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In this article, we give a short survey of some known results and our recent results in

[HKK13], [CHHK15], [Hos16], [HKY16] (with Huah Chu, Shou‐Jen Hu, Ming‐chang Kang,
Boris E. Kunyavskii and Aiichi Yamasaki) about rationality problem for fields of invariants

and unramified Brauer (cohomology) groups.

1 Introduction

Let k be a field and G be a finite group acting on the rational function field k(x_{g} : g\in G)
by k‐automorphisms h(x_{g})=x_{hg} for any g, h\in G . We denote the fixed field k(x_{g} : g\in G)^{G}
by k(G) . Emmy Noether [Noe13, Noe17] asked whether k(G) is rational (= purely transcen‐

dental) over k . This is called Noether�s problem for G over k , and is related to the inverse

Galois problem, to the existence of generic G‐Galois extensions over k , and to the existence of

versal G‐torsors over k‐rational field extensions (see Saltman [\mathrm{S}\mathrm{a}\mathrm{l}82\mathrm{a}] , Swan [Swa83], Manin

and Tsfasman [MT86], Garibaldi, Merkurjev and Serre [GMS03, Section 33.1, page 86

Colliot‐Thélène and Sansuc [CTS07]).

Theorem 1.1 (Fischer [Fis15], see also Swan [Swa83, Theorem 6.1]). Let G be a finite
abelian group with exponent e . Assume that (i) either char k=0 or char k=p \parallel e , and (ii)
k contains a primitive e‐th root of unity. Then k(G) is k‐rational. In particular, ￡f(G) is

\mathbb{C} ‐rational.

Theorem 1.2 (Kuniyoshi [Kun54], [Kun55], [Kun56], see also Gaschütz [Gas59]). Let k be

a field with char k=p>0 and G be a finite p‐group. Then k(G) is k‐rational.

We now recall some relevant definitions of k‐rationality of fields.

Definition 1.3. Let K/k and L/k be finitely generated extensions of fields.

(1) K is said to be rational over k (for short, k‐rational) if K is purely transcendental over

k , i.e. K\simeq k(x_{1}, \ldots, x_{n}) for some algebraically independent elements x_{1} , \cdots ,  x_{n} over k ;

(2) K is said to be stably k‐rational if K(y_{1}, \ldots,y_{m}) is k‐rational for some algebraically
independent elements y_{1} , \cdots ,  y_{m} over K ;

(3) K and L are said to be stably k ‐isomorphic if K(y_{1}, \ldots, y_{m}) \simeq  L(z_{1}, \ldots, z_{n}) for some

algebraically independent elements y_{1} , \cdots ,  y_{m} over K and z_{1} , \cdots ,  z_{n} over L ;

(4) (Saltman, [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{b} , Definition 3.1]) K is said to be retract k‐rational if there exists a k‐

algebra A contained in K such that (i) K is the quotient field of A , (ii) there exist a non‐zero

polynomial f\in k[x_{1}, . . . , x_{n}] and k‐algebra homomorphisms  $\varphi$:A\rightarrow k[x_{1}, . . . , x_{n}][1/f] and

 $\psi$:k[x_{1}, \cdots, x_{n}][1/f]\rightarrow A satisfying  $\psi$\circ $\varphi$=1_{A;}
(5) K is said to be k ‐unirational if k\subset K\subset k(x_{1}, \ldots , x_{n}) for some integer n.
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In Saltman�s original definition of retract k‐rationality ( [ \mathrm{S}\mathrm{a}\mathrm{l}82\mathrm{b} , page 130], [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{b} , Def‐

inition 3.1]), a base field k is required to be infinite in order to guarantee the existence of

sufficiently many k‐specializations. We now assume that k is an infinite field. Then if K and

L are stably k‐isomorphic and K is retract k‐rational, then L is also retract k‐rational (see
[ \mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{b} , Proposition 3.6]), and it is not difficult to verify the following implications:

k‐rational \Rightarrow stably  k‐rational \Rightarrow retract  k‐rational \Rightarrow  k‐unirational.

Note that k(G) is retract k‐rational if and only if there exists a generic G‐Galois extension

over k (see [\mathrm{S}\mathrm{a}\mathrm{l}82\mathrm{a} , Theorem 5.3], [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{b} , Theorem 3.12])�. In particular, if k is a Hilbertian

field, e.g. number field, and k(G) is retract k‐rational, then inverse Galois problem for G

over k has a positive answer, i.e. there exists a Galois extension K/k with \mathrm{G}\mathrm{a}1(K/k)\simeq G.
Swan [Swa69] gave the first negative solution to Noether�s problem. He proved that if

p=47 , 113 or 233, then \mathbb{Q}(C_{p}) is not \mathbb{Q}‐rational, where C_{p} is the cyclic group of order prime

p , by using Masuda�s idea of Galois descent [Mas55, Mas68].
Noether�s problem for abelian groups was studied extensively by Masuda, Kuniyoshi,

Swan, Voskresenskii, Endo and Miyata, etc. Eventually, Lenstra [Len74] gave a necessary

and sufficient condition to Noether�s problem for finite abelian groups. For details, see Swan�s

survey paper [Swa83], Voskresenskii�s book [Vos98, Section 7] or [Hos15]. On the other hand,

just a handful of results about Noether�s problem are obtained when the groups are non‐

abelian.

Theorem 1.4 (Maeda [Mae89, Theorem, page 418 Let k be a field and A5 be the alternating
group of degree 5. Then k(A_{5}) is k‐rational.

Theorem 1.5 (Serre [GMS03, Chapter IX], see also Kang [Kan05]). Let G be a finite group

with a 2‐Sylow subgroup which bs cyclic of order \geq  8 or the generalized quaternion Q_{16} of
order 16. Then \mathbb{Q}(G) is not stably \mathbb{Q} ‐rational.

Theorem 1.6 (Plans [Pla09, Theorem 2 Let A_{n} be the alternating group of degree n . If
n \geq  3 is odd integer, then \mathbb{Q}(A_{n}) is rational over \mathbb{Q}(A_{n-1}) . In particular, if \mathbb{Q}(A_{n-1}) is

\mathbb{Q} ‐rational, then so is \mathbb{Q}(A_{n}) .

However, it is an open problem whether k(A_{n}) is k‐rational for n\geq 6.

From now on, we restrict ourselves to the case where G is a p\overline{-} group. By Theorem 1.1

and Theorem 1.2, we may focus on the case where G is a non‐abelian p‐group and k is a field

with char k\neq p . For r‐groups of small order, the following results are known.

Theorem 1.7 (Chu and Kang [CKOI]). Let p be any prime and G be a p‐group of order

\leq p^{4} and of exponent e . If k is a field containing a primitive e‐th root of unity, then k(G) is

k ‐rational.

Theorem 1.8 (Chu, Hu, Kang and Prokhorov [CHKP08]). Let G be a group of order 32 and

of exponent e . If k\dot{u} a field containing a primitive e‐th root of unity, then k(G) is k‐rational.

For more recent results, see e.g. [HK10], [Kanll], [KMZ12].
Saltman introduced a notion of retract k‐rationality (see Definition 1.3) and the unram‐

ified Brauer group. Recall that the implications for an infinite field k : k-rational \Rightarrow stably
 k‐rational \Rightarrow retract  k‐rational. Hence if k(G) is not retract k‐rational, then it is not k‐

rational.
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Definition 1.9 (Saltman [ \mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{a} , Definition 3.1], [Sa185, page 56 Let K/k be an extension

of fields. The unramified Brauer group \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k) of K over k is defined to be

\displaystyle \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k)=\bigcap_{R}\mathrm{I}\mathrm{m}\mathrm{a}\mathrm{g}\mathrm{e}\{\mathrm{B}\mathrm{r}(R)\rightarrow \mathrm{B}\mathrm{r}(K)\}
where \mathrm{B}\mathrm{r}(R)\rightarrow \mathrm{B}\mathrm{r}(K) is the natural map of Brauer groups and R runs over all the discrete

valuation rings R such that k \subset  R\subset  K and K is the quotient field of R . We omit k from

the notation and write just \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K) when the base field k is clear from the context.

Proposition 1.10 (Saltman [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{a}] , [Sa185, Proposition 1.8], [SalS7]). If K \dot{u} retract k‐

rational, then \mathrm{B}\mathrm{r}(k)\rightarrow^{\sim}\mathrm{B}\mathrm{r}_{\mathrm{n}x}(K) . In particular, íf k is an algebraically closed field and K is

retract k‐rational, then \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K)=0.

Theorem 1.11 (Bogomolov [Bog88, Theorem 3.1], Saltman [Sa190, Theorem 12 Let G be

a finite group and k be an algebraically closed field with char k=0 or char k=p |G| . Then

\mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(k(G)/k) \dot{u} isomorphic to the group B_{0}(G) defined by

B_{0}(G)=\displaystyle \bigcap_{A}\mathrm{K}\mathrm{e}\mathrm{r}\{\mathrm{r}\mathrm{e}\mathrm{s}:H^{2}(G, \mathbb{Q}/\mathbb{Z})\rightarrow H^{2}(A, \mathbb{Q}/\mathbb{Z})\}
where A runs over all the bicyclic subgroups of G (a group A is called bicyclic if A is either

a cyclic group or a direct product of two cyclic groups).

Remark 1.12. For a smooth projective variety X over ￠ with function field K, \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/\mathbb{C})
is isomorphic to the birational invariant H^{3}(X, \mathbb{Z})_{\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}} which was used by Artin and Mumford

[AM72] to provide some elementary examples of k‐unirational varieties which are not k-

rational (see also [Bog88, Theorem 1.1 and Corollary

Following Kunyavskii [KunlO], we call B_{0}(G) the Bogomolov multiplier of G . Note that

B_{0}(G) is a subgroup of H^{2}(G, \mathbb{Q}/\mathbb{Z}) which is isomorphic to the Schur multiplier H_{2}(G, \mathbb{Z}) of

G (see Karpilovsky [Kar87]). Because of Theorem 1.11, we will not distinguish B_{0}(G) and

\mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(k(G)/k) when k is an algebraically closed field, and char k=0 or char k=p /\}'|G|.
Using the Bogomolov multiplier B_{0}(G) , Saltman and Bogomolov gave counter‐examples

to Noether�s problem for non‐aUelian p‐‐groups over algebraically closed field.

Theorem 1.13 (Saltman [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{a}] , Bogomolov [Bog88]). Let p be any prime and k be any

algebraically closed field with char k\neq p.
(1) (Saltman [\mathrm{S}\mathrm{a}\mathrm{l}84\mathrm{a}, Theorem 3.6]) There exists a meta‐abehan group G of order p^{9} such

that B_{0}(G)\neq 0 . In particular, k(G) is not (retract, stably) k ‐rational;

(2) (Bogomolov [Bog88, Lemma 5.6]) There exists a group G of order p^{6} such that B_{0}(G)\neq 0.
In particular, k(G) \dot{u} not (retract, stably) k ‐rational.

Colliot‐Thélène and Ojanguren [CTO89] generalized the notion of the unramified Brauer

group \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k) to the unramified cohomology H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{n}^{\otimes j}) of degree i \geq  1
, that is

F_{n}^{i,j}(K/k) in [CTO89, Definition 1.1].

Definition 1.14 (Colliot‐Thelène and Ojanguren [\mathrm{C}\mathrm{T}\mathrm{O}89| , see also [CT95, Sections 2−4]).
Let n be a positive integer and k be an algebraically closed field with char k=0 or char k=p
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I n . Let K/k be a function field, that is finitely generated as a field over k . The unramified
cohomology group H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{n}^{\otimes j}) of K over k of degree i\geq 1 is defined to be

H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{n}^{\otimes j})=\displaystyle \bigcap_{R} Image \{H_{\mathrm{e}\mathrm{t}}^{i}(R, $\mu$_{n}^{\otimes j})\rightarrow H_{\mathrm{e}\mathrm{t}}^{i}(K, $\mu$_{n}^{\otimes j})\}

where R runs over all the discrete valuation rings R of rank one such that k\subset R\subset K and

K is the quotient field of R . We write just H_{\mathrm{n}\mathrm{r}}^{i}(K, $\mu$_{n}^{\otimes j}) when the base field k is clear.

Note that the unramified cohomology groups of degree two are isomorphic to the n‐torsion

part of the unramified Brauer group: n\mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k)\simeq H_{\mathrm{n}\mathrm{r}}^{2}(K/k, $\mu$_{n}) .

Proposition 1.15. Let k be an algebraically closed field with char k=0 or char k=p\parallel n.
(1) (Colliot‐Thélène and Ojanguren [CTO89, Proposition 1.2]) If K and L are stably k‐

\dot{u} omorphic, then H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{n}^{\otimes \mathrm{j}}) \rightarrow^{\sim} H_{\mathrm{n}\mathrm{r}}^{i}(L/k, $\mu$_{n}^{\otimes j}) . In particular, K \dot{u} stably k ‐rational,
then H_{\mathrm{n}x}^{i}(K/k, $\mu$_{n}^{\otimes j})=0 ;
(2) ([MerOS, Proposition 2.15], see also [CTO89, Remarque 1.2.2], [CT95, Sections 2−4],
[GS10, Example 5.9]) If K\dot{u} retract k ‐rational, then H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{n}^{\otimes j})=0.

Colliot‐Thélène and Ojanguren [CTO89, Section 3] produced the first example of not

stably \mathbb{C}‐rational but \mathbb{C}‐unirational field K with H_{\mathrm{n}\mathrm{r}}^{3}(K, $\mu$_{2}^{\otimes 3})\neq 0 , where K is the function

field of a quadric of the type \ll f_{1}, f_{2} = \langle g_{1}g_{2}\rangle over the rational function field \mathbb{C}(x, y, z)
with three variables x, y, z for a 2‐fold Pfister form \langle\{f_{1},  f_{2}\gg , as a generalization of Artin and

Mumford [AM72]. Peyre [Pey93, Corollary 3] gave a sufficient condition for  H_{\mathrm{n}\mathrm{r}}^{i}(K/k, $\mu$_{p}^{\otimes i})\neq
 0 and produced an example of the function field K with H_{\mathrm{n}\mathrm{r}}^{3}(K/k, $\mu$_{p}^{\otimes 3})\neq 0 and \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k) =

0 using a result of Suslin [Sus91] where K is the function field of a product of some norm

varieties associated to cyclic central simple algebras of degree p (see [Pey93, Proposition 7

Using a result of Jacob and Rost [JR89], Peyre [Pey93, Proposition 9] also gave an example of

H_{\mathrm{n}\mathrm{r}}^{4}(K/k, $\mu$_{2}^{\otimes 4})\neq 0 and \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k)=0 where K is the function field of a product of quadrics
associated to a 4‐‐fold Pfister form \ll a_{1}, a_{2} , a3,  a4\gg (see also [CT95, Section 4.2]).

Take the direct limit with respect to  n :

H^{i}(K/k, \displaystyle \mathbb{Q}/\mathbb{Z}(j))=\lim_{\vec{n}}H^{ $\iota$}(K/k, $\mu$_{n}^{\otimes j})
and we also define the unramified cohomology group

H_{\mathrm{n}x}^{i}(K/k, \displaystyle \mathbb{Q}/\mathbb{Z}(j))=\bigcap_{R} Image \{H_{\mathrm{e}\mathrm{t}}^{i}(R, \mathbb{Q}/\mathbb{Z}(j))\rightarrow H_{\mathrm{e}'\mathrm{t}}^{i}(K, \mathbb{Q}/\mathbb{Z}(j))\}.

Then we have \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(K/k)\simeq H_{\mathrm{n}x}^{2}(K/k, \mathbb{Q}/\mathbb{Z}(1)) .

Peyre [Pey08] was able to construct an example of a field K , as K = \mathbb{C}(G) , whose

unramified Brauer group vanishes, but�unramified cohomology of degree three does not vanish:

Theorem 1.16 (Peyre [Pey08, Theorem 3 Let p be any odd prime. Then there exists a

p‐group G of order p^{12} such that B_{0}(G)=0 and H_{\mathrm{n}\mathrm{r}}^{3}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})\neq 0 . In particular, \mathrm{C}(G)
is not (retract, stably) \mathbb{C} ‐rational.

The idea of Peyre�s proof is to find a subgroup K_{\max}^{3}/K^{3} of H_{\mathrm{n}\mathrm{r}}^{3}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z}) and to show

that K_{\max}^{3}/K^{3}\neq 0 (see [Pey08, page 210
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Asok [Aso13] generalized Peyre�s argument [Pey93] and established the following theorem

for a smooth proper model X (resp. a smooth projective model Y) of the function field of

a product of quadrics of the type \ll s_{1} , . . . ,  s_{n-1}\gg = \langle s_{n} ) (resp. Rost varieties) over some

rational function field over \mathbb{C} with many variables.

Theorem 1.17 (Asok [Aso13], see also [AMII, Theorem 3] for retract \mathbb{C}‐rationality).
(1) ([Aso13, Theorem 1]) For any n>0 , there exists a smooth projective complex variety X

that is \mathbb{C} ‐unirational, for which H_{\mathrm{n}\mathrm{r}}^{i}(\mathbb{C}(X), $\mu$_{2}^{\otimes i})=0 for each i<n , yet H_{\mathrm{n}\mathrm{r}}^{n}(\mathbb{C}(X), $\mu$_{2}^{\otimes n})\neq 0,
and so X is not \mathrm{A}^{1} ‐connected, nor (retract, stably) \mathbb{C} ‐rational;

(2) ([Aso13, Theorem 3]) For any prime l and any  n\geq  2 , there exists a smooth projective

rationally connected complex variety Y such that H_{\mathrm{n}\mathrm{r}}^{n}(\mathbb{C}(Y), $\mu$_{l}^{\otimes n}) \neq 0 . In particular, Y is

not \mathrm{A}^{1} ‐connected, nor (retract, stably) \mathbb{C} ‐rational.

Namely, the triviality of the unramified Brauer group or the unramified cohomology of

higher degree is just a necessary condition of \mathbb{C}‐rationality of fields. It is unknown whether

the vanishing of all the unramified cohomologies is a sufficient condition for \mathbb{C}‐rationality.
It is interesting to consider an analog of Theorem 1.17 for quotient varieties V/G , e.g.

\mathbb{C}(V_{\mathrm{r}\mathrm{e}\mathrm{g}}/G)=\mathbb{C}(G) .

Colliot‐Thélène and Voisin [CTV12] established:

Theorem 1.18 (Colliot‐Thélène and Voisin [CTV12], see also [Voi14, Theorem 6.18]). For

any smooth projective complex variety X , there \dot{u} an exact sequence

0\rightarrow H_{\mathrm{n}\mathrm{r}}^{3}(X, \mathbb{Z})\otimes \mathbb{Q}/\mathbb{Z}\rightarrow H_{\mathrm{n}\mathrm{r}}^{3}(X, \mathbb{Q}/\mathbb{Z})\rightarrow \mathrm{T}\mathrm{o}\mathrm{r}\mathrm{s}(Z^{4}(X))\rightarrow 0

where

Z^{4}(X)=\mathrm{H}\mathrm{d}\mathrm{g}^{4}(X, \mathbb{Z})/\mathrm{H}\mathrm{d}\mathrm{g}^{4}(X, \mathbb{Z})_{\mathrm{a}i\mathrm{l}\mathrm{g}}
and the lower index �alg� means that we consider the group of integral Hodge classes which

are algebraic. In particular, if X is rationally connected, then we have

H_{\mathrm{n}\mathrm{r}}^{3}(X, \mathbb{Q}/\mathbb{Z})\simeq Z^{4}(X) .

Using Peyre�s method [Pey08], we obtain the following theorem which is an improvement
of Theorem 1.16 and gives an explicit counter‐example to integral Hodge conjecture with the

aid of Theorem 1.18.

Theorem 1.19 (Hoshi, Kang and Yamasaki [HKY16, Theorem 1.4]). Let p be any odd prime.
Then there exists a p‐group G of order p^{9} such that B_{0}(G)=0 and H_{\mathrm{n}\mathrm{r}}^{3}(\mathbb{C}(G), \mathbb{Q}/\mathbb{Z})\neq 0 . In

particular, \mathrm{C}(G) is not (retract, stably) \mathbb{C} ‐rahonal.

1.1 The case where G is a group of order p^{5} (p\geq 3)

From Theorem 1.13 (2), Bogomolov [Bog88, Remark 1] raised a question to classify the

groups of order p^{6} with B_{0}(G) \neq  0 . He also claimed that if G is a p‐‐group of order \leq p^{5},
then B_{0}(G)=0 ([Bog88, Lemma 5.6]). However, this claim was disproved by Moravec:

Theorem 1.20 (Moravec [Mor12, Section 8 Let G be a group of order 243. Then  B_{0}(G)\neq
 0 if and only if G=G(3^{5}, i) with 28\leq i\leq 30 , where G(3^{5}, i) is the i‐th group of order 243

in the GAP database [GAP]. Moreover, if B_{0}(G)\neq 0 , then B_{0}(G)\simeq C_{3}.
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Moravec [Mor12] gave a formula for B_{0}(G) by using a nonabelian exterior square G\wedge G

of G and an implemented algorithm \mathrm{b}0\mathrm{g}.\mathrm{g} in computer algebra system GAP [GAP], which is

available from his website www. fmf. uni‐lj. \mathrm{s}\mathrm{i}/\sim_{\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{a}\mathrm{v}\mathrm{e}\mathrm{c}}/\mathrm{b}0\mathrm{g}.\mathrm{g} . The number of all solvable

groups G of order \leq 729 apart from the orders 512, 576 and 640 with B_{0}(G)\neq 0 was given
as in [Mor12, Table 1].

Hoshi, Kang and Kunyavskii [HKK13] determined r‐groups G of order p^{5} with B_{0}(G)\neq 0
for any p\geq 3 . It turns out that they belong to the same isoclinism family.

Definition 1.21 (Hall [Ha140, page 133 Let G be a finite group. Let Z(G) be the center of

G and [G, G] be the commutator subgroup of G . Two p‐groups G_{1} and G_{2} are called isoclinic

if there exist group isomorphisms  $\theta$:G_{1}/Z(G_{1})\rightarrow G_{2}/Z(G_{2}) and  $\phi$ : [G_{1}, G_{1}]\rightarrow[G_{2}, G_{2}] such

that  $\phi$([g, h]) =[g', h'] for any g, h\in G_{1} with g'\in $\theta$(gZ(G_{1})) , h'\in $\theta$(hZ(G_{1})) :

For a prime p and an integer n , we denote by G_{n}(p) the set of all non‐isomorphic groups of

order p^{n} . In G_{n}(p) , consider an equivalence relation: two groups G_{1} and G_{2} are equivalent if

and only if they are isoclinic. Each equivalence class of G_{n}(p) is called an isoclinism family,
and the j‐th isoclinism family is denoted by $\Phi$_{j}.

For p\geq 5 (resp. p=3), there exist 2p+61+\mathrm{g}\mathrm{c}\mathrm{d}\{4,p-1\}+2\mathrm{g}\mathrm{c}\mathrm{d}\{3,p-1\} (resp. 67)
groups G of order p^{5} which are classified into ten isoclinism families $\Phi$_{1} , . ..

, $\Phi$_{10} (see [Jam80,
Section 4 The main theorem of [HKK13] can be stated as follows:

Theorem 1.22 (Hoshi, Kang and Kunyavskii [HKK13, Theorem 1.12], [Kan14, page 424

Let p be any odd prime and G be a group of order p^{5} . Then B_{0}(G) \neq  0 if and only if G

belongs to the tsoclinism family $\Phi$_{10} . Moreover, if B_{0}(G)\neq 0 , then B_{0}(G)\simeq C_{p}.

For the last statement, see [Kan14, Remark, page 424]. The proof of Theorem 1.22 was

given by purely algebraic way. There exist exactly 3 groups which belong to $\Phi$_{10} if p=3 , i.e.

G=G(243, i) with 28\leq i\leq 30 . This agrees with Moravec�s computational result (Theorem
1.20). For p\geq 5 , the exist exactly 1+\mathrm{g}\mathrm{c}\mathrm{d}\{4,p-1\}+\mathrm{g}\mathrm{c}\mathrm{d}\{3,p-1\} groups which belong to

$\Phi$_{10} ([Jam80, page 621

The following result for the k‐rationality of k(G) supplements Theorem 1.20 although it

is unknown whether k(G) is k‐rational for groups G which belong to $\Phi$_{7} :

Theorem 1.23 (Chu, Hoshi, Hu and Kang [CHHK15, Theorem 1.13]). Let G be a group of
order 243 with exponent e . If B_{0}(G) =0 and k be a field containing a primitive e‐th root of
unity, then k(G) is k‐rational except possibly for the five groups G which belong to $\Phi$_{7}, i.e.

G=G(243, i) with 56\leq i\leq 60.

In [HKK13] and [CHHK15], not only the evaluation of the Bogomolov multiplier B_{0}(G)
and the k‐rationality of k(G) but also the k‐isomorphisms between k(G_{1}) and k(G_{2}) for some

groups G_{1} and G_{2} belonging to the same isoclinism family were given.

Bogomolov and Böhning [BB13] gave an answer to the question raised as [HKK13, Ques‐
tion 1.11] in the affirmative as follows.
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Theorem 1.24 (Bogomolov and Böhning [BB13, Theorem 6 If G_{1} and G_{2} are iso‐

clinic, then \mathbb{C}(G_{1}) and \mathbb{C}(G_{2}) are stably \mathbb{C} ‐isomorphic. In particular, H_{\mathrm{n}x}^{i}(\mathbb{C}(G_{1}), $\mu$_{n}^{\otimes j}) \rightarrow^{\sim}

H_{\mathrm{n}\mathrm{r}}^{i} (\mathbb{C}(G2), $\mu$_{n}^{\otimes j}) .

A partial result of Theorem 1.24 was already given by Moravec. Indeed, Moravec [Mor14,
Theorem 1.2] proved that if G_{1} and G_{2} are isoclinic, then B_{0}(G_{1})\simeq B_{0} (G2).

1.2 The case where G is a group of order 64

The classification of the groups G of order p^{6} with B_{0}(G) \neq  0 for p= 2 was obtained by
Chu, Hu, Kang and Kunyavskii [CHKK10]. Moreover, they investigated Noether�s problem
for groups G with B_{0}(G)=0 . There exist 267 groups G of order 64 which are classified into

27 isoclinism families $\Phi$_{1} ,
\cdots

, $\Phi$_{27} by Hall and Senior [HS64] (see also [JNO90, Table I The

main result of [CHKK10] can be stated in terms of the isoclinism families as follows.

Theorem 1.25 (Chu, Hu, Kang and Kunyavskii [CHKK10]). Let G=G(2^{6}, i) , 1 \leq i\leq 267,
be the i‐th group of order 64 in the GAP database [GAP].
(1) ([CHKKIO, Theorem 1.8]) B_{0}(G)\neq 0 if and only ifG belongs to the bsoclinism family $\Phi$_{16},
i.e. G=G(2^{6}, i) with 149\leq i\leq 151, 170\leq i\leq 172, 177\leq i\leq 178 or i=182 . Moreover, if

B_{0}(G)\neq 0 , then B_{0}(G)\simeq C_{2} (see [Kan14, Remark, page 424] for this statement);
(2) ([CHKK10, Theorem 1.10]) If B_{0}(G) = 0 and k is an quadratically closed field, then

k(G) is k‐rational except possibly for five groups which belong to $\Phi$_{13}, i.e. G=G(2^{6}, i) with

241\leq i\leq 245.

For groups G which belong to $\Phi$_{13}, k‐rationality of k(G) is unknown. The following two

propositions supplement the cases $\Phi$_{13} and $\Phi$_{16} of Theorem 1.25. For the proof, the case of

G=G(2^{6},149) is given in [HKK14, Proof of Theorem 6.3], see also [CHKKIO, Example 5.11,

page 2355] and the proof for other cases can be obtained by the similar manner.

Definition 1.26. Let k be a field with char k \neq  2 and k(X_{1},X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) be the

rational function field over k with variables X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}.

(i) The field L_{k}^{(0)} is defined to be k(X_{1}, X_{2}, X_{3}, X_{4}, X_{5},X_{6})^{H} where H=\langle$\sigma$_{1}, $\sigma$_{2}\rangle \simeq C_{2}\times C_{2}
act on k(X_{1}, X_{2}, X_{3}, X_{4}, X_{5},X_{6}) by k‐automorphisms

$\sigma$_{1} : X_{1}\mapsto X_{3}, X_{2}\displaystyle \mapsto\frac{1}{X_{1}X_{2}X_{3}}, X_{3}\mapsto X_{1}, X_{4}\mapsto X_{6}, X_{5}\displaystyle \mapsto\frac{1}{X_{4}X_{5}X_{6}}, X_{6}\mapsto X_{4},

$\sigma$_{2}:X_{1}\mapsto X_{2}, X_{2}\mapsto X_{1}, X_{3}\displaystyle \mapsto\frac{1}{X_{1}X_{2}X_{3}}, X_{4}\mapsto X_{5}, X_{5}\mapsto X_{4}, X_{6}\displaystyle \mapsto\frac{1}{X_{4}X_{5}X_{6}}.
(ii) The field L_{k}^{(1)} is defined to be k(X_{1}, X_{2}, X_{3}, X_{4})^{\langle $\tau$)} where \langle $\tau$ ) \simeq C_{2} acts on k(X_{1}, X_{2}, X_{3},X_{4})
by k‐automorphisms

 $\tau$:X_{1}\displaystyle \mapsto-X_{1}, X_{2}\mapsto\frac{X_{4}}{X_{2}},\cdot X_{3}\mapsto\frac{(X_{4}-1)(X_{4}-X_{1}^{2})}{X_{3}}, X_{4}\mapsto X_{4}.
Proposition 1.27 ([CHKK10, Proposition 6.3], see also [HY, Proposition 12.5]). Let G be

a group of order 64 which belongs to $\Phi$_{13}, i.e. G=G(2^{6}, i) with 241\leq i\leq 245 . There exists

a\mathbb{C} ‐injective homomorphism  $\varphi$ :  L_{\mathbb{C}}^{(0)} \rightarrow \mathbb{C}(G) such that \mathbb{C}(G) is rational over  $\rho$(L_{\mathbb{C}}^{(0)}) . In

particular, \mathrm{C}(G) and L_{\mathbb{C}}^{(0)} are stably \mathbb{C} ‐isomorphic and B_{0}(G)\simeq \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(L_{\mathbb{C}}^{(0)})=0.
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Proposition 1.28 ([CHKKIO, Example 5.11, page 2355], [HKK14, Proof of Theorem 6.3]).
Let G be a group of order 64 which belongs to $\Phi$_{16}, i.e. G= G(2^{6}, i) with 149 \leq  i \leq  151,
170 < i \leq  172, 177 \leq  i \leq  178 or i = 182 . There exists a \mathbb{C} ‐injective homomorphism

 $\varphi$ :  L_{\mathbb{C}}^{\overline{(}1)} \rightarrow \mathbb{C}(G) such that \mathbb{C}(G) is rational over  $\varphi$(L_{\mathbb{C}}^{(1)}) . In particular, \mathrm{C}(G) and L_{\mathbb{C}}^{(1)} are

stably \mathbb{C} ‐isomorphic, B_{0}(G) \simeq \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(L_{\mathbb{C}}^{(1)}) \simeq  C_{2} and hence \mathbb{C}(G) and L_{\mathbb{C}}^{(1)} are not (retract,
stably) \mathbb{C} ‐rational.

Question 1.29 ([CHKKIO, Section 6], see also [HY, Section 12 Is L_{k}^{(0)} k‐rational9

1.3 The case where G is a group of order 128

There exist 2328 groups of order 128 which are classified into 115 isoclinism families $\Phi$_{1} , .. ., $\Phi$_{115}

([JNO90, Tables I, II, III Let G(2^{7}, i) be the i‐th group of order 2^{7} = 12\mathrm{S} in the GAP

database [GAP]. By using Moravec�s algorithm \mathrm{b}0\mathrm{g}.\mathrm{g} in [Mor12] of GAP, e.g.

�for \mathrm{i} in [1. . 2328] do Print ([\mathrm{i}, \mathrm{B}\mathrm{O}\mathrm{G}( SmallGroup ( 128, \mathrm{i}))], |\prime\backslash \mathrm{n}'') ;od;�,

we obtain the following theorem.

Theorem 1.30 (Moravec [Mor12, Section 8, Table 1 Let G be a group of order 128. Then

B_{0}(G)\neq 0 if and only if G is one of the following 220 groups:

(1) G(2^{7}, i) with i=227,228,229,301,324,325,326,541,543,568,570,579,581,626,627,629,667,668,
670,675,676,678,691,692,693,695,703,704,705,707,724,725,727, 1783, 1784, 1785, 1786, 1864, 1865,

1866,1867,1880,1881,1882,1893,1894,1903,1904;

(2) G(2^{7}, i) with 1345\leq i\leq 1399;

(3) G(2^{7}, i) with 242\leq i\leq 247, 265\leq i\leq 269, 287\leq i\leq 293;

(4) G(2^{7}, i) with 36\leq i\leq 41 ;

(5) G(2^{7}, i) with 1924\leq i\leq 1929, 1945\leq i\leq 1951,  1966\leq i\leq 1972,  1983\leq i\leq 1988_{f}.

(6) G(2^{7}, i) with 417\leq i\leq 436 ;

(7) G(2^{7}, i) with 446\leq i\leq 455 ;

(8) G(2^{7}, i) with i=950 , 951, 952, 975, 976, 977, 982, 983, 987;

(9) G(2^{7}, i) with i=144 , 145;

(10) G(2^{7}, i) with i=138 , 139;

(11) G(2^{7}, i) with 1544\leq i\leq 1577.

Moreover, if G is a group in (1)‐(10) (resp. (11)), then B_{0}(G)\simeq C_{2} (resp. C_{2}\times C_{2} ).

By [JNO90, Tables I, II, III], we can get the classification of 115 isoclinism families for

groups G of order 128 in terms of the GAP database [GAP], see [Hos16, Table 2]. Using this,
we see that the groups as in (1)-(11) of Theorem 1.30 correspond to the isoclinism families

$\Phi$_{16}, $\Phi$_{31}, $\Phi$_{37}, $\Phi$_{39}, $\Phi$_{43}, $\Phi$_{58}, $\Phi$_{60}, $\Phi$_{80}, $\Phi$_{106}, $\Phi$_{114}, $\Phi$_{30} respectively:

Corollary 1.31 (Moravec [Mor12, Section 8, Table 1 Let G be a group of order 128. Then

B_{0}(G) \neq 0 if and only if G belongs to the bsoclinism family $\Phi$_{16}, $\Phi$_{30}, $\Phi$_{31}, $\Phi$_{37}, $\Phi$_{39}, $\Phi$_{43},

$\Phi$_{58}, $\Phi$_{60}, $\Phi$_{80}, $\Phi$_{106} or $\Phi$_{114} . Moreover, if B_{0}(G)\neq 0 , then

B_{0}(G)\simeq\left\{\begin{array}{ll}
C_{2} & \mathrm{i}\mathrm{f} G \mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{s} \mathrm{t}\mathrm{o} $\Phi$_{16}, $\Phi$_{31}, $\Phi$_{37}, $\Phi$_{39}, $\Phi$_{43}, $\Phi$_{\mathrm{S}8}, $\Phi$_{60}, $\Phi$_{80}, $\Phi$_{106} \mathrm{o}\mathrm{r} $\Phi$_{114},\\
C_{2}\times C_{2} & \mathrm{i}\mathrm{f} G \mathrm{b}\mathrm{e}\mathrm{l}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{s} \mathrm{t}\mathrm{o} $\Phi$_{30}.
\end{array}\right.
In particular, \mathbb{C}(G) \dot{u} not (retract, stably) \mathbb{C} ‐rational.
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Table 1: Isoclinism families $\Phi$_{j} for groups G of order 128 with B_{0}(G)\neq 0

It is natural to ask the (stably) birational classification of \mathrm{C}(G) for groups G of order

128. In particular, what happens to \mathbb{C}(G) with B_{0}(G)\neq 0? The following theorem (Theorem
1.33) gives a partial answer to this question.

Deflnition 1.32. Let k be a field with char k\neq 2 and k (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X7) be the

rational functiÒn field over k with variables X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7}.

(i) The field L_{k}^{(2)} is defined to be k(X_{1}, X_{2}, X_{3}, X_{4}, X5, X_{6})^{( $\rho$\rangle} where \langle $\rho$\rangle\simeq C_{4} acts on

k(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}) by k‐automorphisms

 $\rho$:X_{1}\mapsto X_{2}, X_{2}\mapsto-X_{1} , X_{3}\mapsto X_{4}, X_{4}\mapsto X_{3},

X_{5}\displaystyle \mapsto X_{6}, X_{6}\mapsto\frac{(X_{1}^{2}X_{2}^{2}-1)(X_{1}^{2}X_{3}^{2}+X_{2}^{2}-X_{3}^{2}-1)}{X_{5}}.
(ii) The field L_{k}^{(3)} is defined to be k(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X_{7})^{\langle$\lambda$_{1},$\lambda$_{2})} where \langle$\lambda$_{1}, $\lambda$_{2}\rangle\simeq C_{2}\times C_{2}
acts on k (X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}, X7) by k‐automorphisms

$\lambda$_{1}:X_{1}\displaystyle \mapsto X_{1}, X_{2}\mapsto\frac{X_{1}}{X_{2}}, X_{3}\mapsto\frac{1}{X_{1}X_{3}}, X_{4}\mapsto\frac{X_{2}X_{4}}{X_{1}X_{3}},
X_{5}\displaystyle \mapsto-\frac{X_{1}X_{6}^{2}-1}{X_{5}}, X_{6}\mapsto-X_{6}, X_{7}\mapsto X_{7},

$\lambda$_{2}:X_{1}\displaystyle \mapsto\frac{1}{X_{1}}, X_{2}\mapsto X_{3}, X_{3}\mapsto X_{2}, X_{4}\mapsto\frac{(X_{1}X_{6}^{2}-1)(X_{1}X_{7}^{2}-1)}{X_{4}},
X_{5}\mapsto-X_{5}, X_{6}\mapsto-X_{1}X_{6}, X_{7}\mapsto-X_{1}X_{7}.

Theorem 1.33 (Hoshi [Hos16, Theorem 1.31]). Let G be a group of order 128. Assume that

B_{0}(G)\neq 0 . Then \mathrm{C}(G) and L_{\mathbb{C}}^{(m)} are stably \mathbb{C} ‐isomorphic where

\{
1 if G belongs to $\Phi$_{16}, $\Phi$_{31}, $\Phi$_{37}, $\Phi$_{39}, $\Phi$_{43}, $\Phi$_{58}, $\Phi$_{60} or $\Phi$_{80},

m= 2 if G belongs to $\Phi$_{106} or $\Phi$_{114},

3 if G belongs to $\Phi$_{30}.

In particular, \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(L_{\mathbb{C}}^{(1)}) \simeq \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(L_{\mathbb{C}}^{(2)}) \simeq C_{2} and \mathrm{B}\mathrm{r}_{\mathrm{n}\mathrm{r}}(L_{\mathbb{C}}^{(3)}) \simeq C_{2} \times C_{2} and hence the fields

L_{\mathbb{C}}^{(1)}, L_{\mathbb{C}}^{(2)} and L_{\mathbb{C}}^{(3)} are not (retract, stably) \mathbb{C} ‐rational.

For m = 1
, 2, the fields L_{\mathbb{C}}^{(m)} and L_{\mathbb{C}}^{(3)} are not stably \mathbb{C}‐isomorphic because their un‐

ramified Brauer groups are not isomorphic. However, we do not know whether the fields

L_{\mathbb{C}}^{(1)} and L_{\mathbb{C}}^{(2)} are stably \mathbb{C}‐isomorphic. If not, it is interesting to evaluate the higher un‐

ramified cohomologies. Unfortunately, a useful formula like Bogomolov�s formula (Theorem
1.11) or Moravec�s formula [Mor12, Section 3] for B_{0}(G) is unknown for higher unramified

cohomologies.
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Theorem 1.33 gives another proof of B_{0}(G) \simeq  C_{2} to Theorem 1.30 when G belongs to

$\Phi$_{16}, $\Phi$_{31}, $\Phi$_{37}, $\Phi$_{39}, $\Phi$_{43}, $\Phi$_{58}, $\Phi$_{60} or $\Phi$_{80} . Especially, this proof is based on the result of order

64 for $\Phi$_{16} (Theorem 1.25) and it does not depend on the computer calculations of GAP.

Although Theorem 1.33 gives only the first step, the author hopes that it will stimulate

further work towards a more complete understanding of the (stably) birational classification

of \mathrm{C}(G) for non‐aUelian groups G.
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