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1. INTRODUCTION

Let (X, d) be a complete metric space and  $\varphi$ a proper lower semicontinuous

functional from  X into (-\infty, \infty]. Then the evolution variational inequality problem
is stated as follows: Given  x \in  X and  $\tau$ > 0 , find u \in  C([0,  $\tau$]_{1}X) such that

u(0)=x, u(t)\in D( $\varphi$)^{\backslash } for almost all t\in(0,  $\tau$) ,  $\varphi$\circ u\in L_{1\mathrm{o}\mathrm{c}}^{1}(0,  $\tau$;\mathbb{R}) and

(1.1) \displaystyle \frac{1}{2}(d(u(t), z)^{2}-d(u(s), z)^{2})+\int_{s}^{t} $\varphi$(u(r))dr\leq(t-s) $\varphi$(z)
for  0<s<t< $\tau$ and  z\in D( $\varphi$) . Such a function u is called an integral solution to

(\mathrm{E}\mathrm{V}\mathrm{I};x) on [0,  $\tau$] . A function u\in C([0,  $\tau$);X) where  $\tau$\in(0, \infty] is called an integral
solution to (\mathrm{E}\mathrm{V}\mathrm{I};x) on [0,  $\tau$) if for any  0<b< $\tau$ the restriction  u to the interval

[0, b] is an integral solution to (\mathrm{E}\mathrm{V}\mathrm{I};x) on [0, b].
We establish a Chernoff product formula for gradient flows and apply it to study

the well‐posedness of the evolution variational inequality (1.1) whose integral solu‐

tions u satisfy the growth condition

(1.2)  $\psi$(u(t))\leq m(t; $\psi$(x)) for 0\leq t< $\tau$( $\psi$(x)) ,

where  $\psi$=($\psi$_{j})_{j=1}^{N} is an N‐tuple of functionals satisfying the following conditions:

( $\psi$ 1) For 1\leq j\leq N ,
the functional $\psi$_{j} maps X into [0, \infty].

( $\psi$ 2) The set D( $\psi$) := {x\in X ; $\psi$_{j}(x) < \infty for  1 \leq j \leq  N} coincides with the

effective domain D( $\varphi$) of  $\varphi$.

( $\psi$ 3) For r\in \mathbb{R}_{+}^{N} , the set D_{r}( $\psi$) :=\{x\in X; $\psi$(x) \leq r\} is closed in X.

( $\psi$ 4) For each r\in \mathbb{R}_{+}^{N} , there exists M\geq 0 such that  $\psi$(x)\leq r implies  $\varphi$(x)\leq M.
Here and subsequently, the symbol \mathbb{R}_{+} stands for the interval [0, \infty), and the symbol
 r \leq \hat{r} in \mathbb{R}_{+}^{N} means that r_{j} \leq \hat{r}_{j} for 1 \leq  j \leq  N

,
where r = (r_{j})_{j=1}^{N} and \hat{r} =

(\hat{r}_{j})_{j=1}^{N} . For r\in \mathbb{R}_{+}^{N} , the symbol  $\tau$(r) stands for the maximal existence time of the

noncontinuable maximal solution m(t;r) of the problem

p'(t)=g(p(t)) for t\geq 0 , and p(0)=r,

where g\in C(\mathbb{R}_{+}^{N};\mathbb{R}^{N}) satisfies the following conditions:

(g1) For 1\leq j\leq N, g_{j}(0) \geq 0.

(g2) For 1\leq j\leq N, g_{j}(r) is nondecreasing in r_{k} with k\neq j.
Such a function g is called a comparison function.
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2. A CHERNOFF PRODUCT FORMULA FOR GRADIENT FLOWS

The main theorem is given by

Theorem 2.1. Let \{C_{h};h\in(0, h_{0}]\} be a family of operators from D( $\varphi$) into itself.
Assume that for any  $\epsilon$ > 0 and r \in \mathbb{R}_{+}^{N} there exists $\delta$_{0} \in (0, h_{0} ] such that for
h\in(0, $\delta$_{0}] and v\in D( $\varphi$) with  $\psi$(v)\leq r,

(2.1) \displaystyle \frac{1}{2h}(d(C_{h}v, z)^{2}-d(v, z)^{2})+ $\varphi$(C_{h}v)\leq $\varphi$(z)+ $\epsilon$ for  z\in D( $\varphi$) ,

(2.2)  $\psi$(C_{h}v)\leq m^{ $\epsilon$}(h; $\psi$(v)) ,

where for each  $\epsilon$ \in (0, $\epsilon$_{0} ] and r \in \mathbb{R}_{+}^{N} , the symbol m^{ $\epsilon$}(t;r) stands for the noncon‐

tinuable maximal solution of the problem

p'(t)=g^{ $\epsilon$}(p(t)) for t\geq 0 ,
and p(0)=r,

and g^{ $\epsilon$}\in C(\mathbb{R}_{+}^{N};\mathbb{R}^{N}) is defined by

 g_{j}^{ $\epsilon$}(r)=g_{j}(r)+ $\epsilon$ for  1\leq j\leq N and r\in \mathbb{R}_{+}^{N}.
Then for any x \in  D( $\varphi$) there exists a unique integral solution u to (\mathrm{E}\mathrm{V}\mathrm{I};x) on

[0,  $\tau$( $\psi$(x))) satisfying the growth condition (1.2) such that

(2.3) \displaystyle \lim_{h\downarrow 0}d(C_{h}^{[t/h]}x, u(t))=0
for  t\in [0,  $\tau$( $\psi$(x))) , where the convergence is uniform on any compact subinterval

of [0,  $\tau$( $\psi$(x))) .

Remark 2.2. (i) Clément and Maas [2] recently pointed out that the results in [1]
cannot be directly applied to Fokker‐Plack equations and porous medium equations
with a potential discussed in [6, 10] and proved a Trotter product formula for

gradient flows in order to establish the convergence of the splitting method for such

perturbed equations. The main theorem generalizes their result on Trotter product
formula. (ii) In [1] the existence of a unique solution u with regularizing effect such

that  $\varphi$(u(t)) is nonincreasing in t is investigated. This is a special case where \acute{g}=0
and  $\psi$=$\varphi$^{+} , where $\varphi$^{+} denotes the positive part of  $\varphi$ . Other examples will be given
in Corollary 2.3.

Proof. By (2.1) there exist  u_{0}\in D( $\varphi$) , v_{0}\in D( $\varphi$) , $\eta$_{0}>0 and $\xi$_{0}>0 such that

(2.4) \displaystyle \frac{1}{2$\eta$_{0}}(d(v_{0}, z)^{2}-d(u_{0}, z)^{2})+ $\varphi$(v_{0})\leq $\varphi$(z)+$\xi$_{0}
for any z\in D( $\varphi$) . For z\in D( $\varphi$) we set

M(z)=d(u_{0}, z)(d(u_{0}, v_{0})/$\eta$_{0})+(d(u_{0}, v_{0})/$\eta$_{0})^{2}/2+( $\varphi$(z)- $\varphi$(v_{0}))^{+}+$\xi$_{0},
where a^{+}=\displaystyle \max\{a, 0\} for a\in \mathbb{R}.

We prove that for any x \in  D( $\varphi$) ,
the limit \displaystyle \lim_{h\downarrow 0}C_{h}^{[t/h]}x exists uniformly for

t in any compact subinterval of [0,  $\tau$( $\psi$(x)) ). To do this, let x \in  D( $\varphi$) and set

 $\tau$= $\tau$( $\psi$(x)) . Take  0<T< $\tau$ arbitrarily. Then there exist  r\in \mathbb{R}_{+}^{N} and $\epsilon$_{0}\in(0,1/2]
such that $\tau$^{ $\epsilon$}( $\psi$(x))>T and m^{ $\epsilon$}(t; $\psi$(x))\leq r for  t\in [0, T] and  $\epsilon$\in (0, $\epsilon$_{0} ], where for

each  $\epsilon$\in(0, $\epsilon$_{0} ] and r\in \mathbb{R}_{+}^{N} , the symbol $\tau$^{ $\epsilon$}(r) stands for the maximal existence time

of the maximal solution m^{ $\epsilon$}(t;r) .

Let  $\epsilon$ \in (0, $\epsilon$_{0}] and take $\delta$_{0} \in (0, h_{0} ] so that conditions (2.1) and (2.2) hold for

 h\in (0, $\delta$_{0}] and v\in D( $\varphi$) with  $\psi$(v) \leq r . Let $\eta$_{0}=\displaystyle \min\{ $\epsilon,\ \delta$_{0}\} and set K^{h}= [T/h]
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for  h\in (0, $\eta$_{0}] . Then it can be inductively proved that  $\psi$(C_{h}^{i}x) \leq m^{ $\epsilon$}(ih; $\psi$(x)) for

h\in(0, $\eta$_{0}] and 0\leq i\leq K^{h} , and

(2.5) \displaystyle \frac{1}{2h}(d(C_{h}^{i}x, z)^{2}-d(C_{h}^{i-1}x, z)^{2})+ $\varphi$(C_{h}^{i}x)\leq $\varphi$(z)+ $\epsilon$
for  h\in(0, $\eta$_{0}], z\in D( $\varphi$) and 1\leq i\leq K^{h}.

Let  $\lambda$,  $\mu$\in(0, $\eta$_{0}] satisfy 2 $\lambda$\leq 1 and 2 $\mu$\leq 1 . We prove by double induction that

(2.6) d(C_{ $\lambda$}^{i}x, C_{ $\mu$}^{j}x)^{2}\leq 2\exp(2(i $\lambda$+j $\mu$))(M(x)D_{i,j}^{ $\lambda,\ \mu$}+(i $\lambda$+j $\mu$) $\epsilon$)
for 0\leq i\leq K^{ $\lambda$} and 0\leq j\leq K^{ $\mu$} , where the symbol D_{i,j}^{ $\lambda,\ \mu$} is defined by

D_{i,j}^{ $\lambda,\ \mu$}=\{(i $\lambda$-j $\mu$)^{2}+i$\lambda$^{2}+j$\mu$^{2}\}^{1/2}
for 0\leq i\leq K^{ $\lambda$} and 0\leq j\leq K^{ $\mu$} . In order to verify that the inequality (2.6) holds

for i=0 , it suffices to show that

(2.7) d(C_{ $\mu$}^{j}x, x)^{2}\leq\exp(2j $\mu$)(2M(x)j $\mu$+2j $\mu \epsilon$)
for 0\leq j\leq K^{ $\mu$} . Clearly, the inequality (2.7) holds for j=0 . Now, let 1\leq l\leq K^{ $\mu$}
and assume that the inequality (2.7) holds for j=l-1 . Combining the inequality
(2.5) with z=x,  h= $\mu$ and  i=l and the inequality (2.4) with z=C_{ $\mu$}^{ $\iota$}x ,

we have

\displaystyle \frac{1}{2 $\mu$}(d(C_{ $\mu$}^{l}x, x)^{2}-d(C_{ $\mu$}^{l-1}x, x)^{2}) \leq \frac{1}{2$\eta$_{0}}(d(u_{0}, C_{ $\mu$}^{l}x)^{2}-d(v_{0}, C_{ $\mu$}^{l}x)^{2})
+( $\varphi$(x)- $\varphi$(v_{0}))^{+}+$\xi$_{0}+ $\epsilon$.

Since

\displaystyle \frac{1}{2$\eta$_{0}}(d(u_{0}, C_{ $\mu$}^{l}x)^{2}-d(v_{0}, C_{ $\mu$}^{l}x)^{2}) \leq d(u_{0}, C_{ $\mu$}^{l}x)(d(u_{0}, C_{ $\mu$}^{l}x)-d(v_{0}, C_{ $\mu$}^{l}x))/$\eta$_{0}

\leq (d(u_{0}, x)+d(x, C_{ $\mu$}^{l}x))d(u_{0}, v_{0})/$\eta$_{0},
we find that (d(C_{ $\mu$}^{l}x, x)^{2}-d(C_{ $\mu$}^{l-1}x, x)^{2})/ $\mu$\leq 2M(x)+d(C_{ $\mu$}^{l}x, x)^{2}+2 $\epsilon$ ; hence

 d(C_{ $\mu$}^{l}x, x)^{2}\leq\exp(2 $\mu$)(d(C_{ $\mu$}^{l-1}x, x)^{2}+2M(x) $\mu$+2 $\epsilon \mu$) ,

where we have used the fact that (1-t)^{-1} \leq\exp(2t) for  t\in [0 , 1/2] . Substituting
the inequality (2.7) with j=l-1 into this inequality, we observe that the inequality
(2.7) holds for j=l . This proves the inequality (2.6) holds for i=0 . Similarly, the

inequality (2.6) is proved to be true for j=0.
Now, let 1\leq k\leq K^{ $\lambda$} and 1\leq l\leq K^{ $\mu$} , and assume that the inequality (2.6) hold

for (i,j) = (k-1, l) and (i,j) = (k, l-1) . Combining the two inequalities (2.5)
with (h, i, z) replaced by ( $\lambda$, k, C_{ $\mu$}^{l}x) and ( $\mu$, l, C_{ $\lambda$}^{k}x) , we find that

d(C_{ $\lambda$}^{k}x, C_{ $\mu$}^{l}x)^{2}\displaystyle \leq\frac{ $\mu$}{ $\lambda$+ $\mu$}d(C_{ $\lambda$}^{k-1}x, C_{ $\mu$}^{l}x)^{2}+\frac{ $\lambda$}{ $\lambda$+ $\mu$}d(C_{ $\lambda$}^{k}x, C_{ $\mu$}^{l-1}x)^{2}+4\frac{ $\lambda \mu$}{ $\lambda$+ $\mu$} $\epsilon$.
We substitute the induction hypotheses into the first and second terms on the

right‐hand side of the above inequality and use the inequality

\displaystyle \frac{ $\mu$}{ $\lambda$+ $\mu$}D_{k-1,l}^{ $\lambda,\ \mu$}+\frac{ $\lambda$}{ $\lambda$+ $\mu$}D_{k,l-1}^{ $\lambda,\ \mu$}\leq D_{k,l}^{ $\lambda,\ \mu$},
which follows from the Cauchy‐Schwarz inequality (see also Kobayashi�s argument
used in proving [7, the inequality (2.10)]). This proves (2.6) with (i, j)=(k, l) . We

conclude that the inequality (2.6) holds for any 0\leq i\leq K^{ $\lambda$} and 0\leq j\leq K^{ $\mu$}.
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By (2.6) we have

d(C_{ $\lambda$}^{[ $\epsilon$/ $\lambda$]}x, C_{ $\mu$}^{[t/ $\mu$]}x)^{2}\leq 2\exp(4T)(M(x)\{(|t-s|+ $\lambda$+ $\mu$)^{2}+( $\lambda$+ $\mu$)T\}^{1/2}+2T $\epsilon$)
for  $\lambda$,  $\mu$\in (0, $\eta$_{0}] and s,  t\in [0, T] . This implies that the family \{C_{h}^{[t/h]}x\} converges
to an X‐valued measurable function u on [0, T] in X uniformly for t \in [0, T] as

h\downarrow 0 and that d(u(s), u(t))^{2}\leq 2\exp(4T)M(x)|t-s| for t, s\in[0, T].
Since  $\psi$(C_{h}^{[t/h]}x) \leq m^{ $\epsilon$}([t/h]h; $\psi$(x)) for  t\in [0, T] and  h\in (0, $\eta$_{0}], it follows from

condition ( $\psi$ 3) that u(t) \in  D( $\psi$) =D( $\varphi$) and  $\psi$(u(t)) \leq  m(t; $\psi$(x)) for  t\in [0, T].
Moreover, we have  $\psi$(C_{h}^{[t/h]}x) \leq  r for t \in [0, T] and h \in (0, $\eta$_{0} ]. Condition ( $\psi$ 4)
ensures the existence of M_{0} > 0 such that  $\varphi$(C_{h}^{[t/h]}x) \leq  M_{0} for t \in [0, T] and

h\in(0, $\eta$_{0}] . Setting z=C_{h}^{[t/h]}x in (2.4) and noting (2.3), we find a real number m_{0}

such that  $\varphi$(C_{h}^{t/h]}x)\geq m_{0} for t\in[0, T] and h\in(0, $\eta$_{0} ]. We use (2.5) to find that

\displaystyle \frac{1}{2}(d(C_{h}^{l}x, z)^{2}-d(C_{h}^{k}x, z)^{2})+\int_{(k+1)h}^{(l+1)h} $\varphi$(C_{h}^{[t/h]}x)dt\leq(l-k)h( $\varphi$(z)+ $\epsilon$)
for z \in  D( $\varphi$) and 0 \leq  k \leq  l \leq  K^{h} . The lower semicontinuity of  $\varphi$ shows that

 u(t) \in  D( $\varphi$) and  $\varphi$(u(t)) \leq  M_{0} for t \in [0, T] and that u satisfies the integral
inequality (1.1). Since  $\varphi$\circ u is lower semicontinuous on [0, T] , it is bounded on

[0, T] from below. It follows that  $\varphi$\circ u\in  L^{\infty}(0, T;X) . Since  T\in (0,  $\tau$( $\psi$(x))) is

arbitrary, we conclude that the (\mathrm{E}\mathrm{V}\mathrm{I};x) has an integral solution u on [0,  $\tau$( $\psi$(x)) )
satisfying the growth condition (1.2). \square 

Theorem 2.1 generalizes some results in [2].

Corollary 2.3. ([2, Theorem 1.1 and Proposition 1.7]) Fori=1 , 2, let $\varphi$^{i} be a lower

semicontinuous functional from X into (-\infty, \infty] satisfying  D($\varphi$^{1})\cap D($\varphi$^{2}) \neq \emptyset.
Assume that the following conditions (A1) and (A2) hold:

(A1) For i=1
, 2, the following variational inequality has a solution for any h>0

and any x\in D($\varphi$^{i}) :

Find y\in D($\varphi$^{i}) satisfy ing

\displaystyle \frac{1}{2h}(d(y, z)^{2}-d(x, z)^{2})+\frac{1}{2h}d(y, x)^{2}+$\varphi$^{i}(y)\leq$\varphi$^{i}(z)
for any z\in D($\varphi$^{i}) .

(A2) For any h>0, J_{h}^{1}(\overline{D($\varphi$^{1})}\cap D($\varphi$^{2})) \subset\overline{D($\varphi$^{2})} and J_{h}^{2}(D($\varphi$^{1})\cap\overline{D($\varphi$^{2})}) \subset

 D($\varphi$^{1}) , where J_{h}^{i} is the resolvent of $\varphi$^{i} for i=1 , 2.

Suppose that $\varphi$^{1} and $\varphi$^{2} satisfy at least one of the following conditions:

(1) There exists c \geq  0 such that $\varphi$^{1}(J_{h}^{2}x) \leq $\varphi$^{1}(x)+ch for any h > 0 and

x\in D($\varphi$^{1})\cap D($\varphi$^{2}) .

(2) The functional $\varphi$^{1} maps X to [0, \infty] and there exists  $\alpha$ \geq  0 such that

$\varphi$^{1}(J_{h}^{2}x)\leq e^{ $\alpha$ h}$\varphi$^{1}(x) for any h>0 and x\in D($\varphi$^{1})\cap D($\varphi$^{2}) .

(3) The functional $\varphi$^{2} maps X to [0, \infty] and there exist  $\alpha$\geq 0 and c\geq 0 such

that $\varphi$^{1}(J_{h}^{2}x) \leq$\varphi$^{1}(x)+ch$\varphi$^{2}(J_{h}^{2}x) and $\varphi$^{2}(J_{h}^{1}x) \leq e^{ $\alpha$ h}$\varphi$^{2}(x) for any h>0

and x\in D($\varphi$^{1})\cap D($\varphi$^{2}) .

Then for any x\in D($\varphi$^{1})\cap D($\varphi$^{2}) there exists a unique integral solution u to (\mathrm{E}\mathrm{V}\mathrm{I};x)
on [0, \infty) such that

\displaystyle \lim_{h\downarrow 0}(J_{h}^{2}J_{h}^{1})^{[t/h]}x=u(t)
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for t \in [0, \infty) ,
where the convergence is uniform on any compact subinterval of

[0, \infty) .

Proof. Consider the functional  $\varphi$ defined by  $\varphi$(x)=$\varphi$^{1}(x)+$\varphi$^{2}(x) for x\in D( $\varphi$) :=

D($\varphi$^{1})\cap D($\varphi$^{2}) and the family \{C_{h};h>0\} of operators from D( $\varphi$) into itself defined

by C_{h}x= J_{h}^{2}J_{h}^{1}x for x \in D( $\varphi$) and h>0 . Then the assumptions in Theorem 2.1

are satisfied with

(i)  $\psi$=$\varphi$^{+} and g(r)=c for r\in \mathbb{R}_{+} in case (1),
(ii)  $\psi$=($\varphi$^{+}, $\varphi$^{1}) and g(r)=( $\alpha$ r_{2},  $\alpha$ r_{2}) for r=(r_{1}, r_{2})\in \mathbb{R}_{+}^{2} in case (2),

(iii)  $\psi$=($\varphi$^{+}, $\varphi$^{2}) and g(r)=( $\alpha$ r_{1}+cr_{2},  $\alpha$ r_{2}) for r=(r_{1}, r_{2})\in \mathbb{R}_{+}^{2} in case (3).
The conclusion follows from Theorem 2.1 (see [13] in detail). \square 

3. CONCLUDING REMARK

In [13] the following characterization is established for the umique existence of

integral solutions satisfying (1.2) and is used to prove the Chernoff product formula

(Theorem 2.1).

Theorem 3.1. For any x \in  D( $\varphi$) there exists a unique integral solution u to

(\mathrm{E}\mathrm{V}\mathrm{I};x) on [0,  $\tau$( $\psi$(x))) satisfying the growth condition (1.2) if and only if the fol‐
lowing condition is satisfied:

(H) For any  $\epsilon$>0 and x\in D( $\varphi$) there exist  $\delta$\in(0,  $\epsilon$] and  x_{ $\delta$}\in D( $\varphi$) such that

(i) \displaystyle \frac{1}{2 $\delta$}(d(x_{ $\delta$}, z)^{2}-d(x, z)^{2})+ $\varphi$(x_{ $\delta$})\leq $\varphi$(z)+ $\epsilon$ for  z\in D( $\varphi$) ,

(ii)  $\psi$(x_{ $\delta$})\leq m^{ $\epsilon$}( $\delta$; $\psi$(x)) .

To prove the theorem we need to construct a family of approximate solutions

described by countable ordinals (compare with [4, 3, 7, 8, 9]) and the proof is based

on a transfinite induction argument similar to that used in [5, 11, 12].

Lemma 3.2. Let x_{0} \in  D( $\varphi$) and $\tau$_{0} =  $\tau$( $\psi$(x_{0})) . Assume that  $\epsilon$ \in (0,1/2],  $\tau$ \in

(0, $\tau$_{0}) and r_{0} \in \mathbb{R}_{+}^{N} satisfy $\tau$^{ $\epsilon$}( $\psi$(x_{0})) >  $\tau$ and  m^{ $\epsilon$}(t; $\psi$(x_{0})) \leq  r_{0} for t \in [0,  $\tau$].
Then there exist a countable ordinal  $\kappa$

, a set \{t_{ $\beta$};0 \leq  $\beta$ \leq  $\kappa$\} in [0,  $\tau$] and a set

\{x_{ $\beta$};1\leq $\beta$\leq $\kappa$\} in D( $\varphi$) satisfying the following conditions:

(i)  0=t_{0}<t_{ $\beta$}<t_{ $\gamma$}<t_{ $\kappa$}= $\tau$ for  0< $\beta$< $\gamma$< $\kappa$.
(ii) If  $\beta$ is a successor ordinal, then

(ii‐l)  h_{ $\beta$,1}:=t_{ $\beta$}-t_{ $\beta$-1}\leq $\epsilon$,
(ii‐2) \overline{2h_{ $\beta$}}(d(x_{ $\beta$}, z)^{2}-d(x_{ $\beta$-1}, z)^{2})+ $\varphi$(x_{ $\beta$})\leq $\varphi$(z)+ $\epsilon$ for  z\in D( $\varphi$) .

(iii) If  $\beta$ is a limit ordinal, then

 x_{ $\beta$}=\displaystyle \lim_{n\rightarrow\infty}x_{$\beta$_{n}} and t_{ $\beta$}=\displaystyle \lim_{n\rightarrow\infty}t_{$\beta$_{n}}
for any sequence \{$\beta$_{n}\} of countable ordinals with  $\beta$=\displaystyle \lim_{n\rightarrow\infty}$\beta$_{n}.

Moreover, the following inequalities hold:

(a)  $\psi$(x_{ $\beta$})\leq m^{ $\epsilon$}(t_{ $\beta$}; $\psi$(x_{0})) for 0\leq $\beta$\leq $\kappa$.
(b) d(x_{ $\beta$}, x_{0})^{2}\leq\exp(2t_{ $\beta$})N_{0}t_{ $\beta$} for  0\leq $\beta$\leq $\kappa$ , where

 N_{0}=(d(x_{1}, x_{0})/h_{1})^{2}+2( $\varphi$(x_{0})- $\varphi$(x_{1}))^{+}+2.

78



REFERENCES

[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of

probability measures, Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 2005.

[2] Ph. Clément and J. Maas, A Trotter product formula for gradient flows in metric spaces, J.

Evol. Equ. 11 (2011), 405‐427.

[3] M. G. Crandall and L. C. Evans, On the relation of the operator \partial/\partial s+\partial/\partial $\tau$ to evolution

governed by accretive operators, Israel J. Math. 21 (1975), 261‐278.

[4] M. G. Crandall and T. M. Liggett, Generation of semi‐groups of nonlinear transformations

on general Banach spaces, Amer. J. Math. 93 (1971), 265‐298.

[5] K. Furuya and Y. Komura, Linear evolution equations of nonparabolic type with variable

domains, Tohoku Math. J. 37 (1985), 125‐149.

[6] R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker‐Planck

equation, SIAM J. Math. Anal. 29 (1998), 1‐17.

[7] Y. Kobayashi, Difference approximation of Cauchy problems for quasi‐dissipative operators
and generation of nonlinear semigroups, J. Math. Soc. Japan 27 (1975), 640‐665.

[S] Y. Kobayashi and S. Oharu, Semigroups of locally Lipschitzian operators and applications,
Functional analysis and related topics, 1991, Kyoto, 191‐211, Lecture Notes in Math., 1540,
Springer, Berlin, 1993.

[9] I. Miyadera, Nonlinear semigroups, Translations ofMathematical Monographs, 109 American

Mathematical Society, Providence, RI, 1992.

[10] F. Otto, The geometry of dissipative evolution equations: the porous medium equation,
Comm. Partial Differential Equations 26 (2001), 101‐174.

[11] T. Shigeta, Linear evolution equations and a mixed problem for singular or degenerate wave

equations, Comm. Partial Differential Equations 12 (1987), 701‐776.

[12] N. Tanaka, The abstract Cauchy problem for dissipative operators with respect to metric‐like

functionals, J. Math. Anal. Appl. 421 (2015), 539‐566.

[13] N. Tanaka, Well‐posedness for gradient flows in complete metric spaces, preprint.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, SHIZUOKA

422‐8529, JAPAN

 E‐mail address: tanaka.naoki@shizuoka.ac.jp

6

79


