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1 Introduction

In this short survey we will deal with isometries of Grassmannians

on Hilbert spaces. We will first introduce the notation and then

explain the problem and the motivation. In the second section we

will formulate known results and briefly explain the main ideas of

the proofs. The last section will be devoted to open problems.
Let H be a real or complex Hilbert space. Recall that a bounded

linear operator P : H\rightarrow H is called a projection if P^{2}=P and P^{*}=

P . Such a projection is uniquely determined by its image {\rm Im} P.

Indeed, if P is a projection then the kernel of P is the orthogonal
complement of the image of P. Therefore H is the orthogonal direct

sum of the image of P and the kernel of P and if x is any vector in

H
, then there are unique vectors x_{1} \in {\rm Im} P and x_{2} \in \mathrm{K}\mathrm{e}\mathrm{r}P such

that x=x_{1}+x_{2} . We have Px=x_{1}.
In other words, each closed subspace of H can be identified with

the orthogonal projection onto this subspace. Let n be a positive
integer. Then the Grassmann space of all n‐dimensional subspaces of

H can be identified with P_{n}(H) , the set of all projections of rank n.

Clearly, P_{n}(H)\subset B(H) , where B(H) denotes the Banach algebra of

all bounded linear operators on H equipped with the usual operator
norm. Hence, the Grassmann space P_{n}(H) of all n‐dimensional

subspaces of H is a metric space with the distance function defined

by d(P, Q) = \Vert P-Q P, Q \in  P_{n}(H) . This distance is called the

gap metric.

Problem 1.1 Describe the general form of isometries of the Grass‐
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mann space of all n ‐dimensional subspaces of H with respect to the

gap metric.

In the case when n=1 this problem has been solved long ago and

is actually one of the basic results in the mathematical foundations

of quantum mechanics. Indeed, in quantum physics the Grassmann

space P_{1}(H) of all rank one projections is used to represent the set

of pure states of the quantum system, and the quantity tr (PQ) ,

the trace of the product PQ ,
is the so‐called transition probability

between two pure states. The classical Wigner�s theorem describes

those transformations of P_{1}(H) which preserve the transition prob‐
ability.

One can easily obtain the following equation:

\Vert P-Q\Vert=\sqrt{1-\mathrm{t}\mathrm{r}PQ}, P, Q\in P_{1}(H) .

Therefore, Wigner�s theorem characterizes isometries of P_{1}(H) with

respect to the gap metric, and in fact it states that these maps are

induced by linear or conjugate‐linear isometries of the underlying
space H . Let us note that in its original version, Wigner�s theo‐

rem describes surjective mappings of this kind, but as was shown

later in several papers, the above conclusion holds for non‐surjective
transformations as well.

2 Known results

In this section we will present four structural results for isometries

of Grassmann spaces that were proved in [5]. Somewhat weaker

versions of two of them had been previously obtained in [3].

Theorem 2.1 Let H be an infinite‐dimensional complex Hilbert space

and n a positive integer. Assume that a surjective map  $\phi$ :  P_{n}(H)\rightarrow
 P_{n}(H) is an isometry with respect to the gap metric. Then there ex‐

ists either a unitary or an antiunitary operator U on H such that

 $\phi$(P)=UPU^{*}

for every P\in P_{n}(H) .
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Theorem 2.2 Let H be an infinite‐dimensional real Hilbert space

and n a positive integer. Assume that a surjective map  $\phi$ :  P_{n}(H)\rightarrow
 P_{n}(H) is an isometry with respect to the gap metríc. Then there

exists an orthogonal operator U on H such that

 $\phi$(P)=UPU^{*}

for every P\in P_{n}(H) .

Let us briefly explain the main ideas of the proof of the above two

theorems. For any two projections P, Q \in  P_{n}(H) we define the

following set:

M(P, Q)= {R\in P_{n}(H) : \Vert R-P\Vert \displaystyle \leq\frac{1}{\sqrt{2}} and \Vert R-Q\Vert \leq \displaystyle \frac{1}{\sqrt{2}} }.
Since  $\phi$ :  P_{n}(H)\rightarrow P_{n}(H) is an isometry we have

 $\phi$(M(P, Q))=M( $\phi$(P),  $\phi$(Q)) .

Consider the case when P, Q \in  P_{n}(H) are orthogonal, that is;
PQ=0 (and then, clearly, QP=0). With respect to the orthogonal
direct sum decomposition H={\rm Im} P\oplus{\rm Im} Q\oplus H_{0} the projections
P, Q have the following matrix representations:

P= \left\{\begin{array}{lll}
I_{n} & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{array}\right\} and Q= \left\{\begin{array}{lll}
0 & 0 & 0\\
0 & I_{n} & 0\\
0 & 0 & 0
\end{array}\right\}
By I_{n} we have denoted the n\times n identity matrix. It is then not too

difficult to check that

M(P, Q)=\displaystyle \{[\frac{1}{\frac{}{},212}I_{n}U^{*}0 \frac{1}{\frac{}{},212}U0I_{n} 000] : U\in u_{n}\}
Here, u_{n} denotes the group of all n \times  n unitary matrices in the

complex case and the group of all n\times n orthogonal matrices in the

real case. In particular, M(P, Q) is a compact manifold.

If on the other hand, P and \hat{Q} are not orthogonal, then one can

use Halmos� two projections theorem to show that M(P, Q) is not
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compact. Since  $\phi$ is a bijective isometry, it maps compact sets to

compact sets. It follows that for every pair  P, Q\in P_{n}(H) we have

P\perp Q \Leftrightarrow  $\phi$(P)\perp $\phi$(Q) .

The desired conclusion is now a straightforward consequence of the

Györy ‐ Šemrl�s description of the general form of orthogonality
preserving transformations on the set of n‐dimensional subspaces of

a Hilbert space [6, 7].

Theorem 2.3 Let H be a finite‐dimensional complex Hilbert space

and n a positive integer, n < \dim H. Assume that a map  $\phi$ :

 P_{n}(H) \rightarrow P_{n}(H) is an isometry with respect to the gap metric. If
\dim H \neq  2n , then there exists either a unitary or an antiunitary
operator U on H such that  $\phi$ is of the following form:

 $\phi$(P)=UPU^{*}, P\in P_{n}(H) . (1)

In the case when \dim H=2n , we have either (1), or the following
additional possibility occurs:

 $\phi$(P)=U(I-P)U^{*}, P\in P_{n}(H) .

Theorem 2.4 Let H be a finite‐dimensional real Hilbert space and

n a positive integer,  n<\dim H. Assume that a map  $\phi$ :  P_{n}(H) \rightarrow

 P_{n}(H) is an isometry with respect to the gap metric. If \dim H\neq 2n,
then there exists an orthogonal operator U on H such that  $\phi$ is of
the following form.�

 $\phi$(P)=UPU^{*}, P\cdot\in P_{n}(H) . (2)

In the case when \dim H=2n_{f} we have either (2), or the following
additional possibility occurs:

 $\phi$(P)=U(I-P)U^{*}, P\in P_{n}(H) .

There is an essential difference between the first two theorems and

the last
‐

twoi in the finite‐dimensional case we get the description of

isometries of Grassmann spaces without assuming surjectivity.
Let us briefly explain the main ideas of the proof of Theorems

2.3 and 2.4. First we need to see that  $\phi$ is surjective. This is easy.
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Indeed,  P_{n}(H) is a compact manifold, and therefore  $\phi$(P_{n}(H)) is

also compact. On the other hand, the domain invariance theorem

ensures that the range of  $\phi$ is open as well. Since  P_{n}(H) is connected,
we conclude that  $\phi$ is surjective.

Now, we have the same assumptions as in the infinite‐dimensional

case. It is somewhat surprising that the finite‐dimensional case is

much more difficult. We have to distinguish several cases.

The first one is that  2n < \dim H < \infty . We first verify that

for any pair  P, Q \in  P_{n}(H) with \Vert P-Q\Vert = 1 the following are

equivalent:

\bullet  P and Q are orthogonal.

\bullet  M(P, Q) is a compact manifold.

We already know that if P and Q are orthogonal then M(P, Q) is

homeomorphic to either the unitary group, or the orthogonal group,

and consequently, it is a compact manifold. To prove the converse

one needs to show that if P and Q are not orthogonal, then M(P, Q)
is not a compact manifold. Of course, M(P, Q) is closed, and hence

compact. Thus, one needs to verify that it is not a manifold and this

makes this part of the proof much more involved than in the infinite‐

dimensional case. Once this is done, we know that  $\phi$ preserves

orthogonality. Unfortunately, Györy‐ Šemrl�s result [6, 7] describes

the general form of orthogonality preserving transformations on the

set of  n‐dimensional subspaces only on infinite‐dimensional Hilbert

spaces. But it is not too difficult to extend it to the case when

\dim H>2n . And then the proof in our first case is done.

As orthogonality preserving maps on P_{n}(H) may behave badly
when \dim H=2n , this special case needs to be treated separately.
The main idea is to apply a theorem of Blunck and Havlicek [2] on

complementarity preservers. Note that P, Q \in  P_{n}(H) are comple‐
mentary if H is a direct sum of the images of P and Q . This is

easily seen to be equivalent to the condition

\Vert(I-P)-Q\Vert <1.

Hence, isometries preserve complementarity and are of a nice form

by Blunck‐Havlicek theorem.
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In the remaining case when n<d :=\dim H<2n we first observe

that \Vert P-Q\Vert =\Vert(I-P)-(I-Q P, Q\in P_{n}(H) . Thus the map

\tilde{ $\phi$} : P_{d-n}(H)\rightarrow P_{d-n}(H) defined by \tilde{ $\phi$}(I-P)=I- $\phi$(P) is also an

isometry, but on the Grassmann space P_{d-n}(H) . Therefore we can

apply our result in the first case to complete the proof.

3 Open problems

1. So far the isometries of Grassmann spaces with respect to the

gap metric induced by the usual operator norm have been stud‐

ied. What happens if we replace the operator norm with other

unitarily invariant norms? Note that we are dealing with the

distance between finite rank projections and thus we are inter‐

ested in matrix unitarily invariant norms. An interested reader

can find the complete description of unitarily invariant norms

of matrices in [1].

2. Do we need the surjectivity assumption in Theorem 2.1? The

description of not necessarrily surjective isometries of Grass‐

mann spaces with respect to the gap metric in the special case

when n=1 is known. Of course, we need to replace unitary or

antiunitary operators in the conclusion of the statement with

linear or conjugate‐linear (not necessarily surjective) isometries

of the underlying Hilbert space H . For a short proof we refer

to [4]. Of course, the same question can be asked for Theorem

2.2.

3. It would be nice to have an analogue of Theorems 2.1 and 2.2

with P_{\infty}(H) instead of P_{n}(H) . Here, P_{\infty}(H) denotes the set of

all projections P on H such that both the image of P and the

kernel of P are infinite‐dimensional.
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