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An oriented knot is an oriented circle smoothly embedded in the space \mathbb{R}^{3} . We

consider oriented knots up to ambient isotopy in \mathbb{R}^{3} . We do not distinguish a knot

and its ambient isotopy class so long as no confusion occurs. Let  $\pi$ : \mathbb{R}^{3}\rightarrow \mathbb{R}^{2} be

a natural projection defined by  $\pi$(x, y, z) = (x, y) . Let K be an oriented knot in

\mathbb{R}^{3} . Suppose that the multiple points of the restriction of  $\pi$ to  K are only finitely
many transverse double points. Then the image  $\pi$(K) together with over/under

information at each double point is called a knot diagram of K . A double point of

a knot diagram is called a crossing point. We do not distinguish a knot diagram
and its ambient isotopy class in \mathbb{R}^{2} so long as no confusion occurs.

The Reidemeister moves are local moves on knot diagram illustrated in Figure 1.

Let n be a positive integer. A sequence of knot diagrams D_{1} , \cdots, D_{n} on \mathbb{R}^{2} is said

to be a Reidemeister sequence if D_{i+1} is obtained from D_{i} by an application of one

of the Reidemeister moves for each i with 1\leq i\leq n-1 . It is well‐known that two

knot diagrams of the same knot are transformed into each other by a finite number

of applications of Reidemeister moves. Namely for any two diagrams D and E of

a knot K there is a Reidemeister sequence D_{1}, \cdots, D_{n} with D=D_{1} and D_{n}=E.
Then we say that D_{1}, \cdots

,  D_{n} is a Reidemeister sequence from D to E . We denote

the number of crossings of a knot diagram D by c(D) .

FIGURE 1. Reidemeister moves

It is also well‐known that there are a knot K and two diagrams D and E of

K such that for any Reidemeister sequence D_{1}, \cdots

,  D_{n} from D to E , there exists

 i\in \{2, \cdots , n-1\} such that c(D_{i}) >\displaystyle \max\{c(D), c(E)\} . For example, let K_{0} be a

knot that bounds a disk in \mathbb{R}^{3}, D Goeritz�s unknot illustrated in Figure 2 and E\mathrm{a}

unit circle on the plane. Goeritz�s unknot is a knot diagram of K_{0} [2] . Note that it

has no loops and triangles, and each 2‐gon of it has alternating crossings. Therefore
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we can only apply \mathrm{R}1+\mathrm{o}\mathrm{r}\mathrm{R}2+\mathrm{t}\mathrm{o} it among other Reidemeister moves. Therefore

if D_{1}, \cdots, D_{n} is a Reidemeister sequence from D to E , then c(D_{2})=c(D_{1})+1 or

c(D_{2})=c(D_{1})+2 and therefore c(D_{2})>c(D_{1})=c(D)=\displaystyle \max\{c(D), c(E)\}.

FIGURE 2. Goeritz�s unknot

However it is known that there is a function f(x) such that for any diagram D

of the knot K_{0} , there exists a Reidemeister sequence D_{1}, \cdots

,  D_{n} from D to a unit

circle E with \displaystyle \max\{c(D_{i})|i\in\{1, \cdots , n\}\}\leq f(c(D)) . See [3] and [4].
A knot diagram E is said to be a stabilization (resp. strong stabilization) of a

knot diagram D if there exists a Reidemeister sequence D_{1}, \cdots

,  D_{n} with n \geq  1

from D to E such that c(D_{1}) \leq.. . \leq  c(D_{n}) (resp. c(D_{1}) <. . . < c(D_{n})). By
definition D is a strong stabilization of D itself. Note that Goeritz�s unknot is

not a stabilization of a unit circle. Let D_{1}, \cdots

,  D_{m} be knot diagrams. A knot

diagram D is said to be a common stabilization (resp. common strong stabilization)
of D_{1}, \cdots, D_{7n} if D is a stabilization (resp. strong stabilization) of D_{i} for each

i\in\{1, \cdots , m\}.

Theorem 1. (Alexander Coward 2006 [1]) Let K be a knot and D and E diagrams
of K. Then there is a Reidemeister sequence from D to E such that the sequence is

composed of a sequence of applications of R1+ , followed by a sequence of applica‐
tions of R2+ , followed by a sequence of applications of R3, followed by a sequence

of applications of R2‐.

Corollary 2. Let K be a knot and D and E diagrams of K. Then there exists a

diagram F of K such that F is a stabilization of D and F is a strong stabilization

of E.

Corollary 3. Let K be a knot and D_{1}, \cdots, D_{m} diagrams of K. Then there exists

a diagram D of K such that D is a common stabilization of D_{1}, \cdots

,  D_{m}.

Example 4. Let D and E be knot diagrams illustrated in Figure 3. Note that D is

a diagram of the knot 3_{1}\# 3_{1}\# 3_{1}^{*}\# 3_{1}^{*} and E is a diagram of the knot 3_{1}\# 3_{1}^{*}\# 3_{1}\# 3_{1}^{*}
where 3_{1} denotes the right‐handed trefoil knot, 3_{1}^{*} denotes the left‐handed trefoil

knot and J#K denotes the connected sum of two knots J and K . Since connected

sum operation is commutative we have 3_{1}\# 3_{1}\# 3_{1}^{*}\# 3_{1}^{*}=3_{1}\# 3_{1}^{*}\# 3_{1}\# 3_{1}^{*} . Therefore

D and E are diagrams of the same knot. By pulling one of 3_{1}^{*} tight and sliding it

along one of 3_{1} we have a Reidemeister sequence from D to E through diagrams at

most 14 crossings. However the corresponding sequence of crossing numbers cannot

be divided into a weakly increasing sequence and a subsequent weakly decreasing
sequence. Let F be a knot diagram illustrated in Figure 3. Note that E is obtained

from F by 12 times applications of R2‐ and D is obtained from F by 54 times
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applications of R3 followed by 12 times applications of R2‐. Therefore F is a

strong stabilization of E and F is a stabilization of D.

D

E

F

FIGURE 3. F is a common stabilization of D and E

We note that Corollary 2 is best possible. Namely we have the following results.

A knot diagram D is said to be (Rl, \mathrm{R}2)‐reduced if D has no loops and each 2‐gon
of D has alternating crossings. Then the following theorem is a paraphrase of a

result in [8, Theorem 3.2] where not only knot diagrams but also link diagrams are

considered. We note that a closely related result is shown in [5, Theorem 2.2 (3)].
See also [6] and [7].

Theorem 5. Let K be a knot and D and E (Rl, R2) ‐reduced diagrams of K.

Suppose that D and E have a common strong stabilization. Then D and E are

ambient isotopic on \mathbb{R}^{2} as oriented knot diagrams, or both D and E are simple
closed curves with opposite orientations.

Corollary 6. For any knot K , there are diagrams D and E of K that have no

common strong stabilizations.

Proof. It is clear that K has at least one (Rl, \mathrm{R}2)‐reduced diagram D . Let E be

a diagram‐connected sum of D and a Goeritz�s unknot. Then E is also \mathrm{a} (Rl, \mathrm{R}2 ) ‐

reduced diagram of K . Since D and E are not ambient isotopic on \mathbb{R}^{2} , Theorem 5

implies that they have no common strong stabilizations. \square 

Two knot diagrams D and E are said to be Rl‐R2‐equivalent if there exists a

Reidemeister sequence D_{1}, \cdots

,  D_{n} with D = D_{1} and D_{n} = E such that D_{i+1} is

obtained from D_{i} by an application of one of \mathrm{R}1+ , Rl‐, \mathrm{R}2+ and R2‐ for each i

with 1\leq i\leq n-1 . The following is an immediate consequence of Theorem 5.

Theorem 7. Let K be a knot and D and E diagrams of K. Let D' and E' be

(Rl, R2)‐reduced diagrams obtained from D and E respectively by applications of
Rl‐ and R2‐. Then the following conditions are equivalent.

(1) Two diagrams D and E are Rl‐R2‐equivalent.
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(2) Two diagrams D' and E' are ambient isotopic on \mathbb{R}^{2} as oriented knot dia‐

grams, or both D' and E' are simple closed curves with opposite orientations.

Proof. Suppose that D' and E' are ambient isotopic on \mathbb{R}^{2} as oriented knot

diagrams. Then D and E are Rl‐R2‐equiva1ent. Suppose that both D' and E' are

simple closed curves with opposite orientations. It is easy to see that D' and E' are

Rl‐R2‐equiva1ent. Therefore D and E are Rl‐R2‐equiva1ent. Thus we have shown

that the condition (2) implies the condition (1).
Suppose that D and E are Rl‐R2‐equiva1ent. Let D_{1}, \cdots

,  D_{n} be a Reidemeister

sequence with D = D_{1} and D_{n} = E such that D_{i+1} is obtained from D_{i} by an

application of one of \mathrm{R}1+ , Rl‐, \mathrm{R}2+ and R2‐ for each i with 1\leq i\leq n-1 . Let

Dí be an (Rl, \mathrm{R}2)‐reduced diagram obtained from D_{i} by applications of Rl‐and

R2‐ for each i with 2\leq i\leq n-1 . Let Dí = D� and D_{n}'=E' . Then D_{i} or D_{i+1} is

a common strong stabilization of Dí and D_{i+1}' for each i with 1\leq i\leq n-1 . Then

by Theorem 5 D_{i}' and D_{i+1}' are ambient isotopic on \mathbb{R}^{2} as oriented knot diagrams,
or both Dí and Dí+l are simple closed curves with opposite orientations for each i

with 1\leq i\leq n-1 . Therefore D'=D\'{i} and E'=D_{n}' are ambient isotopic on \mathbb{R}^{2} as

oriented knot diagrams, or both D' and E' are simple closed curves with opposite
orientations. Thus we have shown that the condition (1) implies the condition (2).
\square 
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