũ || C([R,R + $\delta$]) =\Vert $\Phi$(u)-  $\Phi$ (ũ) || C([R,  R+ $\delta$ \leq \displaystyle \frac{1}{2}\Vert u- ũ || C([R,  R+ $\delta$

and this is a contradiction. Thus there exists \tilde{ $\delta$}\in (0,  $\delta$] such that the solution of (2.8)
is unique in  C([R,  R+ $\delta$ We complete the proof. \square 

Then, the integral equations in Lemmas 2.1‐2.2 correspond to the following initial

value problems in Lemmas 2.3‐2.4 respectively.

Lemma 2.3. Let N\geq 2, p> 1,  $\alpha$> -2,  $\beta$>0,  $\delta$>0 , and  $\lambda$\geq 0 . Then the following
two statements are equivalent:

(i) u\in C([0,  $\delta$])\cap C^{2}((0,  $\delta$]) satisfies

(2.14) \left\{\begin{array}{l}
u''(r)+\frac{N-1}{\tanh r}u'(r)+ $\lambda$ u+(\sinh r)^{ $\alpha$}|u(r)|^{p-1}u(r)=0 in (0,  $\delta$) ,\\
u(0)= $\beta$.
\end{array}\right.
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(ii) u\in C([0,  $\delta$]) satisfies (2.1).

Moreover, in both cases, the following asymptotic behavior holds:

(2.15) \displaystyle \lim_{r\rightarrow 0}(\sinh r)u'(r)=0.
Lemma 2.4. Let N\geq 2, p> 1, R>0,  $\alpha$> -2, $\beta$_{1}, $\beta$_{2} \in \mathbb{R},  $\delta$>0_{f} and  $\lambda$\geq 0 . Then

the following two statements are equivalent:

(i) u\in C([R, R+ $\delta$])\cap C^{2}([R, R+ $\delta$]) satisfies

(2.16) \left\{\begin{array}{l}
u''(r)+\frac{N-1}{\tanh r}u'(r)+ $\lambda$ u+(\sinh r)^{ $\alpha$}|u(r)|^{\mathrm{p}-1}u(r)=0 in (0,  $\delta$)\text{）}\\
u(R)=$\beta$_{1}, u'(R)=$\beta$_{2}.
\end{array}\right.
(ii) u\in C([R\text{）} R+ $\delta$]) satisfies (2.8).

Here, we can verify Lemma 2.4 by direct calculations. Therefore, we shall prove

only Lemma 2.3.

Proof of Lemma 2.3. To begin with, we shall prove that the assertion (ii) implies the

assertion (i). By Lemma 2.1, we have u(0) = $\beta$ . Moreover, differentiating (2.1) with

respect to  r , we obtain

u'(r)=-\displaystyle \frac{1}{(\sinh r)^{N-1}}\int_{0}^{r}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{p-1}u(t)\}dt.
Then multiplying the equality by (\sinh r)^{N-1} and differentiating with respect to r again,
we derive

(2.17) ((\sinh r)^{N-1}u'(r))'=-(\sinh r)^{N-1}\{ $\lambda$ u(r)+(\sinh r)^{ $\alpha$}|u(r)|^{p-1}u(r)\}.

This implies that the equation in (2.14) holds. Hence, if the assertion (ii) holds then

the assertion (i) is followed. Now, we shall show that the assertion (i) implies that the

assertion (ii). It follows from l�Hospital�s rule that

 $\beta$=\displaystyle \lim_{r\rightarrow 0}u(r)=\lim_{r\rightarrow 0}\frac{(\sinh r)u(r)}{\sinh r}=\lim_{r\rightarrow 0}\frac{(\cosh r)u(r)+(\sinh r)u'(r)}{\cosh r}.
Hence, using \displaystyle \lim_{r\rightarrow 0}\cosh r=1 , we see that the asymptotic behavior (2.15) in Lemma 2.3

holds. On the other hand, the equation in (2.14) is equivalent to (2.17). Integrating
the equation (2.17) over (0, r) ) we obtain from (2.15),

-(\displaystyle \sinh r)^{N-1}u'(r)=\int_{0}^{r}(\sinh s)^{N-1}\{ $\lambda$ u(s)+(\sinh s)^{ $\alpha$}|u(s)|^{p-1}u(s)\}d_{\mathcal{S}}.
Moreover multiplying the equality by (\sinh r)^{-(N-1)} and integrating over (0, r) again,
we see that u satisfies (2.1). \square 
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Lemma 2.1 and Lemma 2.3 imply that there exists a unique solution of the initial

value problem (2.14) in the local interval. Similarly, Lemma 2.2 and Lemma 2.4 imply
that there exists a unique solution of the Cauchy problem (2.16) in the local interval.

Now we shall verify that the local solution can be extended globally.

Lemma 2.5. Let N\geq 2, p> 1,  $\alpha$>-2 , and  $\lambda$\geq 0 . Then, for  $\beta$>0 , there exists a

unique solution u_{ $\beta$}\in C([0, \infty])\cap C^{2}((0, \infty]) satisfies (1.2). Moreover, u_{ $\beta$} satisfies

(2.18) u(r)= $\beta$-\displaystyle \int_{0}^{r}\frac{1}{(\sinh s)^{N-1}}\int_{0}^{s}(\sinh t)^{N-1}\{ $\lambda$ u(t)+(\sinh t)^{ $\alpha$}|u(t)|^{p-1}u(t)\}dtds
in [0, \infty) .

Proof. Lemma 2.1 and Lemma 2.3 imply that there exists  $\delta$>0 such that (1.2) has a

unique solution u_{ $\beta$} \in C([0,  $\delta$])\cap C^{2}((0,  $\delta$]) with u(0) = $\beta$ . Now we shall claim that  u_{ $\beta$}
is bounded in C^{1} in [ $\delta$, \infty ). For the case of -2 < $\alpha$\leq  0 , multiplying the equation in

(2.14) by u_{ $\beta$}' , we obtain the following identity:

F_{ $\alpha$}'(r)=\displaystyle \frac{ $\alpha$}{p+1}(\sinh r)^{ $\alpha$}\frac{|u_{ $\beta$}(r)|^{p+1}}{\tanh r}-\frac{N-1}{\tanh r}u_{ $\beta$}^{;2}(r) )

where

F_{ $\alpha$}(r)=\displaystyle \frac{u_{ $\beta$}^{\prime 2}(r)}{2}+ $\lambda$\frac{u_{ $\beta$}^{2}(r)}{2}+(\sinh r)^{ $\alpha$}\frac{|u_{ $\beta$}^{p+1}(r)|}{p+1}.
Hence we observe from  $\alpha$ \leq  0 that F_{ $\alpha$}' < 0 on r > 0 , i.e., F_{ $\alpha$} is strictly rnonotone

decreasing on r > 0 . Then it follows from the definition of F_{ $\alpha$} that u_{ $\beta$} is locally
bounded in C^{1}(0, \infty) . For the case of  $\alpha$ \geq  0 , multiplying the equation in (2.14) by

u_{ $\beta$}'/(\sinh r)^{ $\alpha$} , we observe that the following identity holds:

F_{ $\alpha$}'(r)=-(N-1+\displaystyle \frac{ $\alpha$}{2})\frac{u_{ $\beta$}^{J2}(r)}{(\sinh r)^{ $\alpha$}(\tanh r)}-\frac{ $\alpha \lambda$ u_{ $\beta$}^{2}(r)}{2(\sinh r)^{ $\alpha$}(\tanh r)},
where

F_{ $\alpha$}(r)=\displaystyle \frac{u_{ $\beta$}^{J2}(r)}{2(\sinh r)^{ $\alpha$}}+\frac{ $\lambda$ u_{ $\beta$}^{2}(r)}{2(\sinh r)^{ $\alpha$}}+\frac{|u_{ $\beta$}^{p+1}(r)|}{p+1}.
It follows from  $\alpha$\geq 0 that F_{ $\alpha$}'<0 on r>0 , i.e., F_{ $\alpha$} is strictly monotone decreasing on

r>0 . Then we see that u_{ $\beta$} is locally bounded in C^{1}(0, \infty) . Therefore,  u_{ $\beta$}\in C^{1}([ $\delta$ ,
oo

Using Lemma 2.2 and Lemma 2.4, we observe that  u_{ $\beta$} can be extended in (0, \infty) .

Indeed, suppose not, there exists R > 0 such that u_{ $\beta$}(r) \rightarrow \infty or  u_{ $\beta$}'(r) \rightarrow \infty as

 r\rightarrow R . However this is a contradiction to u_{ $\beta$} \in  C^{2}((0,  $\delta$]) \cap C^{1}([ $\delta$, \infty We complete
the proof. \square 

From Lemma 2.5, we showed the uniquely existence of the solution to the initial

value problem (1.2). Now, in order to complete the proof of Remark 1.1, we shall

evaluate the value of u_{ $\beta$}' and u_{ $\beta$}'' at the origin.
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Lemma 2.6. Let N \geq 2, p> 1,  $\alpha$ > -2,  $\beta$> 0 ,
and  $\lambda$ \geq 0 . Suppose that u_{ $\beta$} is the

unique solution of (1.2). Then the following hold:

(i) If  $\alpha$>-1 , then u_{ $\beta$}'(0)=0 ;

(i1) If  $\alpha$=-1 , then u_{ $\beta$}'(0)=-\displaystyle \frac{$\beta$^{p}}{N-1} ;

(iii) If-2< $\alpha$<-1 ,
then \displaystyle \lim_{r\rightarrow 0}u_{ $\beta$}'(r)=-\infty.

Proof. Differcntiating the equation (2.18) with respect to r , we have

(2.19) u_{ $\beta$}'(r)=-\displaystyle \frac{1}{(\sinh r)^{N-1}}\int_{0}^{r}(\sinh_{\mathcal{S}})^{N-1}\{ $\lambda$ u_{ $\beta$}(s)+(\sinh s)^{ $\alpha$}|u_{ $\beta$}(s)|^{p-1}u_{ $\beta$}(s)\}ds.
Since u_{ $\beta$}(0) =  $\beta$ > 0 , we choose sufficiently small  $\delta$ > 0 such that u_{ $\beta$}(r) > 0 in

[0,  $\delta$) . Then it holds from (2.19) that u_{ $\beta$}'(r) < 0 in (0,  $\delta$) ) i.e.) u_{ $\beta$} is strictly monotone

decreasming in [0,  $\delta$). Therefore, using (2.19), we obtain the following two inequalities
for  r\in(0,  $\delta$) :

(2.20) u_{/j}'(r)<-\displaystyle \frac{1}{(\sinh r)^{N-1}}\{ $\lambda$ u_{ $\beta$}(r)\int_{0}^{r}(\sinh s)^{N-1}ds+u_{ $\beta$}^{p}(r)\int_{0}^{r}(\sinh s)^{N-1+(y}ds\} ;

(2.21) u_{ $\beta$}'(r)>-\displaystyle \frac{1}{(\sinh r)^{N-1}}\{ $\lambda \beta$\int_{0}^{r}(\sinh s)^{N-1}ds+$\beta$^{p}\int_{0}^{r}(\sinh s)^{N-1+cy}ds\}.
Here, from l�Hospital�s rule, it holds that

(2.22) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-1}ds}{(\sinh r)^{N-1}}=\lim_{r\rightarrow 0}\frac{\tanh r}{N-1}=0.
Now, for the case of  $\alpha$>-1 ,

it follows from N-1+ $\alpha$>0 that

(2.23) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-1+ $\alpha$}ds}{(\sinh r)^{N-1}}=\lim_{r\rightarrow 0}\frac{(\sinh r)^{ $\alpha$+1}}{(N-1)\cosh r}=0.
Thus using  u_{/j}(0)= $\beta$ and (2.22)-(2.23) , we see that the right‐hand side of the estimate

(2.20) converges to 0 as r\rightarrow 0 . Similarly, from (2.22)-(2.23) , it follows that the right‐
hand side of the estimate (2.21) converges to 0 as r\rightarrow 0 . Therefore, the assertion (i)
holds. For the case of  $\alpha$=-1 , using 1 Hospital�s rule, we observe that

(2.24) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-2}ds}{(\sinh r)^{N-1}}=\lim_{r\rightarrow 0}\frac{1}{(N-1)(\cosh r)}=\frac{1}{N-1} if N>2,

(2.25) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-2}ds}{(\sinh r)^{N-1}}=\lim_{r\rightarrow 0}\frac{r}{\sinh r}=1 if N=2.

Hence by u_{ $\beta$}(0) =  $\beta$ ) (2.22), and (2.24)-(2.25) , the right‐hand sides of (2.20)‐(2.21)
converges to -$\beta$^{p}/(N-1) as r\rightarrow 0 . Then, the assertion (ii) is followed. Finally, for

the case of -2< $\alpha$<-1 , it holds from (2.24)-(2.25) that

(2.26) \displaystyle \frac{\int_{0}^{r}(\sinh s)^{N-1+ $\alpha$}ds}{(\sinh r)^{N-1}}>(\sinh r)^{ $\alpha$+1}\frac{\int_{0}^{r}(\sinh s)^{N-2}ds}{(\sinh r)^{N-1}}\rightarrow\infty as  r\rightarrow 0.
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Therefore, from u_{ $\beta$}(0) = $\beta$ , (2.22), and (2.26), it holds that the right‐hand side of (2.20)
diverges to -\infty as  r\rightarrow 0 . This implies that the assertion (iii) holds. We complete the

proof. \square 

Lemma 2.7. Let N \geq  2, p > 1,  $\alpha$ \geq  0,  $\beta$ > 0 , and  $\lambda$ \geq  0 . Suppose that u_{ $\beta$} is the

unique solution of (1.2). Then the following hold:

(i) If  $\alpha$>0 , then u_{ $\beta$}''(0)=-\displaystyle \frac{ $\lambda \beta$}{N} ;

(ii) If  $\alpha$=0 ,
then u_{ $\beta$}''(0)=-\underline{ $\lambda \beta$}-\underline{$\beta$^{p}}N N^{\cdot}

Proof. From the equation in (1.2), we have

(2.27) u_{ $\beta$}''(r)=-\displaystyle \frac{N-1}{\tanh r}u_{ $\beta$}'(r)- $\lambda$ u_{$\beta$'}(r)-(\sinh r)^{ $\alpha$}|u_{ $\beta$}(r)|^{p-1}u_{ $\beta$}(r) .

Then by  u_{g}(0)= $\beta$ ) the following hold:

(2.28) \displaystyle \lim_{r\rightarrow 0}(\sinh r)^{ $\alpha$}|u_{ $\beta$}(r)|^{\mathrm{p}-1}u_{ $\beta$}(r)= \left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f}  $\alpha$>0,\\
$\beta$^{p} & \mathrm{i}\mathrm{f}  $\alpha$=0.
\end{array}\right.
We shall study the asymptotic behavior of u_{ $\beta$}'(r)/\tanh r as r\rightarrow 0 . From u_{ $\beta$}(0)= $\beta$>0,
there exists sufficiently small  $\delta$ > 0 such that u_{ $\beta$}(r) > 0 in [0,  $\delta$). Then from (2.19),
 u_{ $\beta$}'(r) <0 in (0,  $\delta$) , i.e., u_{ $\beta$} is strictly monotone decreasing in [0,  $\delta$). Using (2.20)-(2.21) ,

we see that the following two estimates hold for r\in(0,  $\delta$) :

(2.29) \displaystyle \frac{u_{ $\beta$}'(r)}{\tanh r}<-\frac{\cosh r}{(\sinh r)^{N}}\{ $\lambda$ u_{ $\beta$}(r)\int_{0}^{r}(\sinh s)^{N-1}ds+u_{ $\beta$}^{p}(r)\int_{0}^{r}(\sinh s)^{N-1+ $\alpha$}ds\} ;

(2.30) \displaystyle \frac{u_{ $\beta$}'(r)}{\tanh r}>-\frac{\cosh r}{(\sinh r)^{N}}\{ $\lambda \beta$\int_{0}^{7}(\sinh s)^{N-1}ds+/i^{p}\int_{0}^{r}(\sinh s)^{N-1+ $\alpha$}ds\}.
L�Hospital�s rule yields the following asymptotic behaviors:

(2.31) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-1}ds}{(\sinh r)^{N}}=\lim\underline{\tanh r}=\lim_{r\rightarrow 0}\overline{N}(colsh r ) =\displaystyle \frac{1}{N} ;
r\rightarrow 0N(\sinh r)

(2.32) \displaystyle \lim_{r\rightarrow 0}\frac{\int_{0}^{r}(\sinh s)^{N-1+ $\alpha$}d_{\mathcal{S}}}{(\sinh r)^{N}}=\lim_{r\rightarrow 0}\frac{(\sinh r)^{-1+(X}\tanh r}{N}=\lim\underline{(\sinh r)^{lX}}r\rightarrow 0N\cosh r

= \left\{\begin{array}{l}
0 \mathrm{i}\mathrm{f}  $\alpha$>0,\\
\frac{1}{N} \mathrm{i}\mathrm{f}  $\alpha$=0.
\end{array}\right.
Hence, for the case of  $\alpha$ >0 , from coshO = 1, u_{ $\beta$}(0) = $\beta$ and (2.31)-(2.32) , it follows

that the right‐hand side of the inequality (2.29) converges to - $\lambda \beta$/N as r\rightarrow 0 . More‐

over, by (2.31)‐(2.32), the right‐hand side of the inequality (2.30) converges to - $\lambda \beta$/N
as r\rightarrow 0 . Therefore, if  $\alpha$>0 ,

then

(2.33) \displaystyle \lim_{r\rightarrow 0}\frac{u_{ $\beta$}'(r)}{\tanh r}=-\frac{ $\lambda \beta$}{N}.
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Combining (2.27) with (2.28) and (2.33), we obtain the assertion (i). Similarly, if

 $\alpha$=0 , then

(2.34) \displaystyle \lim_{r\rightarrow 0}\frac{u_{ $\beta$}'(r)}{\tanh r}=-\frac{ $\lambda \beta$}{N}-\frac{$\beta$^{p}}{N}.
Thus from (2.27)-(2.28) and (2.34), the assertion (i1) is followed. \square 
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