
UNBOUNDED STRONGLY IRREDUCIBLE

OPERATORS AND TRANSITIVE REPRESENTATIONS

OF QUIVERS ON INFINITE‐DIMENSIONAL HILBERT

SPACES

MASATOSHI ENOMOTO AND YASUO WATATANI

This is ajoint work with Yasuo Watatani([EW3]).
l.Introduction and motivation from history.
Weierstrass (1868) and Jordan (1870) classified finite dimensional

operators up to similarity. That is, any finite dimensional operator
T is represented as a direct sum of Jordan blocks. Kronecker (1890)
generalized their results to pairs of finite dimensional operators A, B

from a ffiit ‐dimensional space H to a finite dimensional space K . The
result is as follows.

Any finite‐dimensional indecomposable representation of pairs of fi‐

nite dimensional operators is one of the following up to isomorphism:

(1) H=K=\mathbb{C}^{n})
A= $\lambda$ I_{n}+J_{n} , (Jordan block) , B=I_{n},  $\lambda$\in \mathbb{C}, n\geq 1.

(2) H=K=\mathbb{C}^{n},
A=I_{n}, B= $\lambda$ I_{n}+J_{n} , (Jordan block) ,  $\lambda$\in \mathbb{C}, n\geq 1.

(3) H=\mathbb{C}^{n+1}, K=\mathbb{C}^{n}, A=[I_{n}, 0], B=[0, I_{n}], n\geq 0.

(4) H=\mathbb{C}^{n}, K=\mathbb{C}^{n+1}, A= \left\{\begin{array}{l}
I_{n}\\
0
\end{array}\right\}, B= \left\{\begin{array}{l}
0\\
I_{n}
\end{array}\right\}, n\geq 0.

Nazarova (1967) and Gelfand‐Ponomarev (1970) classified finite ‐

dimensional indecomposable representations of four subspaces. After
Yoshii (1956) and Jans (1957), Gabrie1(1972) introduced representa‐
tions of quivers and showed that only Dynkin quivers have finite num‐

bers of finite‐dimensional indecomposable representations.
The following is the Dynkin diagram.
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Bernstein‐ Gelfand‐ Ponomarev (1973) gave another proof of Gabriel
result by using reflection functors. For extended Dynkin quivers there
exist infinite number of finite‐ dimensional indecomposable representa‐
tions.

The following is the Extended Dynkin diagram.

\tilde{A}_{1} (Kronecker case) and \tilde{D}_{4} (four subspace case) \mathrm{a}\mathrm{r}\mathrm{e} the cases of ex‐

tended Dynkin diagram. Among Kronecker cases, any representation
in (3),(4), \mathrm{n}=1 of (1) or \mathrm{n}= 1 of (2) is transitive, that is,algebras of

endomorphisms of representations End(H, f) =\mathbb{C}I . All finite dimen‐

sional indecomposable representations of Dynkin quivers are transitive.

But finite dimensional indecomposable representations of extended

Dynkin quivers are not necessarily transitive. Therefore it is inter‐

esting to find infinite‐dimensional indecomposable (transitive) Hilbert

representations of the extended Dynkin quivers. For this purpose it is

important to use unbounded strongly irreducible operators and transi‐

tive operators. The related research area of operator theory is subspace
lattice, transitive lattice and strongly irreducible operators.

2.Definition of Hilbert representations of quivers.
A quiver  $\Gamma$ = (V, E, s, r) is a quadruple consisting of the set V of

vertices, the set E of arrows, and two maps s, r : E\rightarrow V which asso‐

ciate with each arrow  $\alpha$\in E its support s( $\alpha$) and range r( $\alpha$) . A quiver
 $\Gamma$ is said to be finite if both  V and E are finite sets.

We list up some examples of Quivers. The Jordan quiver L is a quiver
L=(V, E, s, r) such that V=\{1\} and E=\{ $\alpha$\} and s( $\alpha$)=r( $\alpha$)=1.
The quiver C_{n} (n \geq 2) is a quiver such that V = \{1, 2, \cdots , n\} and

E = \{$\alpha$_{1}, $\alpha$_{2}, \cdots , $\alpha$_{n}\} and s($\alpha$_{1}) = 1, r($\alpha$_{1}) = 2, s($\alpha$_{2}) = 2, r($\alpha$_{2}) =

3, \cdots

,  s($\alpha$_{n})=n, r($\alpha$_{n})=1 . The quivers L and C_{n}(n\geq 2) are called

the oriented cyclic quivers. The Kronecker quiver Q is a quiver with

two vertices {1, 2} and two paralleled arrows \{ $\alpha$,  $\beta$\} :

Definition. Let  $\Gamma$=(V, E, s, r) be a finite quiver. We say that (H, f)
is a Hilbert representation of  $\Gamma$ if  H= (H_{v})_{v\in V} is a family of Hilbert
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spaces and f = (f_{ $\alpha$})_{ $\alpha$\in E} is a family of bounded linear operators f_{ $\alpha$} :

H_{s( $\alpha$)}\rightarrow H_{r( $\alpha$)}.
Definition Let  $\Gamma$=(V, E, s, r) be a finite quiver. Let (H, f) and (K, g)
be Hilbert representations of  $\Gamma$ . A homomorphism  T:(H, f)\rightarrow(K, g)
is a family T=(T_{v})_{v\in V} of bounded operators T_{v} : H_{v}\rightarrow K_{v} satisfying
for any arrow  $\alpha$\in E,

T_{r( $\alpha$)}f_{ $\alpha$}=g_{ $\alpha$}T_{s( $\alpha$)}.
We denote by \mathrm{H}\mathrm{o}\mathrm{m}((H, f), (K, g)),\mathrm{t}\mathrm{h}\mathrm{e} set of homomorphisms T : (H, f)\rightarrow
(K, g) . We denote by End(H, f) :=Hom((H, f), (H, f)) the set of en‐

domorphisms. We say that (H, f) and (K, g) are isomorphic, denoted

by (H, f)\cong(K, g) ,
if there exists an isomorphism  $\varphi$ : (H, f)\rightarrow(K, g) ,

that is, there exists a family  $\varphi$=($\varphi$_{v})_{v\in V} of bounded invertible opera‐

tors $\varphi$_{v}\in B(H_{v}, K_{v}) such that,for any arrow  $\alpha$\in E,

$\varphi$_{r( $\alpha$)}f_{ $\alpha$}=g_{ $\alpha$}$\varphi$_{s( $\alpha$)}.
We say that (H, f) is a finite dimensional representation if H_{v} is fi‐

nite dimensional for all v \in  V. And (H, f) is an infinite dimensional

representation if H_{v} is infinite‐dimensional for some v\in V.
Definition. Let  $\Gamma$ = (V, E, s, r) be a finite quiver. Let (K, g) and

(K', g') be Hilbert representations of  $\Gamma$ . We define the direct sum (H, f)
=(K, g) \oplus(K', g') by H_{v}=K_{v}\oplus K_{v}' (for v\in V) and f_{ $\alpha$}=g_{ $\alpha$}\oplus g_{\acute{ $\alpha$}} (for
 $\alpha$\in E) .

It is said that a Hilbert representation (H, f) is zero, denoted by
(H, f)=0 if H_{v}=0 for any v\in V.

Definition. A Hilbert representation (H, f) of  $\Gamma$ is said to be decom‐

posable if (H, f) is isomorphic to a direct sum of two non‐zero Hilbert

representations. A non‐zero Hilbert representation (H, f) of  $\Gamma$ is called

indecomposable if it is not decomposable.
The following result is useful to study indecomposable representa‐

tions.

Lemma 1. Let (H, f) be a Hilbert representation of a quiver  $\Gamma$ . Then

the following conditions are equivalent:

(1) (H, f) is indecomposable.
(2) Idem(H, f)=the set of idempotents in End(H, f)=\{0, I\}.

Definition. A Hilbert representation (H, f) of a quiver  $\Gamma$ is called

transitive if End (H, f)=\mathbb{C}I . If a Hilbert representation (H, f) of  $\Gamma$ is

transitive, then (H, f) is indecomposable.
3.Tkansitive Hilbert representations of extended Dynkin quiv‐

ers.

We consider transitive Hilbert representations of quivers whose un‐

derlying undirected graph is an extended Dynkin diagram \tilde{A}_{n}(n\geq 0) .

We have no infinite dimensional transitive Hilbert representations of

the Jordan quiver L whose underlying undirected graph is an extended

Dynkin diagram \tilde{A}_{0}.
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Next we consider transitive Hilbert representations of quivers whose

underlying undirected graph is an extended Dynkin diagram \tilde{A}_{n}(n \geq

1).

For \tilde{A}_{1} case, the quivers are the oriented cyclic quiver C_{2} and the

Kronecker quiver Q.
The oriented cyclic quiver C_{2} is the quiver such that V=\{1 ,

2\}, E=

\{$\alpha$_{1}, $\alpha$_{2}\}, s($\alpha$_{1})=r($\alpha$_{2})=1, r($\alpha$_{1})=s($\alpha$_{2})=2,
the Kronecker quiver Q is the quiver such that V = \{1 , 2 \}, E =

\{$\alpha$_{1}, $\alpha$_{2}\}, s($\alpha$_{1})=s($\alpha$_{2})=1, r($\alpha$_{1})=r($\alpha$_{2})=2.
For the Kronecker quiver, we [EW2] have the following :

Theorem 1. Let Q be the Kronecker quiver. Then there exists an

infinite‐dimensional transitive Hilbert representation of Q.

Using the above theorem we have the following:

Theorem 2. Let  $\Gamma$ be a quiver whose underlying undirected graph is

an extended Dynkin diagram \overline{A_{n}}, (n\geq 0) .

If  $\Gamma$ is not the oriented cyclic quiver, then there exists an infinite‐
dimensional transitive Hilbert representation of  $\Gamma$.

Thus remaining case of the existence problem of infinite dimensional

transitive Hilbert representations of quivers whose underlying undi‐

rected graph is an extended Dynkin diagram \overline{A_{n}}, (n\geq 1) is the oriented

cyclic quiver.
We shall consider transitive Hilbert representations of C_{2}
Let (H, f) be a Hilbert representation of C_{2}.
We put A_{1}=f_{$\alpha$_{1}} and A_{2}=f_{ $\alpha$ 2}.

Lemma 2. (ĨEW31) Let (H, f) be a Hilbert representation of C_{2} . Then

(H, f) is transitive if and only if one of the following conditions holds.

(1) H_{1}=\mathbb{C}, H_{2}=0, A_{1}=0 and A_{2}=0,
(2) H_{1}=0, H_{2}=\mathbb{C}, A_{1}=0 and A_{2}=0,
(3) H_{1}=\mathbb{C} and H_{2}=\mathbb{C} and (A_{1}\neq 0 or A_{2}\neq 0) .

In order to prove the necessary condition of this lemma, it is sufficient

to assume \dim H_{1} \neq 0 and \dim H_{2}\neq 0 . Furthermore we may assume

that \dim H_{1}\leq\dim H_{2} and H_{1} is a subspace of H_{2}.
We define

T=(T_{1}, T_{2})=(A_{2}A_{1}, A_{1}A_{2}) .

Then T\in End(H, f) . In fact

A_{1}T_{1}=A_{1}(A_{2}A_{1})=(A_{1}A_{2})A_{1}=T_{2}A_{1}
and

T_{1}A_{2}=(A_{2}A_{1})A_{2}=A_{2}(A_{1}A_{2})=A_{2}T_{2}.
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By the assumption of transitivity for (H, f) ,

(T_{1}, T_{2})\in \mathbb{C}=\{( $\mu$ I_{H_{1}},  $\mu$ I_{H_{2}})| $\mu$\in \mathbb{C}\}.
Hence

T_{1}=A_{2}A_{1}= $\mu$ I_{H_{1}}, T_{2}=A_{1}A_{2}= $\mu$ I_{H_{2}},
for some  $\mu$\in \mathbb{C}.

We define E_{1} \in B(H_{1}, H_{2}) by the embedding map from H_{1} into H_{2}
and E_{2}\in B(H_{2}, H_{1}) by the projection map from H_{2} onto H_{1}.

We define

T^{\{1\}}=(T_{1}^{\{1\}}, T_{2}^{\{1\}})=(A_{2}E_{1}, E_{1}A_{2}) .

Then T^{\{1\}}\in End(H, f) . In fact

A_{1}T_{1}^{\{1\}}=A_{1}(A_{2}E_{1})=(A_{1}A_{2})E_{1}=( $\mu$ I_{H_{2}})E_{1}
= $\mu$ E_{1}=E_{1}( $\mu$ I_{H_{1}})=E_{1}(A_{2}A_{1})=(E_{1}A_{2})A_{1}=T_{2}^{\{1\}}A_{1}.

T_{1}^{\{1\}}A_{2}=(A_{2}E_{1})A_{2}=A_{2}(E_{1}A_{2})=A_{2}T_{2}^{\{1\}}.
Thus T^{\{1\}} \in End(H, f) . Since (H, f) is transitive, there exists a con‐

stant $\mu$^{\{1\}} \in \mathbb{C} such that A_{2}E_{1}=$\mu$^{\{1\}}I_{H_{1}} and E_{1}A_{2}=$\mu$^{\{1\}}I_{H_{2}}.
We define

T^{\{2\}}=(T_{1}^{\{2\}}, T_{2}^{\{2\}})=(E_{2}A_{1}, A_{1}E_{2}) .

Then T^{\{2\}}\in End(H, f) . In fact,

A_{1}T_{1}^{\{2\}}=A_{1}(E_{2}A_{1})=(A_{1}E_{2})A_{1}=T_{2}^{\{2\}}A_{1}.

T_{1}^{\{2\}}A_{2}=(E_{2}A_{1})A_{2}=E_{2}( $\mu$ I_{H_{2}})= $\mu$ E_{2}
= $\mu$ I_{H_{1}}E_{2}=A_{2}(A_{1}E_{2})=A_{2}T_{2}^{\{2\}}.

Since (H, f) is transitive, there exists a constant $\mu$^{\{2\}}\in \mathbb{C} such that

E_{2}A_{1}=$\mu$^{\{2\}}I_{H_{1}} and A_{1}E_{2}=$\mu$^{\{2\}}I_{H_{2}}.
We define

T^{\{1,2\}}=(T_{1}^{\{1,2\}}, T_{2}^{\{1,2\}})=(E_{2}E_{1}, E_{1}E_{2}) .

Then T^{\{1,2\}}\in End(H, f) . In fact,

A_{1}T_{1}^{\{1,2\}}=A_{1}(E_{2}E_{1})=(A_{1}E_{2})E_{1}=($\mu$^{\{2\}}I_{H_{2}})E_{1}=$\mu$^{\{2\}}E_{1}=
=$\mu$^{\{2\}}E_{1}=E_{1}($\mu$^{\{2\}}I_{H_{1}})=E_{1}(E_{2}A_{1})=T_{2}^{\{1,2\}}A_{1},

Also we have

T_{1}^{\{1,2\}}A_{2}=(E_{2}E_{1})A_{2}=E_{2}(E_{1}A_{2})=E_{2}($\mu$^{\{1\}}I_{H_{2}})=$\mu$^{\{1\}}E_{2}=
=$\mu$^{\{1\}}E_{2}=($\mu$^{\{1\}}I_{H_{1}})E_{2}=(A_{2}E_{1})E_{2}=A_{2}(E_{1}E_{2})=A_{2}T_{2}^{\{1,2\}}.

Since (H, f) is transitive, there exists a constant $\mu$^{\{1,2\}}\in \mathbb{C} such that

E_{2}E_{1}=$\mu$^{\{1,2\}}I_{H_{1}} and E_{1}E_{2}=$\mu$^{\{1,2\}}I_{H_{2}}.
For x(\neq 0)\in H_{1} , we have E_{2}E_{1}x=x.
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Since E_{2}E_{1}=$\mu$^{\{1,2\}}I_{H_{1}} , we have x=$\mu$^{\{1,2\}}x,\mathrm{s}\mathrm{o}$\mu$^{\{1,2\}}=1.
If H_{1} \neq  H_{2} ,then H_{1}^{\perp}\cap H_{2} \neq  0 . Take x (\neq 0) \in  H_{1}^{\perp}\cap H_{2} . Then

E_{1}E_{2}x=$\mu$^{\{1,2\}}I_{H_{2}}x . Hence 0=x . This is a contradiction.

Thus H_{1}=H_{2} and E_{1}=E_{2} . Since A_{1}E_{2}=$\mu$^{\{2\}}I_{H_{2}},
A_{1}=$\mu$^{\{2\}}I_{H_{1}}.

Since E_{1}A_{2}=$\mu$^{\{1\}}I_{H_{2}},
A_{2}=$\mu$^{\{1\}}I_{H_{1}}.

Since (H, f) is transitive, A_{1}\neq 0 or A_{2}\neq 0.
Also we have H_{1}=H_{2}=\mathbb{C} . Thus (H, f) is in the case (3).
Generalizing these argument to C_{n} case, we have

Theorem 3. ([EW31) Let  $\Gamma$ be a quiver whose underlying undirected

graph is an extended Dynkin diagram \overline{A_{n}}, (n\geq 0) . Then there exists an

infinite dimensional transitive Hilbert representation of  $\Gamma$ if and only
if  $\Gamma$ is not the oriented cyclic quiver.

Thefore remaining cases are \overline{D_{n}}, \overline{E_{6}}, \overline{E_{7}}, \overline{E_{8}}.

In order to consider the remaining cases \overline{D_{n}}, \overline{E_{6}}, \overline{E_{7}}, \overline{E_{8}} , we need more

preparations. The following theorem is one of the tools.

Theorem 4. (ĨEW3J) Let  $\Gamma$=(V, E, s, r) be a finite quiver and v\in V

a source. If a Hilbert representation (H, f) of  $\Gamma$ is co‐full at  v , then

$\Phi$_{\overline{v}}:End(H, f)\rightarrow End($\Phi$_{\overline{v}}(H, f)) is an isomorphism as \mathbb{C} ‐algebras.

Reflection functors are defined as follows([EWI]):
Let  $\Gamma$=(V, E, s, r) be a finite quiver. We say that a vertex v\in V is

a sink if v\neq s( $\alpha$) for any  $\alpha$\in E . Put E^{v}=\{ $\alpha$\in E; r( $\alpha$)=v\} . We

denote by \overline{E} the set of all formally reversed new arrows \overline{ $\alpha$} for  $\alpha$\in E.

Definition. Let  $\Gamma$= (V, E, s, r) be a finite quiver. For a sink  v\in  V,
we construct a new quiver $\sigma$_{v}^{+}( $\Gamma$)=($\sigma$_{v}^{+}(V), $\sigma$_{v}^{+}(E), s, r) as follows: All

the arrows of  $\Gamma$ having  v as range are reversed and all the other arrows

remain unchanged. That is,

$\sigma$_{v}^{+}(V)=V, $\sigma$_{v}^{+}(E)=(E\backslash E^{v})\cup\overline{E^{v}}_{)}
where \overline{E^{v}}=\{\overline{ $\alpha$};  $\alpha$\in E^{v}\}.

152



Definition. (reflection functor $\Phi$_{v}^{+}. ) Let  $\Gamma$ = (V, E, s, r) be a finite

quiver. For a sink v\in V , we define a reflection functor at v

$\Phi$_{v}^{+} :HRep ( $\Gamma$)\rightarrow HRep($\sigma$_{v}^{+}( $\Gamma$))
between the categories of Hilbert representations of  $\Gamma$ and  $\sigma$_{v}^{+}( $\Gamma$) as

follows:
For a Hilbert representation (H, f) of  $\Gamma$

, we define a Hilbert repre‐
sentation (K, g)=$\Phi$_{v}^{+}(H, f) of $\sigma$_{v}^{+}( $\Gamma$) . Let

h_{v}:\oplus_{ $\alpha$\in E^{v}}H_{s( $\alpha$)}\rightarrow H_{v}
be a bounded linear operator defined by

h_{v}((x_{ $\alpha$})_{ $\alpha$\in E^{v}})=\displaystyle \sum_{ $\alpha$\in E^{v}}f_{ $\alpha$}(x_{ $\alpha$}) .

We shall define

K_{v}:=Ker(h_{v})=\displaystyle \{(x_{ $\alpha$})_{ $\alpha$\in E^{v}} \in\oplus_{ $\alpha$\in E^{v}}H_{s( $\alpha$)};\sum_{ $\alpha$\in E^{v}}f_{ $\alpha$}(x_{ $\alpha$})=0\}.
We also consider the canonical inclusion map i_{v} : K_{v}\rightarrow\oplus_{ $\alpha$\in E^{v}}H_{s( $\alpha$)}.

For u\in V with u\neq v , put K_{u}=H_{u}.
For  $\beta$\in E^{v} ,

let

P_{ $\beta$}:\oplus_{ $\alpha$\in E^{v}}H_{s( $\alpha$)}\rightarrow H_{s( $\beta$)}
be the canonical projection. Then we shall define

: K_{s(\overline{ $\beta$})}=K_{v}\rightarrow K_{r(\overline{ $\beta$})}=H_{s( $\beta$)} by =P_{ $\beta$}\mathrm{o}i_{v}
that is, ((x_{ $\alpha$})_{ $\alpha$\in E^{v}})=x_{ $\beta$}.

For  $\beta$\not\in E^{v} , let g_{ $\beta$}=f_{ $\beta$}.
For a homomorphism T : (H, f) \rightarrow (H', f we define a homomor‐

phism

S=(S_{u})_{u\in V}=$\Phi$_{v}^{+}(T) : (K, g)=$\Phi$_{v}^{+}(H, f)\rightarrow(K', g')=$\Phi$_{v}^{+}(H', f')
If u=v

, a bounded operator S_{v} : K_{v}\rightarrow K_{v} is given by

S_{v}((x_{ $\alpha$})_{ $\alpha$\in E^{v}})=(T_{s( $\alpha$)}(x_{ $\alpha$}))_{ $\alpha$\in E^{v}}.
For other u\in V with u\neq v , put

S_{u}=T_{u} : K_{u}=H_{u}\rightarrow K_{u}'=H_{u}'.
Definition. (reflection functor ￠

v

Let  $\Gamma$=(V, E, s, r) be a finite quiver. For a source v\in V , we shall

define a reflection functor at v

$\Phi$_{v}^{-} :HRep ( $\Gamma$)\rightarrow HRep($\sigma$_{v}^{-}( $\Gamma$))
between the categories of Hilbert representations of  $\Gamma$ and  $\sigma$_{v}^{-}( $\Gamma$) as

follows: For a Hilbert representation (H, f) of  $\Gamma$
, we define a Hilbert

representation (K, g)=$\Phi$_{v}^{-}(H, f) of $\sigma$_{\overline{v}}( $\Gamma$) . Let

\hat{h}_{v}:H_{v}\rightarrow\oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)}
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be a bounded linear operator defined by

\hat{h}_{v}(x)=(f_{ $\alpha$}(x))_{ $\alpha$\in E_{v}} for x\in H_{v}.

We shall define

K_{v} :=(Im(\hat{h}_{v}))^{\perp}=Ker\hat{h}_{v}^{*}\subset\oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)},
where \hat{h}_{v}^{*} : \oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)} \rightarrow H_{v} is given \hat{h}_{v}^{*}((x_{ $\alpha$})_{ $\alpha$\in E_{v}}) =\displaystyle \sum f_{ $\alpha$}^{*}(x_{ $\alpha$}) . For

u\in V with u\neq v , put K_{u}=H_{\mathrm{u}}.
Let Q_{v}:\oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)}\rightarrow K_{v} be the canonical projection. For  $\beta$\in E_{v},

let

j_{ $\beta$}:H_{r( $\beta$)}\rightarrow\oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)}
be the canonical inclusion.

We shall define

g_{\overline{ $\beta$}}:K_{s(\overline{ $\beta$})}=H_{r( $\beta$)}\rightarrow K_{r(\overline{ $\beta$})}=K_{v} by =Q_{v}\mathrm{o}j_{ $\beta$}.
For  $\beta$\not\in E_{v} ,

let g_{ $\beta$}=f_{ $\beta$}.
For a homomorphism T : (H, f)\rightarrow(H', f we shall define a homo‐

morphism

S=(S_{u})_{\mathrm{u}\in V}=$\Phi$_{v}^{-}(T) : (K, g)=$\Phi$_{v}^{-}(H, f)\rightarrow(K', g')=$\Phi$_{v}^{-}(H', f
For u=v , a bounded operator S_{v} : K_{v}\rightarrow K_{v} is given by

S_{v}((x_{ $\alpha$})_{ $\alpha$\in E_{v}})=Q_{v}'((T_{r( $\alpha$)}(x_{ $\alpha$}))_{ $\alpha$\in E_{v}}) ,

where Q_{v}' : \oplus_{ $\alpha$\in E_{v}}H_{r( $\alpha$)}' \rightarrow K_{v}' be the canonical projection. For other

u\in V with u\neq v , put

S_{u}=T_{u} : K_{u}=H_{u}\rightarrow K_{u}'=H_{u}'.
The following theorem is the main result of [EW3].

Theorem 5. (ÍEW31) Let  $\Gamma$ be a quiver whose underlying undirected

graph \dot{u} an extended Dynkin diagram. Then there exists an infinite‐
dimensional transitive Hilbert representation of  $\Gamma$ if and only if  $\Gamma$ is

not an oriented cyclic quiver.

We \underline{\mathrm{s}\mathrm{h}}\mathrm{a}\underline{\mathrm{l}\mathrm{l}}\mathrm{g}\underline{\mathrm{v}}\mathrm{e}\underline{\mathrm{a}} sketch of proof of theorem 5. For the remaining
cases D_{n}, E_{6},E_{7},E_{8} ,

at first, we construct a transitive Hilbert represen‐
tation for subspace quiver by using transitive operators. This transitive

Hilbert representation has a nice property. By this nice property we can

use theorem 4 about endomorphism algebras. Thus we can change an

orientation of the subspace quiver. Hence we have a transitive Hilbert

representation for quivers with any orientation.

4.nansitive operators and transitive representations.
To consider transitive representations, we need unbounded strongly
irreducible operators and transitive operators.

Definition.([EW3]) An unbounded closed operator A is said to be

strongly irreducible if A satisfies the following condition: For any idem‐

potent E\in B(H) ,
if E is in the commutant \{A\}' , then E=0 or E=I.
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An unbounded closed operator A is said to be transitive if A satisfies

the following condition: For any T\in B(H) ,
if T is in the commutant

\{A\}' , then T is a scalar operator.
We show that there is a non‐zero surjective algebra homomorphism of

the endomorphism algebra of a Hilbert representation of the Kronecker

quiver to the endomorphism algebra of a four‐suUspace system.

Theorem 6. (ÍEW31) Let K\neq 0 be a Hilbert space and A, B\in B(K) .

Let (H, f) be a Hilbert representation of the Kronecker quiver Q such

that

H_{1}=H_{2}=K, f_{ $\alpha$}=A and f_{ $\beta$}=B.
Let S=(E_{0};E_{1}, E_{2}, E_{3}, E_{4}) be a four‐subspace system such that

E_{0}=K\oplus K, E_{1}=K\oplus 0, E_{2}=0\oplus K,

E_{3}=\{ (Ax, Bx); x\in K\}, E_{4}=\{(x, x);x\in K\}.
Assume that E3 is closed. Then there exists a non‐zero surjective alge‐
bra homomorphism  $\Phi$ of End(H, f) to End(S) . Moreover, if \mathrm{k}\mathrm{e}\mathrm{r}A\cap

\mathrm{k}\mathrm{e}\mathrm{r}B=0 , then  $\Phi$ is one to one.

Under a certain condition we have a correspondence between tran‐

sitive Hilbert representations of the Kronecker quiver and transitive

operators.

Theorem 7. (ĨEW31) Let  K be a Hilbert space and A, B \in  B(K) .

Assume that

\mathrm{k}\mathrm{e}\mathrm{r}A=0 and A^{*}(K)+B^{*}(K) is closed in K.

Let (H, f) be a Hilbert representation of the Kronecker quiver Q such

that

H_{1}=H_{2}=K, f_{ $\alpha$}=A and f_{ $\beta$}=B.
Then BA^{-1} is transitive if and only if (H, f) is transitive.

We shall give some examples of transitive operators.
Example I.([EW3])
Let Q be the Kronecker quiver. Let S be the unilateral shift on

H=\ell^{2}(\mathrm{N}) with a canonical basis \{e_{1}, e_{2},

For a bounded weight vector  $\lambda$ = ($\lambda$_{1}, $\lambda$_{2}, \in \ell^{\infty}(\mathrm{N}) we asso‐

ciate with a diagonal operator D_{ $\lambda$} = diag ($\lambda$_{1}, $\lambda$_{2} , so that SD_{ $\lambda$} is

a weighted shift operator.
We assume that

$\lambda$_{i}\neq$\lambda$_{j} if i\neq j.
Take a vector \overline{w}=(\overline{w_{n}})_{n}\in l^{2}(\mathrm{N}) such that

w_{n}\neq 0 for any n\in \mathbb{N}.

Put

A=SD_{ $\lambda$}+$\theta$_{e\overline{w}}1,
and B=S.
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Define a Hilbert representation (H^{ $\lambda$}, f^{ $\lambda$}) of the Kronecker quiver Q
by

H_{1}^{ $\lambda$}=H_{2}^{ $\lambda$}=H, f_{ $\alpha$}^{ $\lambda$}=A and f_{ $\beta$}^{ $\lambda$}=B.
Then \mathrm{k}\mathrm{e}\mathrm{r}A=0 and the quotient BA^{-1} is a transitive operator.
Furthermore,the operator BA^{-1} is densely defined

if and only if

$\lambda$_{k}\neq 0 for each k\in \mathrm{N} and (\displaystyle \frac{w_{k}}{$\lambda$_{k}})_{k}\not\in\ell^{2}(\mathrm{N}) .

Example II.([EW3])
Let Q be the Kronecker quiver and H=\ell^{2}(\mathbb{Z}) . Let a=(a(n))_{n\in \mathbb{Z}}, b=

(b(n))_{n\in \mathbb{Z}}\in P^{\infty}(\mathbb{Z}) such that

a(n)\neq 0, b(n)\neq 0 for any n\in \mathbb{Z}.

We put

w_{m}=\displaystyle \frac{b(m)}{a(m)}, m\in \mathbb{Z}.
We put

M_{k}(m, n) :=\displaystyle \frac{w_{rn}w_{m+1}\cdots w_{ $\tau$ n+k-1}}{w_{n}w_{n+1}\cdots w_{n+k-1}} for m, n\in \mathbb{Z}, k\geq 1.

Assume that for any m\neq n, (M_{k}(m, n))_{k} is an unbounded sequence.
Let D_{a} be a diagonal operator with a = (a(n))_{n} as diagonal coef‐

ficients and D_{b} be a diagonal operator with b = (b(n))_{n} as diagonal
coefficients. Let U be the bilateral forward shift. Put

A=D_{a} and B=UD_{b}.

Define a Hilbert representation (H, f) of the Kronecker quiver Q by

H_{1}=H_{2}=H, f_{ $\alpha$}=A and f_{ $\beta$}=B.
Then the Hilbert representation (H, f) is transitive. We also have

\mathrm{k}\mathrm{e}\mathrm{r}A=0 and \mathrm{k}\mathrm{e}\mathrm{r}B=0 . And the operator BA^{-1} is a densely defined

transitive operator.
The following two sequences a and b satisfy the condition of the

example II. Fix a positive constant  $\lambda$ > 1 . Consider two sequences

a=(a(n))_{n\in \mathbb{Z}} and b=(b(n))_{n\in \mathbb{Z}} by

a(n)=\left\{\begin{array}{l}
e^{-$\lambda$^{n}} (n\geq 1, n \mathrm{i}\mathrm{s} \mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}),\\
1 (otherwise),
\end{array}\right. b(n)=\left\{\begin{array}{l}
e^{-$\lambda$^{n}} (n\geq 1, n \mathrm{i}\mathrm{s} \mathrm{o}\mathrm{d}\mathrm{d}),\\
1 (otherwise).
\end{array}\right.
The concept of transitive operators are useful because certain transi‐

tive Hilbert representations of a quiver are given in terms of transitive

operators.
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